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Abstract

Leibnizian metaphysics underpins the near universally held view that
spacetime must be inextendible – that it must be “as large as it can be”
in a sense. But here we demonstrate a surprising fact within the con-
text of general relativity: the property of inextendibility turns out to be
unstable when attention is restricted to certain collections of “physically
reasonable” spacetimes.

1 Introduction

Within the context of general relativity, the “stability” of various spacetime
properties has been one important focus of study. It has been argued that “in
order to be physically significant, a property of space-time ought to have some
form of stability, that is to say, it should be a property of ‘nearby’ space-times
(Hawking and Ellis 1973, 197). Questions concerning the stability of spacetime
properties are often made precise using the so-called “Ck fine” topologies on
any collection of spacetimes with the same underlying manifold. (The property
of “stable causality” is often defined using the C0 fine topology.) Here we re-
view what is known concerning the (in)stability of spacetime properties within
this framework. After considering some foundational results concerning causal
properties (Hawking 1969; Geroch 1970a) and a fascinating drama concerning
geodesic (in)completeness (Beem et al. 1996), we focus on the property of space-
time inextendibility about which very little is known. Because inextendibility
is defined relative to a background “possibility space” in the form of a standard
collection of spacetimes, one can naturally consider variant definitions relative
to other collections. (Some formulations of the “cosmic censorship” conjecture
rely on such variant definitions of inextendibility.) We find that the stability of
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“inextendibility” can be highly sensitive to the choice of definition – even when
attention is limited to definitions which are relative to “physically reasonable”
collections of spacetimes. Indeed, it is not yet clear that there is a physically
significant sense in which “inextendibility” is a stable property.

2 Preliminaries

Here we follow Wald (1984) and Malament (2012). An n-dimensional, general
relativistic spacetime (for n ≥ 2) is a pair of mathematical objects (M, gab)
where M is a smooth, connected, n-dimensional, Hausdorff manifold and gab is a
smooth metric of Lorentz signature (+,−, ...,−) defined on M . In what follows,
let U be the collection of all spacetimes. We say two spacetimes (M, gab) and
(M ′, g′ab) are isometric if there is a diffeomorphism ϕ : M → M ′ such that
ϕ∗(g′ab) = gab.

Fix a model (M, gab). For each point p ∈ M , the metric assigns a cone
structure to the tangent space Mp. Any tangent vector ξa in Mp will be timelike
if gabξ

aξb > 0, null if gabξ
aξb = 0, or spacelike if gabξ

aξb < 0. Null vectors create
the cone structure; timelike vectors fall inside the cone while spacelike vectors
fall outside. A time orientable model is one that has a continuous timelike vector
field on M . In what follows, we assume that models are time orientable and
that an orientation has been chosen.

For some connected interval I ⊂ R, a smooth curve γ : I →M is timelike if
its tangent vector ξa at each point in γ[I] is timelike. Similarly, a curve is null
if its tangent vector at each point is null. A curve is causal if its tangent vector
at each point is either null or timelike. A causal curve is future-directed if its
tangent vector at each point falls in or on the future lobe of the light cone. A
causal curve γ : I →M is closed if the tangent vector is nowhere vanishing and
there are distinct s, s′ ∈ I such that γ(s) = γ(s′). (M, gab) satisfies chronology
if it does not contain a closed timelike curve; it satisfies causality if it does not
contain a closed causal curve.

We write p� q (respectively, p < q) if there exists a future-directed timelike
(respectively, causal) curve from p to q. For any point p ∈ M , we define the
timelike future of p, as the set I+(p) = {q : p � q}. Similarly, the causal
future of p is the set J+(p) = {q : p < q}. The timelike and causal pasts of
p, denoted I−(p) and J−(p), are defined analogously. The spacetime (M, gab)
satisfies distinguishability if there do not exist distinct points p, q ∈M such that
I−(p) = I−(q) or I+(p) = I+(q). We say (M, gab) admits a global time function
if there is a smooth function t : M → R such that, for any distinct points
p, q ∈M , if p ∈ J+(q), then t(p) > t(q). (M, gab) satisfies global hyperbolicity if
it is causal and for any points p, q ∈M , the set J+(p) ∩ J−(q) is compact.

A curve γ : I → M is maximal if there is no curve γ′ : I ′ → M such that I
is a proper subset of I ′ and γ(s) = γ′(s) for all s ∈ I. The curve γ : I → M
is a geodesic if ξa∇aξ

b = 0 where ξa is its tangent vector and ∇a is the unique
derivative operator compatible with gab. A maximal geodesic γ : I → M is
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incomplete if I 6= R. A spacetime is geodesically incomplete if it harbors an
incomplete geodesic and geodesically complete otherwise; One can define causal
geodesic (in)completeness in an analogous way.

Let the energy-momentum tensor Tab for the spacetime (M, gab) be defined
by Einstein’s equation: Rab− 1

2Rgab = 8πTab where Rab is the Ricci tensor and
R the scalar curvature associated with gab. We say that (M, gab) is a vacuum
solution if Tab = 0. The null energy condition is satisfied if, for any null vector
χa, we have Tabχ

aχb ≥ 0. The weak energy condition is satisfied if, for each
timelike vector ξa, we have Tabξ

aξb ≥ 0. The strong energy condition is satisfied
if, for any unit timelike vector ξa, we have (Tab − 1

2Tgab)ξ
aξb ≥ 0. Finally, the

dominant energy condition is satisfied if, for any future-directed unit timelike
ξa, the vector T a

bξ
b is causal and future-directed.

3 Inextendibility

A spacetime (M ′, g′ab) is an extension of the spacetime (M, gab) if there is a
proper subset N ⊂ M ′ such that the spacetimes (N, g′ab) and (M, gab) are
isometric. A spacetime is extendible if it has an extension and inextendible
otherwise. One can show that any extendible spacetime has an inextendible ex-
tension (Geroch 1970b). This fact helps to underpin the nearly universally held
position that “any [physically] reasonable space-time should be inextendible”
(Clarke 1993, p. 8). John Earman summarizes and responds to the usual line
of argument (cf. Penrose 1969, Geroch 1970b).

“Metaphysical considerations suggest that to be a serious candi-
date for describing actuality, a spacetime should be [inextendible].
For example, for the Creative Force to actualize a proper subpart
of a larger spacetime would seem to be a violation of Leibniz’s prin-
ciples of sufficient reason and plenitude. If one adopts the image
of spacetime as being generated or built up as time passes then the
dynamical version of the principle of sufficient reason would ask why
the Creative Force would stop building if it is possible to continue.
However, this image does not sit well with the four-dimensional way
of thinking, and in any case it runs into trouble in its own terms:
since extensions of spacetime are generally non-unique there may
be many ways to continue building and the Creative Force may be
stymied by a Buridan’s ass choice. Some readers may be shocked
by the introduction of metaphysical considerations in the hardest of
the “hard sciences.” But in fact leading workers in relativistic gravi-
tation, though they don’t invoke the name of Leibniz, are motivated
by such principles (Earman 1995, pp. 32-33).

Setting aside the metaphysical issues outlined here, we see that the inex-
tendibility condition also faces an important conceptual difficulty: the standard
formulation is defined relative to the background “possibility space” U (the
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collection of all spacetimes) despite the fact that within U lurk “physically un-
reasonable” members (Manchak 2011, 2020). Shouldn’t a spacetime which is
extendible according to the standard definition count as “inextendible” if none
of its extensions are “physically reasonable”? Even if we cannot pin down, once
and for all, a single collection of “physically reasonable” spacetimes, one can
still explore variant formulations of the inextendibility condition defined rela-
tive to subcollections of U (Geroch 1970b; Manchak 2016). For any collection
P ⊆ U , consider the following: a P-spacetime is a spacetime in P; a P-
spacetime (M ′, g′ab) is a P-extension of a P-spacetime (M, gab) if (M ′, g′ab) is
an extension of (M, gab); a P-spacetime is P-extendible if it has a P-extension
and is P-inextendible otherwise. It is trivial that for any collection P ⊂ U
of inextendible spacetimes (e.g. the collection of geodesically complete space-
times) a P-inextendible spacetime must be inextendible. The general situation
is quite different however. For each P ⊂ U , consider the following statement.

(*) Any P-inextendible spacetime must be inextendible.

Let (V ), (DEC), (SEC), (WEC), (NEC) ⊂ U be, respectively, the collec-
tions of vacuum solutions and spacetimes satisfying the dominant, strong, weak,
and null energy conditions; note that (V ) ⊂ (DEC) ⊂ (WEC) ⊂ (NEC) and
(V ) ⊂ (SEC) ⊂ (NEC). Let (GH), (TF ), (Dist), (Caus), (Chron) ⊂ U be,
respectively, the collections of spacetimes which are globally hyperbolic, admit
a global time function, are distinguishing, causal, and chronological. Of course,
(GH) ⊂ (TF ) ⊂ (Dist) ⊂ (Caus) ⊂ (Chron). Let (GI) ⊂ U be the collection
of geodesically incomplete spacetimes. We have the following (Manchak 2017,
2021).

Proposition. (*) is false if: (i) (DEC) ⊆ P ⊆ (NEC), (ii) (SEC) ⊆ P ⊆
(NEC), (iii) (GH) ⊆P ⊆ (Dist), (iv) P = (Caus), or (v) P = (GI).

The status of (*) is still unknown for P = (V ) and P = (Chron) (Geroch
1970b). Indeed the P = (Chron) case has been one focus of the “time travel”
literature for some time but remains difficult to settle (cf. Krasnikov 2018).
But in general, the proposition suggests that we should carefully attend to the
differences between the standard definition of inextendibility and other variants.
In formulating a version of the “cosmic censorship” conjecture, Wald (1984, pp.
304-305) does just this when he appreciates that while some “maximal Cauchy
developments...are known to be extendible” it may be that all such extensions
fail to be P-extensions for some carefully chosen collection P ⊂ U of “physi-
cally reasonable” spacetimes.
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4 Stability

In their influential book The Large Scale Structure of Space-Time from 1973,
Hawking and Ellis write (pp. 197-198):

[I]n order to be physically significant, a property of space-time
ought to have some form of stability, that is to say, it should be a
property of ‘nearby’ space-times. In order to give precise meaning
to ‘nearby’ one has to define a topology on the set of all space-
times...We shall leave the problem of uniting in one connected topo-
logical space manifolds of different topologies (this can be done); and
shall and shall just consider putting a topology on the set of all Cr

Lorentz metrics (r ≥ 1) on a given manifold.

It is of some interest that despite the claim that a suitable topology can
be put on the entire collection U , no one has yet done this even after almost
fifty years (Fletcher 2016). Instead, various topologies have been defined on
each collection L (M) ⊂ U of all spacetimes with underlying manifold M . The
most commonly used are the “Ck fine” topologies (also called the “Ck open”
topologies) for k ≥ 0 which we shall consider here (cf. Geroch 1971; Hawking
and Ellis 1973).

Let (M, gab) and (M, g′ab) be spacetimes, let hab be any positive definite
metric on M , and let ∇a be the unique derivative operator compatible with
hab. At each point in M , the distance function d(gab, g

′
ab, h

ab, k) between the
kth partial derivatives (for k ≥ 0) of the Lorentzian metrics gab and g′ab on M
relative to hab is given by:

[hachbd(gab − g′ab)(gcd − g′cd)]1/2 for k = 0

[hachbdhr1s1 ...hrksk(∇r1 ...∇rk(gab − g′ab))(∇s1 ...∇sk(gcd − g′cd))]1/2 for k > 0

A Ck fine neighborhood of a spacetime (M, gab) is any collection N ⊂ L (M)
which includes all spacetimes (M, g′ab) such that SupM [d(gab, g

′
ab, h

ab, j)] < ε
for j = 0, ..., k where hab is a positive definite metric on M and ε is a positive
number. For all Q ⊆P ⊆ U , we say the property Q is Ck stable relative to the
collection P if, for each Q-spacetime (M, gab), there is an Ck fine neighborhood
of (M, gab) such that every P-spacetime in the neighborhood is a Q-spacetime.
Immediately we see that for all Q ⊆P ⊆ U , if property Q is Ck stable relative
to the collection P, then Q is Cl stable relative to P for all l ≥ k.

We know that even the coarsest of all of the Ck fine topologies is still quite
fine: If (M, gab) is a spacetime and M is non-compact, then the collection
{(M,λgab) : λ ∈ (0,∞)} does not represent a C0 fine continuous curve; in
addition, the induced topology on the collection is discrete (Geroch 1971). It
seems the Ck fine topologies have too many open sets to capture, once and for
all, what it means for one spacetime to be “nearby” another. On the other
hand, this means that instability results are all the more significant. Early re-
sults concerned two important causal properties (Hawking 1969; Geroch 1970a).
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Proposition. (TF ) and (GH) are Ck stable relative to U for all k ≥ 0.

Consider a few remarks concerning the proposition. First, the (TF ) case tells
us that any spacetime (M, gab) with a global time function is “stably causal”
in the sense that one can find a C0 neighborhood of (M, gab) such that each
spacetime in the neighborhood admits a global time function and is therefore
causal. Second, there were significant gaps in the proof concerning the (GH)
case which were filled in only recently (Navarro and Minguzzi 2011). Finally,
a simple but physically significant corollary to the proposition ensures that the
Ck stability of (TF ) and (GH) with respect to U will “transfer down” to the
Ck stability of (TF ) ∩P and (GH) ∩P with respect to any “physically rea-
sonable” collection P ⊆ U . In general, we have the following.

Proposition. For all Q ⊆ P ⊆ U and for all k ≥ 0, if the property Q is
Ck stable relative to the collection P, then for any subcollection P ′ ⊆P, the
property Q ∩P ′ is Ck stable relative to P ′.

What about the stability of other important spacetime properties? Con-
sider the collection (GC) ⊂ U of geodesic complete spacetimes. The following
claim was made in the first edition of Global Lorentzian Geometry by Beem and
Ehrlich (1981).

Claim. (GC) is Ck stable relative to U for all k ≥ 2.

Soon after there was to be a dramatic turn of events. Ehrlich (2006, p. 14)
later recounted the following.

That is how matters stood until 1985, when a copy of P. Williams’
Ph.D. thesis, “Completeness and its stability on manifolds with con-
nection,” was received unexpectedly in the mail. This article re-
vealed that there was a significant gap in the previous arguments
for [the claim above] and that in fact neither geodesic completeness
nor geodesic incompleteness was Ck-stable...From a certain perspec-
tive, a good deal of research in global space-time geometry during
the next decade can be viewed as trying to understand the more
complicated geometry of the space of geodesics once it was realized
that [the claim] failed to be valid.

From Williams (1984) we have the following result which is all the more
remarkable given how fine even the C0 topologies have been shown to be.

Proposition. (GC) and (GI) are not Ck stable relative to U for all k ≥ 0.

It is of some interest that this result fails within the Riemannian context
where both geodesic completeness and geodesic incompleteness are Ck stable
for all k ≥ 0 (Beem and Ehrlich 1987). By the time the second edition of
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their book was published, Beem and Ehrlich had worked to salvage the stability
of geodesic (in)completeness by restricting attention to special cases. Consider
the following proposition which is representative of this effort (Beem et al. 1996)

Proposition. If (M, g) is a globally hyperbolic spacetime and causally geodesi-
cally complete (respectively, incomplete), then there is a C1 fine neighborhood
of (M, g) such that each spacetime in the neighborhood is causally geodesically
complete (respectively, incomplete).

Here the physical significance is limited given that attention is restricted to
globally hyperbolic spacetimes and the C0 case is not considered. Are more
general results available? Nothing so far – even today we do not have a good
understanding of the (in)stability properties of geodesic (in)completeness and
closely related properties (cf. Manchak 2018; Doboszewski 2020).

5 Stability and Inextendibility

What is known concerning the (in)stability of the inextendibility properties?
Very little. What we do have is due to Beem and Ehrlich (1987). Using their
work concerning the stability of geodesic completeness, and drawing on on the
fact that geodesic completeness implies inextendibility, they show the following.

Proposition. There is a C1 fine neighborhood of Minkowski spacetime such
that each spacetime in the neighborhood is inextendible.

It is somewhat remarkable that, even after restricting attention to Minkowski
spacetime, the C0 case is unsettled. Are general results available? One would
love to know the status of the following conjecture for example.

Conjecture. The collection of all inextendible spacetimes is Ck stable relative
to U for all k ≥ 0.

Given the dramatic twists and turns so far concerning the (in)stability of
geodesic (in)completeness – and the many surprises throughout the history of
global Lorentzian geometry more generally – the status of the conjecture is
anyone’s guess. But even if it were true, there is a sense in which its physical
significance would seem to be quite limited since there is no assurance here that
the stability of inextendibility relative to U would “transfer down” to the sta-
bility of P-inextendibility relative to some “physically reasonable” collection
P ⊂ U . Indeed, consider the following.

Proposition. There are collections Q ⊂ P ⊂ U such that P-inextendibility
is Ck stable relative to P for all k ≥ 0 but Q-inextendibility fails to be Ck

stable relative to Q for all k ≥ 0. Moreover, P can be chosen so that each
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member is a globally hyperbolic vacuum solution.

Proof. We work in two dimensions to simplify the presentation but one can
generalize in the natural way. In first stage of the proof, we define the collections
Q,P ⊂ U . Consider the smooth bump function u : [−2, 2] → R given by the
following.

u(t) =

{
exp[1/(t2 − 1)] if − 1 < t < 1

0 otherwise

For each n ∈ Z+, we let fn, Fn : [−2, 2] → R be the functions fn(t) =

[1 − u(t)/n]1/2 and Fn(t) =
∫ t

0
fn(x)dx. The graphs of the functions f1(t) and

F1(t) are given in Figure 1. Note that for all n, Fn(t) is strictly increasing and
thus invertible. When no confusion arises, we will abuse notation and consider
the functions fn(t) and Fn(t) where the domain is restricted to (−2, 2).

Figure 1: The functions f1(t) and F1(t).

Let M = {(t, ϕ) ∈ R × S1 : −2 < t < 2}. For each n ∈ Z+, let (M, gab(n))
be the spacetime defined by setting gab(n) = f2n(t)∇at∇bt − ∇aϕ∇bϕ. Let
(M, gab(†)) be the spacetime defined by setting gab(†) = ∇at∇bt−∇aϕ∇bϕ. Fi-
nally, let (M, gab(‡)) be the spacetime defined by setting gab(‡) = f2‡ (t)∇at∇bt−
∇aϕ∇bϕ where f‡ : (−2, 2)→ R is given by f‡(t) = π sec2(πt/4)/2. Let P ⊂ U
be the collection {(M, gab(†)), (M, gab(‡))}∪{(M, gab(n)) : n ∈ Z+}; let Q ⊂P
be the collection P − {(M, gab(‡))}.

In the second stage of the proof, we establish the following facts: (i) for
all n, (M, gab(n)) is Q-extendible (and hence P-extendible), (ii) (M, gab(†)) is
Q-inextendible but P-extendible, (iii) (M, gab(‡)) is P-inextendible, and (iv)
each member of P is a globally hyperbolic vacuum solution. All of these facts
will follow easily once we define, for each spacetime in P, an isometric variant.

First, consider (M ′(‡), g′ab) where M ′(‡) = R × S1 and g′ab = ∇at
′∇bt

′ −
∇aϕ

′∇bϕ
′. We find that (M, gab(‡)) is isometric to (M ′(‡), g′ab); to see this, use

the diffeomorphism Ψ‡ : M → M ′(‡) defined by Ψ‡((t, ϕ)) = (2 tan(πt/4), ϕ)
and note that ∇a(2 tan(πt/4)) = f‡(t)∇at. Next, consider (M ′(†), g′ab) where
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M ′(†) = {(t′, ϕ′) ∈ M ′(‡) : −2 < t′ < 2} and the domain of g′ab is restricted
in the natural way. We find that (M, gab(†)) is isometric to (M ′(†), g′ab); to see
this, just use the identity map Ψ† : M →M ′(†). Finally, consider the spacetime
(M ′(n), g′ab) for all n ∈ Z+ where M ′(n) = {(t′, ϕ′) ∈ M ′(‡) : −Fn(2) < t′ <
Fn(2)} and once again the domain of g′ab is restricted in the natural way. One can
verify that F1(2) ≈ 1.88 (see Figure 1) and for all n we have F1(2) < Fn(2) < 2.
Now for all n, we find that (M, gab(n)) is isometric to (M ′(n), g′ab); to see this,
use the diffeomorphism Ψn : M → M ′(n) defined by Ψn((t, ϕ)) = (Fn(t), ϕ)
and note that ∇aFn(t) = fn(t)∇at.

It is immediate that for all n, M ′(n) is a proper subset of M(†) which is, in
turn, a proper subset of M(‡). So (M ′(‡), g′ab) is an extension of (M ′(†), g′ab)
which is an extension of (M ′(n), g′ab) for all n. Moreover, these spacetimes
are globally hyperbolic vacuum solutions since they are just portions of two-
dimensional Minkowski spacetime which has been “rolled up” in the spacelike
direction (see Figure 2). Using the isometries established above, we find that
(M, gab(‡)) is an extension of (M, gab(†)) which is an extension of (M, gab(n))
for all n. Moreover, each of these P-spacetimes must be a globally hyperbolic
vacuum solution. So it follows that (i)-(iv) are true.

Figure 2: The collections P and Q.

In the third stage of the proof, we show that the property of P-inextendibility
is C0 stable (and hence Ck stable for all k ≥ 0) relative to P. Since (M, gab(‡))
is the only P-inextendible spacetime in P, we are done if we can find a C0 fine
neighborhood N ⊂ U of (M, gab(‡)) such that none of the P-extendible space-
times can be found in N . Let hab be the positive definite metric on M given
by hab = (∂/∂t)a(∂/∂t)b + (∂/∂ϕ)a(∂/∂ϕ)b. Let N ⊂ L (M) be the C0 fine
neighborhood of (M, gab(‡)) defined as the collection of all spacetimes (M, gab)
such that SupM [d(gab(‡), gab, hab, 0)] < 1. We now show that each P-extendible
spacetime fails to make it into N .

Consider the P-extendible spacetime (M, gab(n)) for any n. We find that
gab(‡)− gab(n) is just (f2‡ (t)− f2n(t))∇at∇bt. So hab(gab(‡)− gab(n)) = f2‡ (t)−
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f2n(t). But one can verify that for all t ∈ (−2, 2), we have f2‡ (t) ≥ f2‡ (0) =

π2/4 > 2 and f2n(t) ≤ 1. It follows that SupM [d(gab(‡), gab(n), hab, 0)] > 1 and
therefore (M, gab(n)) fails to be in N for all n. The argument for the remaining
P-extendible spacetime (M, gab(†)) is analogous: We find that gab(‡)−gab(†) is
just (f2‡ (t)− 1)∇at∇bt. So hab(gab(‡)− gab(†)) = f2‡ (t)− 1. Since f2‡ (t) > 2 for

all t ∈ (−2, 2), it follows that SupM [d(gab(‡), gab(†), hab, 0)] > 1 and therefore
(M, gab(†)) fails to be in N . So we have established that each P-extendible
spacetime fails to make it into N and therefore P-inextendibility is C0 stable
(and hence Ck stable for all k ≥ 0) relative to P.

In the final stage of the proof, we show that the property of Q-inextendibility
is not Ck stable relative to Q for all k ≥ 0. We restrict attention to the k = 1
case to simplify the presentation but one can generalize in the natural way.
Since (M, gab(†)) is Q-inextendible, we are done if we can show that for any C1

fine neighborhood of (M, gab(†)), there is some n such that the Q-extendible
spacetime (M, gab(n)) is in the neighborhood.

Let hab be any positive definite metric on M and ε any positive number.
The smooth scalar fields α0, α1 : M → R are defined by:

α0(t, ϕ) = u(t)hab∇at∇bt

α1(t, ϕ) = [hachbdhrs(∇r(u(t)∇at∇bt))(∇s(u(t)∇ct∇dt))]
1/2.

The quantity gab(†)− gab(n) is just (1− f2n(t))∇at∇bt = (u(t)/n)∇at∇bt for
all n. So d(gab(†), gab(n), hab, 0) = α0/n and d(gab(†), gab(n), hab, 1) = α1/n.
Let N be the compact region {(t, ϕ) ∈ M : −1 ≤ t ≤ 1}. By construction, α0

and α1 vanish on M −N . So SupM−N [d(gab(†), gab(n), hab, k)] = 0 for k = 0, 1.
Now consider N . Because this region is compact, we know that there is an
m ∈ R such that α0(p) < m and α1(p) < m for all p ∈ N . So for each n, we
know SupN [d(gab(†), gab(n), hab, k)] < m/n for k = 0, 1. But m/n < ε for large
enough n. It follows that for k = 0, 1 we have SupM [d(gab(†), gab(n), hab, k)] < ε
for large enough n. So for any C1 fine neighborhood of (M, gab(†)), there is some
n such that the Q-extendible spacetime (M, gab(n)) is in the neighborhood. So
the property of Q-inextendibility fails to be C1 stable relative to Q. �

To highlight the physical significance of the proposition, suppose, for exam-
ple, that it is true that “all physically reasonable spacetimes are globally hyper-
bolic” (Wald 1984, p. 304). And suppose that one were able to show that the
property of (GH)-inextendibility is Ck stable relative to the collection (GH)
for some k ≥ 0. Because there remain “physically unreasonable” spacetimes
lurking within (GH), one would also want assurance that the Ck stability of
(GH)-inextendibility “transfers down” to the Ck stability of P-inextendibility
for any collection P ⊂ (GH). The proposition tells us that we do not have
this assurance. Moreover, the predicament persists even if we further restrict
attention to spacetimes which are well-behaved locally. Indeed, it is difficult to
see how one might rule out as “physically unreasonable” a collection of glob-
ally hyperbolic vacuum solutions without invoking an inextendibility property
of some kind.
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