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Abstract

The concept of invariance has played a central role in the consideration of candidate func-
tions for empirical laws. Such laws typically are assumed invariant under allowable changes
in representation of the variables, that is, under certain strictly increasing, surjective trans-
formations that act individually on the variables. The nature of the invariance and the
specification of which transformations are allowable may be open to interpretation. In this
paper, we present two possible interpretations of invariance, in the spirit of Falmagne and
Narens (1983), and we examine the relationship between the two. Our main result is a
generalization of a theorem by Falmagne and Narens (1983) which gives a condition under
which the two interpretations are equivalent. The generalization was motivated by the ob-
servation that there are important cases in which invariance holds under transformations
that cannot be written as functions on separate variables. Our results aim at a revised ap-
proach to the consideration of candidate empirical laws, one which allows broader notions
of invariance to better classify actual scientific laws, some of which may not satisfy certain
invariances.



Notions of invariance have played a central role in the investigation of statements con-
sidered suitable to be scientific laws. For instance, the classical concept of ‘dimensional
invariance’ has been widely used, via the method of dimensional analysis, in the search for
Jawful numerical relations among physical variables. The method of dimensional analysis
may be employed, for example, in the derivation of the functional description of the motion
of a simple pendulum (see e.g. Krantz et al,, 1971; Narens, 2002). A related invariance
notion, ‘meaningfulness’, has been used in the theoretical sciences for seemingly the same
purpose as dimensional analysis: scientists seek to describe empirical relationships among
variables via functional laws, and putative invariances of the measurement theories of these
variables may greatly constrain the possible forms of such laws. The specific use of these
and related notions of invariance in the formulation of lawful functional relations may be
found, for example, in Luce (1959, 1964); Osborne (1970); Falmagne and Narens (1983);
Aczel et al. (1986); Kim (1990).

The focus of the present paper is a comparison of these two notions of invariance,
which are appropriately formalized here in the spirit of Falmagne and Narens (1983). Our
main result, which gives insight into the relationship between the two notions, generalizes
a result by these authors. In preparation for a formal presentation of the two notions and
the properties which connect them, we examine an introductory example.

The pressure (P), volume (v), temperature (¢} and quantity (n) of an “ideal” gas are
related. by the equation

(1} P(uv,t,n) = R%nt,

in which R is a dimensional constant. Note that the numerical value of R depends on the
units employed in the measurement of the variables. Let us fix some triple of units in Eq.
(1), say, liters, degrees Kelvin, and moles. Any change of units for one of the variables
amounts to multiplication of one of these fixed units by a positive number. Suppose we
change to a triple of units whose volume measure requires multiplication of liters by o, whose
temperature measure requires multiplication of degrees Kelvin by 8, and whose quantity
measure requires multiplication of moles by . Defining the functions f1, fo, f3 : Rt = R
by fi(z) = az, fo(z) = Bz, and fa(x) = vz, and setting f = (f1, fa, f3), it is appropriate
to write the equation relating the variables as

@ Py(v.tim) = R(f) >,

indicating the particular dependence on the units employed. The functions f1, fa, and f3 are
called ‘representations’, with each amounting essentially to a choice of unit for a particular
variable. Note that, with this notation, Eq. (1) would be rewritten P(v, t,n) = R(E)%nt,
where i = (¢, ¢,¢) for ¢ the identity function (defined by «(z) = z) on R*,

A minimal requirement for a law relating physical variables is that the particular choice
of representations should not alter the numerical description of the phenomenon in any
essential manner. This intuitive notion may be subject to different interpretations; we
propose one of them here. Suppose we measure the pressures of an ideal gas at two different
triples of volume, temperature, and quantity, using the representations fi, f2, and fa, and
we find that the first pressure is less than or equal to the second. The relationship between



the two pressure computations should hold even if we use different representations gi, g2,
and gs. In other words, it should be the case that, for any representations g1, g2, 93, with

g = (91, g2, 93}, we have
Pr(f(v,t,n)) < Pr(F(', 1, n'))

(3) it

pg(g(v: t: n)) ﬂ Pg(g(vr1 tfa n!))

Note that the function P in Eq. (2) satisfies this requirement. Indeed, with fi, fo, and f3
as above, we have

Ps(f(v,t,m)) £ Py(f(', ¥, 0))

iff
L Lo oy
R(f)&;’)/ﬂﬁt < R(f)gg;’m Bt
iff

lnt < i,n’ t.

v v

As this last equality does not depend on the representations used, Formula (3} follows for

any functions f and g specifying the representations. We shall say that the function P

satisfies the property of ‘meaningfulness’. (A precise definition is given as Definition 5.)
Meaningfulness has been described as follows:

A numerice] statement is meaningful if and only if its truth (or falsity} is constant
under admissible scale transformations of any of its numerical assignments, that
is, any of its numerical functions expressing the results of measurement. {(Suppes
and Zinnes, 1963, p. 66)

(Here, “scale” corresponds to “representation.”) This description of meaningfulness is am-
biguous and may lead to more than one mathematical formulation. The equivalence in
(3) provides one such formulation: constancy of the truth of a statement is interpreted as
preservation of the order of functional outputs, and admissible transformations are those
which match the transformations on which the functions depend. There may be other in-
terpretations of this description of meaningfulness, however. For instance, consider a fixed
P, and suppose that there are triples (v,t,n) and (v, t',n’) such that

Pi(v,t,n) < Pp(v,t,n).
If for any representations g1, ga, and g3, with g = (g1, g2, g3}, we have
Ps(g(v,t,n)) < Prg(v', ¢, n))
iff

Pf(v'l t:n) < Pf('{)’,t,,n’),



then Py satisfies an invariance property which may be said to satisfy the above description
of meaningfulness. However, we shall say in this case that Py is ‘dimensionally invariaut’.
A formal definition of dimensional invariance is given as Definition 6 (see also Causey, 1969;
Krantz et al., 1971; Narens, 2002).

The notions of meaningfulness and dimensional invariance are thus seen to be closely
related. The two may be hard to separate; indeed, it may seem that any empirical relation
that satisfies one must satisfy the other. We will see through the following example that
this is not the case.

1. Example. Choose representations fi and fo of length and (positive) temperature dif-
ference, respectively, and write f = (f1, f2). The final length L of a rod of initial length £
following an increase t in temperature is given by the equation

Ly, t) = £(1+¢{f2) 1),

in which ¢ is a constant that depends on fo. In articular, if fa is the representation

. T . _ 40 . . . . .
corresponding to multiplication by 3, then ¢ (fa) = 5 where again ¢ is the identity function
on R*. Then the function L satisfies meaningfulness but not dimensional invariance. (This
will be demonstrated below in the Definitions and Basic Concepts section.)

We present a result in Theorem 11—the main result of this paper—which ties together
the notinns of meaninafulness and dimensional invariance. Tn particular, we show that,
under a natural condition relating members of a family of functions, the two notions are
equivalent.

As mentioned, our main result is a generalization of a result by Falmagne and Narens
(1983). The generalization was motivated by close inspection of the types of transformations
under which invariance may be studied. Note that each of the transformations considered so
far is made up of individual transformations which act independently on separate variables.
For instance, the transformation f considered in Example 1 is written f = (f1, fa) for the
two transformations fy and fa, each of which actson a single variable. Such transformations
are the ones typically considered in the measurement literature (see Narens, 2002). There are
important situations, though, in which significant invariances hold under transformations
that can not be written as individual transformations on separate variables. For instance,
consider the transformation of AABC to AABD as shown in Figure 1, in which segment
BD is constructed parallel to AC, with the length of BD equal to that of AC. Clearly the
area of the triangle is invariant under this transformation. If we define the transformation
via the function f : H?:z 11,2[— R*, where f(a,b,¢) = (a,d, ¢), then there are no functions
f1, f2, and fz such that f = (fi, f2, f3). In other words, f is not ‘factorizable.” (See
Definition 4 below.)

We give two more examples of transformations which are not factorizable, but under
which important invariances hold.

2. Example. Psychophysicists are interested in the relationships between physical mag-
nitudes of stimuli and the strengths of the sensations they evoke (Fechmner, 1860). An
important task in psychophysics is the construction of a measure of ‘subjective distance’
between stimuli based on data which give, for instance, the probability that one stimulus
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Figure 1: Depiction of a transformation that is not factorizable

is judged to be different from another. This task, referred to as Fechnerian scaling, may
be complicated by the fact that the relevant stimuli occupy a multidimensional space. For
instance, the stimuli might be auditory tones that vary in both amplitude and frequency.
Dzhafarov and Colonius (2001) propose a theory of Fechnerian scaling which is built in part
upon the idea that such. distance measurcs must be inveriant with respect to any diffeo-
morphic transformation of the space of stimulus magnitudes (usually taken to be a subset
of R”). Obviously, such transformations may not be factorizable in the multidimensional
case.

3. Example. In the theory of relativity, the “form” of a physical law must be invariant
under a particular transformation of the variables called the Lorentz transformation:

Fvery general law of nature must be so constituted that it is transformed into a
law of exactly the same form when, instead of the space-time variables z, v, %,
and £ of the original co-ordinate system K, we introduce new space-time variables
',y , 2, t of a co-ordinate system K’. In this connection the relation between the
ordinary and the accented magnitudes is given by the Lorentz transformation. Or in
brief: General laws of nature are co-variant with respect to Lorentz transformations.
(Einstein, 1961, pp. 42-43).

This transformation is given by

-yt t— &z
(w,y,z,t)W(m’,y’,Z’,t’F( b4 < )

where z, y, and z are position coordinates, t is time, ¢ is the speed of light, and v is the
velocity of coordinate system K’ with respect to K (in the direction of the z-axis of K). It
is clear that the transformation is not factorizable.




Definitions and Basic Concepts

onto

Let X be a nonempty set, and let F = {f|f: X = X} be a family of surjective functions
mapping X onto itself. For any f € F, let My be a function mapping X to a linearly
ordered set Z, with the order written (Z, <). In the examples above, X CR" and Z C R,
We call M = {My| f € F} a family of ordinal codes. Each My € M is.an ordinal code.
In this section, we present formally the concepts of meaningfulness and dimensional
invariance. We emphasize that the transformations involved may or may not be factorizable.
The precise definition of factorizability is as follows:

4. Definition. Suppose X = [Ty X; for nonempty sets Xi,...,Xn. A function f :
X — Z is factorizable if there exist functions f; : X; — Z, for ¢ = 1,...,n, such that

f@1,...n)y = (fl@1)s. . o falwn)) for all (@1, 20) € X,

The following two definitions formalize and generalize the concepts of meaningfulness
and dimensional invariance introduced earlier through examples.

5. Definition. The ordinal code My € M is meaningful if, whenever f* e F, we have

My[f(@)] < My(f(y)]
iff
Mg f*(@)] < Mp[f*(9)]
for all z,y € X. If this holds for all My € M, we say that M is meaningful.

6. Definition. The ordinal code My € M is dimensionally invariant if, whenever f*,g* €
F, we have

My[f ()] < My[f* ()]
iff
Mylg*(@)] < M¢lg* ()]
for all z,y € X. If this holds for all My € M, we say that M is dimensionally invariant.

As mentioned, though the notions of meaningfulness and dimensional invariance are
related, there exist physical laws which satisfy one but not the other. We return to Example
1, which presents a law that is meaningful but not dimensionally invariant.

Example 1 revisited. Choose representations f; and fp of length and (positive)
temperature difference, respectively, and write f = (f1, f2). The final length L of a rod of
initial length £ following an increase t in temperature is given by the equation

(4) \ Ly, t) = (1 + ({2} D),

in which ¢ is a constant that depends on fy. In Cpartimﬂ.ar, if f2 is the representation
corresponding to multiplication by 8, then ((f2) = =§*.

To see that meaningfulness is satisfied, suppose that the representations fi and fo
correspond to multiplication by a and 3, respectively. Then

Ly(f(&,1)) < Lg(£(£,1))



iff
ab(1+C(f2) BE) < o (1 +(F2) BE)
iff

al(l + g% Bty < el (1+ C—(é)w Bt

iff
g1 +¢()t) <€A+ ¢(UY),

and this final inequality does not depend on the representations fi and fp. Thus, Ly is
meaningful, as an equivalence similar to the one in (3) is satisfied. Now we show that
Ly is not dimensionally invariant. We let fi correspond to multiplication by 1, fa corre-
spond to multiplication by ¢{t), g1 correspond to multiplication by 1, and gp correspond to
multiplication by 2. Setting =1, ¢ =2,t=3, # =1, and g = (g1, 92), we have

Li(t,)=1{1+3)=4<2(1+ 1) = Lg(€,1),

but
Lp(g(e,8)) = 11 +(2)8) = 7> 2(1+ (2)1) = Ly (9(¢,¥))-

This means that Ly is not dimensionally invariant. We note that there actually are several
physical laws having the form in Eq. (4), including Guy Lussac’s Law (for the change in
volume of an ideal gas under a temperature change) and the Lorentz contraction {for the
change in length of a rod under a velocity change); see e.g. Hix and Alley (1958).

Tt turns out that the notions of meaningfulness and dimensional invariance are indepen-
dent: in addition to the function above, which is meaningful but not dimensionally invariant,
there exist functions which are dimensionally invariant but not meaningful. As an example,
consider the function My : RT x R* — R defined by My(z,y} =z + Ny, where f = (f1, f1)
and fi corresponds to multiplication by A. As shown in Falmagne and Narens (1983) and
Roberts (1985), this function is not meaningful, but it is dimensionally invariant. In con-
trast to Example 1, this and other available examples of functions which are not meaningful
are hypothetical, i.e., are not necessarily associated to any extant empirical laws. This is not
surprising, in view of the compelling argument behind our formulation of meaningfulness.
Indeed, this argument probably has been a part of scientists’ intuition since long before a
definition was formalized. Moreover, though empirical relations may have been introduced
that did not satisfy this notion, these relations probably were eliminated.

The following Lemma. is a well-known result, so the proof is omitted. (See, e.g., Munkres
(1975).)

7. Lemma. Suppose f : X — Y, with X and Y ordered sets in the order topology. If
f is strictly increasing and surjective, then f is a homeomorphism (i.e., a bicontinuous
bijection,). :

The next two Propositions are of use in the proof of Theorem 11.



8. Proposition. The family M is meaningful if, and only if, for each f,h € F there exists
a strictly increasing Hyp : Mp(X) — Mg(X) such that

Hyp(Mpih(z)]) = My [f(z)]

for all z € X. In this case, Hy, also is surjective.
Moreover, if Z has the order topology, then Hyp and H}:}b are continuous.

Proor. Choose f,h € F.
(=»): Suppose M is meaningful. Define the function Hyp by

Hy n(Mifh(z)]) = M;(f ()]
for all z € X. Then Hy, is well defined and strictly increasing since M is meaningful.
Also, since f and h map X onto itself, Hyy maps Mu(X ) onto M#{X).

(«): Let f* € F. Suppose Hyn and Hysp are as described in the statement of the
proposition. Since Hyj and Hye p, are strictly increasing, we have for all z,y € X,

Mylf(@)] = Hra(Ma[h()]) < Hpa(Malh(@)]) = Ms{f(y)]
iff
My[h(z)] < Maih(y)]
iff
Mpe(f * (2)] = Hpe a(Mn[i(@))) < Hyen(MalR(y)] = Mg [f * ()]

Therefore, we have M[f(z)] < M{f(y)] & Mp{f*(z)] < My [F*(y)], so M is mean-
ingful.
The Moreover statement is proved with an application of Lemma 7. m]

9. Proposition. The family M is dimensionally invariant if, and only if, for each My €
M and for all g,g* € F there exists a strictly increasing Qe * My(X) = MX) such
that
Qg0 (Mslg*(@)]) = Mylg(=)]
for all ¢ € X. In this case, Qg g~ 0lso is surjective.
Moreover, if Z has the order topology, then Qfg.4+ and Q}”;, g Ore continuous.

We omit the proof, which is similar to that of Proposition 8.

The following definition gives a property which provides a link between the two notions
of invariance. This property applies to families of ordinal codes, and it requires that any
two codes be related by in a natural way, that is, via a mapping that depends only on the
indexing transformations.

10. Definition. The family of ordinal codes M is isotone if there exists a function M* :
X — Z such that, for each My € M, we have My =myo M* for some strictly increasing
and surjective mjy : M*(X) — Ms(X).

Note that there is no loss of generality in assuming that M* = M}, for any h € F.
Indeed, if M is isotone, then M) = mp o M* and My = my o M* for functions M*, mp,
and my as in Definition 10, with f € F. But then My = (my om;:l) o Mp, and mjf om}f :
My (X) — M;(X) is strictly increasing and surjective.
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Main Result

The following theorem, which generalizes Theorem 4 in Falmagne and Narens (1983), spec-
ifies the relationship among meaningfulness, dimensional invariance, and isotonicity. In
particular, it states that meaningfulness and dimensional invariance are equivalent for iso-
tone families of ordinal codes.

11. Theorem. Any two of the properties of meaningfulness, dimensional invariance, and
isotonicity imply the third.

PROOF.
(i) Dimensional invariance and isotonicity imply meaningfuiness:
Choose g* € F. For any f € F and ¢ € X, we have

Mj(f ()] = Q1,1 (Mslg™(@)]) [by Prop. 9]
= Q1,90 © Mg X Mg [g7(2)]) [by isotonicity].
Since Qg+ © My,ge is strictly increasing, Prop. 8 gives that M is meaningful.

(i) Meaningfulness and isotonicity imply dimensional invariance:
Suppose M is meaningful and isotone, and let My, M), € M. Since M is meaningful,
there exists a strictly increasing Hy such that

My[f(z)} = Hpn(Ma[h(2)])

for all z € X. Since M is isotone, there exists a strictly increasing and surjective my such
.that
M;[f (@)} = mpp(Mp(f(2)])

for all z € X. Thus,
(5) My[f ()] = m7 3 (My(f(@)]) = (mF}, 0 Hep)(Malh(2)]),

where mﬁz o Hyp, is strictly increasing.
Let g € F. We have

Mg[f ()} = mg p{My[f(z)]) [by isotonicity]
= (mgn 0 mjy, 0 Hpp) (Mp[h(z)]) [by Eq. (5)]
= (mgp 0 m};}l oHyspo m;;)(Mg{h(z)]) Iby isotonicity],

where my, g omyt o Hypo mj, ., is strictly increasing. Therefore, by Prop. 9, Mj is dimen-
sionally invariant. Since g € F is arbitrary, we have that M is dimensionally invariant.

(i} Dimensional invariance and meaningfulness imply isotonicity:

Suppose M is dimensionally invariant and meaningful, and choose M}, € M. Let feF
be arbitrary.

Since M is meaningful, there exists a strictly increasing and surjective Hyp such that

M;[f(x)] = Hpp(Mph(z)))
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for all z € X.
Since M is dimensionally invariant, there exists a strictly increasing and surjective Qnhf
such that
Malh(@)] = Qs (Malf (@)

forallz € X.
Thus,
My[f(@)] = (Hyfp o Qnnp) (Malf(z)])

for all z € X, where Hyp 0 Qs 0 Ma(X) — Mp(X ) is strictly increasing and surjective.
Since f: X — X is surjective, we have for all @ € X that

Mypla] = (Hgp o Qun,f)(Mnla]),

i.e., M is isotone. |

Discussion

We have compared the notions of dimensional invariance and meaningfulness in the context
of arbitrary transformations on the set of inputs. The results in Theorem 11 generalize those
of Falmagne and Narens (1983), who consider invariance only under transformations which
can be Jactorized and written as strmtlthive, real—'yg,lgggihiunctioﬁ"‘b“ﬁ’éa}
mvémﬁéﬁiéél_Tﬁéélé”'fé'é";iiit"s”"é’ﬁii‘téV'Eﬁéﬁ"\kfiﬁ‘iéﬁéi“dﬁél“'Iﬁifél‘fié;ﬁéé"éﬁﬁd‘ﬁ{ééﬁihgfuines'é"é;fé equivalefit
for families of functions whose members are related via strictly increasing functions.

We have shown, through Example 1, that dimensional invariance and meaningfulness
are distinct among extant physical laws, that is, there exist physical laws which satisfy
one condition of invariance but not the other. For instance, the law given in Example 1 is
meaningful but not dimensionally invariant. However, note that this law may naturally be
rewritten

(6) ALg(e,t) =£((f2) ¢,

where AL = L{£,t) — £, often the quantity of interest. It is straightforward to show that
ALf in Eq. (6) is hoth meaningful and dimensionally invariant. (In fact, under certain
assumptions of differentiability, the transformation #{€) = £ is the only transformation
that renders L(£,t) — ¢(£) meaningful and dimensionally invariant.) One wonders whether
dimensional invariance may be unessential: perhaps a law may always be trivially rewritten
in a way that recovers dimensional invariance. This does not appear to be the case, as
demonstrated by the following:

i
(M) Py (s,t) = ———rm»
1%6-"(?%2

where £ and x are constants which may depend on the representations f; and fz of f =
(f1, f2). (Equation (7) gives the probability Py(s,t) that an electron will exist at an energy
state s at absolute terperature t. The constant x is Boltzmann’s constant, and £ is the
Fermi level energy.) Examinations of physical laws which are not dimensionally invariant,
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of whether these laws allow associated formulations which are dimensionally invariant, and
of how those associated formulations are obtained are lines of future research. These lines
suggest the use of dimensional invariance beyond the typical use in classical physics, Le.,
beyond the method of dimensional analysis.

Putative “laws” which are invariant under the Lorentz transformation are particularly
interesting because they may be studied both with respect to this transformation and with
respect to changes of representation. It it feasible that some of these may not be invariant
under changes in representation, or at least would not satisfy dimensional invariance in the
sense of Definition 6, when only the changes of representation are considered. Note that a
study of such “laws” necessarily involves an approach in which invariance notions (i) are
stated with suitable generality for the transformations, and (ii) have families of functions
as the objects of interest, rather than single functions, as is the approach typically taken
(cf. Causey, 1969; Krantz et al., 1971; Luce, 1978; Narens, 2002). The formulations in the
present paper are appropriate for such a study.

The motivation for this study, and perhaps for any study of properties of imvariance, is
the investigation of the role of invariance in limiting the possible forms that a scientific law
may take. As mentioned, there is a literature which seeks to pinpoint the functional forms
which may relate independent and dependent variables that are allowed certain types of
representations (e.g. Luce, 1959, 1964; Osborne, 1970; Falmagne and Narens, 1983; Aczel
et al., 1986; Kim, 1990). These functions are assumed to satisfy certain invariance proper-
ties, and quite often thege propertics are analogous to the noticn of clessical dimensionel
invariance (Luce, 1959, 1964; Osborne, 1970; Aczel et al., 1986). (We specify “classical”
because the invariance is assumed for a single function, rather than for a family of functions
as in the present paper and in Falmagne and Narens (1983).) Considering the laws given
by Equations (4) and (7)-—established laws which do not satisfy dimensional invariance—it
may be necessary to revise the assumptions of invariance in these investigations. Invariances
which lead to the derivation of functional forms that include (4) and (7) must necessarily be
weaker than dimensional invariance, but it is not obvious how to proceed to derive forms as
diverse as these two functions. Perhaps a fruitful approach is to consider families of func-
tions, only some of whose members satisfy an invariance property. This approach, along
with a better understanding of manipulations which may recover dimensional invariance for
functions (and families) that are not dimensionally invariant, could lead to more appropriate
categorizing of functional forms for scientific laws.
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