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Abstract

This paper takes up a suggestion that the reason we cannot find hidden variable theories for

quantum mechanics, as in Bell’s Theorem, is that we require them to assign joint probability

distributions on incompatible observables; these joint distributions are empirically meaningless

on one standard interpretation of quantum mechanics. Some have proposed to get around this

problem by using generalized probability spaces. I present a “no-go” theorem to show a sense

in which generalized probability spaces can’t serve as hidden variable theories for quantum

mechanics, so the proposal for getting around Bell’s Theorem fails.
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1 Introduction

Various well known “no-go” theorems purport to show that one cannot find hidden variable

theories (HVTs) for all quantum mechanical experiments. Some have suggested that the reason

we cannot find HVTs is that we expect too much of them. On one standard way of understanding

HVTs, we require assignments of joint probabilities to all pairs of observables, but the usual in-

terpretation of quantum mechanics tells us that certain observables, namely non-commuting ones,

cannot be measured at the same time. Joint probability distributions on non-commuting observ-

ables lack empirical meaning, which motivates an investigation of alternative ways of constructing

HVTs.

This paper explores an alternative way of constructing HVTs1 that does just this—while HVTs

are sometimes understood as classical probability spaces2, one can weaken the usual axioms in a

particular way to obtain a definition of generalized probability spaces, in which we allow ourselves

to forgo joint probabillity assignments on non-commuting observables. In section 2, we review the

“no-go” theorems concerning classical probability spaces. In section 3, we motivate the consider-

ation of generalized probability spaces by showing that the problematic cases, i.e. the quantum

mechanical experiments that cannot be given a classical probability space representation, all have

non-commuting observables. In section 4, we explore some strange properties of generalized prob-

ability spaces as candidates for HVTs. In section 5, we show that one cannot find generalized

probability space representations for all quantum mechanical experiments unless we give up very

natural constraints on our HVTs. We conclude with a discussion of how the main result of this

paper reveals an unexpected connection between Bell’s theorem and the Kochen-Specker theorem.

1The HVTs considered in this paper are all so-called non-contextual HVTs in that they assign definite values to
all possible properties of the experimental system at the same time. We don’t consider Bohmian mechanics, a HVT
that only assigns definite values to observables that are a function of position.

2I show the relationship between classical probability spaces and some more well-known ways of thinking about
HVTs in section 2.
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2 Bell’s Theorem and Classical Probability Spaces

Definition 1. For the purposes of this paper, we take a quantum mechanical experiment to be an

ordered triple (H, ψ,S), where H is a Hilbert space, ψ ∈ H is a unit vector (i.e. 〈ψ,ψ〉 = 1), and

S = 〈P1, ..., Pn〉 is an ordered sequence of projection operators3 onto subspaces of H.

The vector ψ represents the quantum state in which we have prepared the experimental system,

and each projection operator Pi corresponds to a “yes-no” measurement, i.e. a measurement with

exactly two possible outcomes. We assign a probability value, pi, to the event of obtaining a “yes”

outcome for the measurement corresponding to Pi as follows:

pi = 〈ψ, Piψ〉

Furthermore, if two projection operators Pi, Pj are compatible (i.e. they commute: [Pi, Pj ] = 0),

then we can measure them together, and so quantum mechanics ascribes a joint probability, pij , to

the event of obtaining a “yes” outcome for both measurements:

pij = 〈ψ, PiPjψ〉

A quantum mechanical experiment brings with it a data set of type (n, S), where n is the number

of operators in S, and S = {〈i, j〉 : [Pi, Pj ] = 0 and 1 ≤ i ≤ j ≤ n}. We yield a set of predictions,

or a probability data set, the (n + |S|)-tuple 〈p1, ..., pn, ..., pij , ...〉, where pij appears if and only if

〈i, j〉 ∈ S, i.e. if Pi and Pj are compatible, and the pij terms are ordered lexicographically.

First, we give a standard presentation of Bell’s “no-go” theorem for HVTs before moving on to

Pitowsky’s slightly more abstract variation in terms of classical probability spaces.

3For the purposes of this paper, we’ll supose S is finite, although in general it need not be.
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2.1 Bell’s Derivation of the Bell inequalities

The usual understanding of Bell’s theorem takes the settings of our measurement apparatus

into account in addition to the measurement outcomes4. We can write the above probabilistic

predictions as conditional on measurement settings: let prQM (A1, ..., An|a1, ..., an) represent the

probability that we obtain outcome Ai on the ith measurement apparatus given that it was pre-

pared with measurement setting ai. For example, if we consider the EPR setup5, in which two

photons are emitted in opposite directions in the singlet state from a common source and a polar-

izer sheet is placed at each of the right and left ends of the setup, then n = 2, each ai represents

the direction of polarization of the polarizer sheet which can be rotated in a plane, and each Ai

can take the values of either “yes”—the photon passed through the polarizer sheet—or “no”—the

photon did not pass through the polarizer sheet. We determine these probabilities from the Hilbert

space associated with the experimental system using the above prescription.

Definition 2. A Bell HVT for a quantum mechanical experiment with n measurement apparatuses

is an ordered triple (X, {prHV (A1, ..., An|a1, ..., an;x) : x ∈ X}, ρ), where X is a set of states, each

state x ∈ X determines a probability function prHV of the form displayed, and ρ is a probability

density (i.e. ρ : X → [0, 1] and
∫
X
ρ(x)dx = 1) such that6

prQM (A1, ..., An|a1, ..., an) =

∫
X

prHV (A1, ..., An|a1, ..., an;x)ρ(x)dx

One understands X to be the set of hidden states, and the probability functions give us new

predictions based on the further information or hidden variables associated with one of those hidden

states. The difference between quantum mechanical predictions and predictions of a hidden variable

theory is that probabilities determined by the hidden variable theory are conditional not only on

the measurement settings, but also on the hidden state x. The probability density ρ(x) represents

the probability of finding the experimental system in the hidden state x.

4This section follows the presentation in Malament (2012, section 1).
5See Einstein, Podolsky and Rosen (1935), and Bohm and Aharanov (1957).
6Although we have not specified the operation of integration, for what follows we need only assume that the

integral has certain standard properties that all kinds of integrals possess, such as additivity.

4



Now we put constraints on the the probability functions of the HVT—for our purposes only

two constraints are relevant. We formulate the constraints in terms of the EPR setup in which n = 2.

Quasi-determinateness: For all A1, A2, a1, a2, x, prHV (A1, A2|a1, a2;x) = 0 or 1.

Locality: For all A1, A2, a1, a
′
1, a2, a

′
2, x,

prHV (A1, |a1, a2;x) = prHV (A1, |a1, a′2;x)

prHV ( , A2|a1, a2;x) = prHV ( , A2|a′1, a2;x)

Quasi-determinateness requires the existence of a definite value for each property: “yes” if the

probability is 1 or “no” if the probability is zero. Locality requires that the measurement outcomes

here cannot depend on the settings there, where here and there are two distinct (possibly spacelike

separated) apparatuses; the outcomes here only depend on the settings here.

From the constraints of Quasi-determinateness and Locality, one can derive a characteristic

inequality, known as Bell’s inequality7. So if all quantum mechanical experiments had Local,

Quasi-determinate HVTs, then the probabilistic predictions of each of those quantum mechanical

experiments would satisfy Bell’s inequality. But when we consider the quantum mechanical exper-

iment that represents the EPR setup, in which two photons or electrons are emitted in the singlet

state and we take the appropriate measurements of polarization or spin, we find that the probability

data set corresponding to that experimental system violates Bell’s inequality (Bell 1964, p. 198;

Pitowsky 1989, p. 84). So we conclude that there could not be a Local, Quasi-determinate hidden

variable theory for all quantum mechanical experiments—in particular, not for the EPR setup.

Theorem 1. (Bell) There are quantum mechanical experiments for which there does not exist a

Local, Quasi-determinate Bell HVT.

7In our notation, Bell’s inequality takes the form

0 ≤ prQM (yes, |a, ) + prQM ( , yes| , b) + prQM (yes, yes|a′, b′)
− prQM (yes, yes|a, b′)− prQM (yes, yes|a′, b)− prQM (yes, yes|a, b) ≤ 1

I’ve deemphasized the importance of this inequality because it is not relevant to the “no-go” theorems we’ll see later.
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2.2 Pitowsky’s Derivation of the Bell Inequalities

Pitowsky’s presentation of the Bell inequalities begins by thinking of HVTs in terms of classical

probability spaces:

Definition 3. A σ-algebra Σ on a set X is a non-empty set of subsets of X such that for all

A,B ⊆ X

(i) If A ∈ Σ, then (X −A) ∈ Σ, and

(ii)8 If A,B ∈ Σ, then A ∪B ∈ Σ.

Definition 4. A classical probability space (Gudder 1988, p. 2; Krantz et. al, p. 200; Billingsley

1979, p. 19) is an ordered triple (X,Σ, µ), where X is a non-empty set of states, Σ is a σ-algebra

of subsets of X, and µ : Σ→ R is a real valued function such that:

(i) µ(X) = 1,

(ii) µ(A) ≥ 0, and

(iii) If A ∩B = ∅, then µ(A ∪B) = µ(A) + µ(B).

We still think of the elements of X as the complete, or hidden, states of the experimental system,

and each measurable set in Σ corresponds to a property that the experimental system can either

have or not have by falling in or out of that set. If we knew the hidden state of our experimental

system, we would know all of its properties, but since we don’t, we can only ascribe probability

values to the properties of our experimental system by assigning a measure to subsets of our space.

There are two important facts that will help us distinguish classical probability spaces from

the generalized probability spaces we consider later on. First, in a classical probability space, if

A,B ∈ Σ, then (X−((X−A)∪(X−B))) = A∩B ∈ Σ. Thus we are required to assign a probability

value to the intersection of any two sets we assign probability values to individually. Whenever we

assign probabilities to two individual properties, such as being in A and being in B, we assign a

8We restrict our attention in this paper to finite unions although in general, a σ-algebra allows for countable
unions, and the axioms of the probability space change accordingly. Technically, what I call σ-algebras here are mere
algebras, and what I call σ-additive classes (in section 4) are mere additive classes.
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probability to the conjunction of those properties, being in A and B at the same time.

Second, it is easy to show that in a classical probability space, for every A,B ∈ Σ,

µ(A ∪ B) = µ(A) + µ(B)− µ(A ∩ B). One can generalize this formula by induction to obtain the

inclusion-exclusion formula (Billingsley 1979, p. 20):

µ(

n⋃
i=1

Ai) =

n∑
i=1

µ(Ai)−
∑
i<j

µ(Ai ∩Aj) +
∑
i<j<k

µ(Ai ∩Aj ∩Ak) + ...+ (−1)n+1µ(A1 ∩ ... ∩An)

From this it follows that the union of a finite number of probability zero sets cannot have anything

but probability zero. In particular, the union of a finite number of probability zero sets cannot equal

the whole space X, because then the union would have probability one. We’ll see how generalized

probability spaces differ in these properties in section 4.

There are two ways in which we can connect quantum mechanical experiments to classical prob-

ability spaces, as in the following definitions.

Definition 5. A quantum mechanical experiment (H, ψ,S) has a restricted classical probability

space representation iff there is a classical probability space (X,Σ, µ) with sets A1, ..., An ∈ Σ such

that for all Pi, Pj ,

µ(Ai) = pi = 〈ψ, Piψ〉

and if [Pi, Pj ] = 0, then

µ(Ai ∩Aj) = pij = 〈ψ, PiPjψ〉

In Definition 5, we only considered the case where two observables commute, and imposed a

natural requirement amounting to a statement that we represent their joint probabilities in the

usual way. In general, we may have more than two observables that all pairwise commute, and in

this case they are all measurable simultaneously. This idea is captured in the following definition.

7



Definition 6. A quantum mechanical experiment (H, ψ,S) has a full-blown classical probability

space representation iff there is a classical probability space (X,Σ, µ) with sets A1, ..., An ∈ Σ such

that for all Pi,

µ(Ai) = pi = 〈ψ, Piψ〉

and for all Pi, Pj , ..., Pk that are compatible (i.e. they pairwise commute), the corresponding sets

Ai, Aj , ..., Ak satisfy

µ(Ai ∩Aj ∩ ... ∩Ak) = pij...k = 〈ψ, PiPj ...Pkψ〉

Why should we care about classical probability space representations? One might argue they

are irrelevant to Bell’s theorem because there is no mention of Locality in their construction. But

every Local, Quasi-determinate Bell HVT leads to a classical probability space representation in

the following way (Malament 2012, p. 7).

Proposition 1. If (X, {prHV (A1, A2|a1, a2;x) : x ∈ X}, ρ) constitutes a Local, Quasi-determinate

Bell HVT for a specified quantum mechanical experiment, then there is a classical probability space

(X,Σ, µ) such that for all a1, a2, there are sets9 La1 , Ra2 ,∈ Σ for which10

µ(La1) = prQM (yes, |a1, )

µ(Ra2) = prQM ( , yes| , a2)

µ(La1 ∩Ra2) = prQM (yes, yes|a1, a2)

9La1 is the set of hidden states which will yield a “yes” outcome on the left, given setting a1, and Ra2 is the set
of hidden states which will yield a “yes” outcome on the right, given setting a2.

10I.e. the specified quantum mechanical experiment has a (both restricted and full-blown) classical probability
space representation.
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Proof. For any a1, a2, let

La1 = {x ∈ X : prHV (yes, |a1, ) = 1}

Ra2 = {x ∈ X : prHV ( , yes| , a2) = 1}

Notice that the expressions on the right hand side are only well-defined because we’ve assumed

Locality. From this, it follows that

La1 ∩Ra2 = {x ∈ X : prHV (yes, yes|a1, a2) = 1}

Let Σ be the σ-algebra generated by all of the sets of the form La1 and Ra2 . Define µ for each

measurable set C ∈ Σ by

µ(C) =

∫
C

ρ(x)dx

It follows that

(i) µ(X) =
∫
X
ρ(x)dx = 1

(ii) µ(C) =
∫
C
ρ(x)dx ≥ 0, and

(iii) If C1∩C2 = ∅, then µ(C1∪C2) =
∫
C1∪C2

ρ(x)dx =
∫
C1
ρ(x)dx+

∫
C2
ρ(x)dx = µ(C1)+µ(C2).

Therefore (X,Σ, µ) is a classical probability space. Furthermore,

prQM (yes, |a1, ) =

∫
X

prHV (yes, |a1, ;x)ρ(x)dx =

∫
La1

1·ρ(x)dx+

∫
X−La1

0·ρ(x)dx = µ(La1)

prQM ( , yes| , a2) =

∫
X

prHV ( , yes| , a2;x)ρ(x)dx =

∫
Ra2

1·ρ(x)dx+

∫
X−Ra2

0·ρ(x)dx = µ(Ra2)
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prQM (yes, yes|a1, a2) =

∫
X

prHV (yes, yes|a1, a2;x)ρ(x)dx

=

∫
La1∩Ra2

1 · ρ(x)dx+

∫
X−(La1∩Ra2 )

0 · ρ(x)dx

= µ(La1 ∩Ra2)

�

Since every Local, Quasi-determinate Bell HVT comes with a classical probability space rep-

resentation, showing that there are quantum mechanical experiments with no classical probability

space representation would imply that there are quantum mechanical experiments with no Local,

Quasi-determinate Bell HVT. We now turn our attention to whether there are classical probability

space representations for all quantum mechanical experiments.

Given a quantum mechanical experiment with a probability data set of type (n, S), following

the formalism of Pitowsky (1989, p. 21), we let I = {0, 1}n and ε = 〈ε1, ..., εn〉 ∈ I be an n-tuple of

zeros and ones. Let pε = 〈ε1, ..., εn, ..., εiεj , ...〉 ∈ Rn+|S|, where the product εiεj appears just in case

〈i, j〉 ∈ S. Let c(n, S) be the closed, convex polytope in Rn+|S| whose vertices are the 2n vectors

of the form pε, i.e. c(n, S) contains all vectors of the form u =
∑
ε∈I λ(ε)pε, where each λ(ε) is a

non-negative scalar and
∑
ε∈I λ(ε) = 1.

Theorem 2. (Pitowsky 1989, p. 22) A probability data set 〈p1, ..., pn, ..., pij , ...〉 of type (n, S) has

a restricted11 classical probability space representation iff 〈p1, ..., pn, ..., pij , ...〉 ∈ c(n, S).

When a probability data set belongs to this characteristic polytope, it satisfies a certain set

of inequalities describing the bounding surfaces of c(n, S)—one of these is Bell’s inequality. Once

again, it is well-known that the probability data sets for some quantum mechanical experiments,

namely the EPR setup, violate these inequalities. So we conclude with a “no-go” theorem for clas-

sical probability space representations as HVTs.

11It seems that one could generalize this result to cover full-blown classical probability space representations, but
this is beyond the scope of this paper. See footnote 12 for more.
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Theorem 3. (Pitowsky) There are quantum mechanical experiments for which there are no re-

stricted (and hence no full-blown) classical probability space representations.

Pitowsky’s theorem implies Bell’s theorem via Proposition 1. If a witness to Pitowsky’s theorem

had a Local, Quasi-determinate Bell HVT, then it would also have a classical probability space

representation, so by modus tollens it does not have the former kind of HVT. A natural question to

ask is whether the implication holds in the opposite direction—does Bell’s theorem imply Pitowsky’s

theorem? It seems that classical probability space representations lack the necessary information to

construct a Bell HVT because they encode only information about measurement outcomes and not

measurement settings. We can think of Bell HVTs as a specialization of classical probability space

representations, where we add extra information about distinct measurement apparatuses and their

settings, which allows us to formulate the Locality constraint12.

3 Incompatible Observables

Arthur Fine argues that the reason we cannot find HVTs in the form of classical probability

spaces for quantum mechanical experiments is that we are trying to assign probabilities to con-

junctions of measurements on incompatible observables, and these probability assignments have no

empirical meaning since we cannot measure incompatible observables simultaneously. Fine writes,

“...hidden variables and the Bell inequalities are all about...imposing requirements to

make well defined precisely those probability distributions for noncommuting observ-

ables whose rejection is the very essence of quantum mechanics” (Fine 1982a, p. 294).

By representing our experimental system in a classical probability space, we force ourselves to assign

probability values to the conjunctions of all outcomes that we assign probabilities to individually,

even if those outcomes correspond to incompatible observables. One might have noticed Definitions

5 and 6 only put constraints on the measures we assign to intersections of sets corresponding to

12Pitowsky (1989, p. 92) gives a nice description of how we might understand violations of locality as manifestations
of violating the merely logical constraints of a classical probability space representation.
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compatible observables. But if Pi and Pj are incompatible observables and we represent them in

a classical probability space by sets Ai, Aj ∈ Σ, then it follows that Ai ∩ Aj ∈ Σ so we require

ourselves to assign some probability or other to the outcomes of measuring incompatible observables

simultaneously. But quantum mechanics tells us that incompatible observables cannot be measured

at the same time, so at the very least it seems strange to assign a probability to the joint outcome.

In two papers (Fine 1982a; Fine 1982b), Fine presents a number of technical results13 concern-

ing joint distributions and compatible observables to motivate these claims. Here, we present yet

another variant, using Pitowsky’s powerful results.

Theorem 4. For all quantum mechanical experiments (H, ψ,S), if all of the projection operators

P1, ..., Pn are compatible (i.e. for all i, j ≤ n, [Pi, Pj ] = 0), then the experimental system has a

restricted14 classical probability space representation.

Proof.15 Suppose all of the projection operators Pi, Pj commute. We show that the vector

〈p1, ..., pn, ..., pij , ...〉 defined by the above values belongs to c(n, S).

For any Pi, let P 1
i = Pi and P 0

i = I− Pi. Let P (ε) = P ε11 · ... · P
εi
i · ... · P εnn .

Notice each P (ε) is a projection operator since we have assumed all Pi, Pj commute, and clearly,∑
ε∈I P (ε) = I.

Furthermore, if ε 6= ε′, then P (ε) and P (ε′) differ for some Pi and since the Pi’s are commutative,

it follows that P (ε)P (ε′) = ... · P 0
i · P 1

i · ... = ... · Pi · (I− Pi) · ... = 0.

Let λ(ε) = 〈ψ, P (ε)ψ〉. For all ε ∈ I, λ(ε) ≥ 0 since P (ε) is Hermitian. Furthermore,∑
ε∈I λ(ε) =

∑
ε∈I〈ψ, P (ε)ψ〉 = 〈ψ,

∑
ε∈I P (ε)ψ〉 = 〈ψ,ψ〉 = 1.

For all i,j ≤ n, Pi =
∑
{ε∈I:εi=1} P (ε) and PiPj =

∑
{ε∈I:εi=εj=1} P (ε).

Hence, pi = 〈ψ, Piψ〉 =
∑
{ε∈I:εi=1}〈ψ, P (ε)ψ〉 =

∑
{ε∈I:εi=1} λ(ε) =

∑
ε∈I λ(ε)εi =

∑
ε∈I λ(ε)(pε)i,

and pij = 〈ψ, PiPjψ〉 =
∑
{ε∈I:εi=εj=1}〈ψ, P (ε)ψ〉 =

∑
{ε∈I:εi=εj=1} λ(ε) =

∑
ε∈I λ(ε)εiεj =

∑
ε∈I λ(ε)(pε)ij .

13In particular see Theorem 7 in Fine 1982b, p. 1309.
14If one generalized Pitowsky’s result in Theorem 2, as we conjectured in footnote 9 one might be able to do,

then we conjecture further that one would be able to generalize Theorem 4 for full-blown classical probability space
representations.

15This is analogous to the proof of the “left-to-right” direction of Theorem 1 found in Pitowsky (1989, p. 23).
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Thus, 〈p1, ..., pn, ..., pij , ...〉 ∈ c(n, S), so by Theorem 2, the desired classical probability space

representation exists. �

Since we have no trouble finding HVTs, in the form of classical probability spaces when our

experimental system involves only compatible observables, one might claim that the reason we fail

to find classical probability space representations for quantum mechanical experiments is that we

insist on assigning a probability to the conjunction of measurements of incompatible observables

when such assignments are meaningless. The next sections deal with an attempt to construct a

formalism in which we allow ourselves to forgo these problematic joint probability assignments.

4 Generalized Probability Spaces

Definition 7. A σ-additive class (Gudder 1988, 90) Σ on a set X is a non-empty set of subsets of

X such that for all A,B ⊆ X

(i) If A ∈ Σ, then (X −A) ∈ Σ, and

(ii) If A,B ∈ Σ and A ∩B = ∅, then A ∪B ∈ Σ.

Definition 8. A generalized probability space (Krantz et al. 1971, p. 214; Gudder 1988, p. 169) is

an ordered triple (X,Σ, µ), where X is a non-empty set of states, Σ is a σ-additive class of subsets

of X, and µ : Σ→ R is a real valued function such that:

(i) µ(X) = 1,

(ii) µ(A) ≥ 0, and

(iii) If A ∩B = ∅, then µ(A ∪B) = µ(A) + µ(B).

How are generalized probability spaces different from classical probability spaces? The only

difference comes in part (ii) of Definition 7. In a generalized probability space we may have A,B ∈ Σ,

but if A and B are not disjoint, then it is possible that A ∪ B /∈ Σ and A ∩ B /∈ Σ. While in

a classical probability space we were required to assign probability values to the conjunction of
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any two outcomes we assigned probabilities to individually, even if they were incompatible, in a

generalized probability space we do not require this. This makes generalized probability spaces a

prime candidate for study with respect to quantum mechanical experiments, since we can refrain

from assigning a probability to the intersections of sets corresponding to incompatible observables.

There is a natural reading of Fine’s work in which he is interpreted as advocating the use of

generalized probability spaces for quantum mechanics. This is suggested by the following remarks:

“Perhaps, then, we ought to accept the straight-line induction; that where ... quantum

mechanics does not give a well-defined joint distribution, neither would experiments.

After all, if we hold that probabilities (including joint probabilities) are real properties,

then some observables may simply not have them” (Fine 1982b, p. 1310).

Fine, however, never explicitly addresses generalized probability spaces as they’ve been defined

here. On the other hand, many others have made their support for the use of generalized probabil-

ity spaces in quantum mechanics explicit—here are some examples:

Krantz et al. write,

“The notions of event and probability given in [the definition of a classical probability

space] have proved satisfactory for almost all scientific purposes. The one outstanding

exception is quantum mechanics. In that theory both [µ(A)] and [µ(B)] may exist and

yet [µ(A ∩B)] need not” (Krantz et al. 1971, p. 214).

Suppes writes,

“[T]here is no joint probability distribution of position and momentum... there is no

possibility of measuring them jointly at all, because their joint distribution does not

exist” (Suppes 1963, p.335).

14



And he elaborates in a later paper,

“[T]he joint probability of two events does not necessarily exist in quantum mechanics...

Roughly speaking,...the probability distribution of a single quantum-mechanical random

variable is classical, and the deviations arise only when several random variables or

different kinds of events are considered... [Generalized]16 probability spaces can be used

as the basis for an axiomatic development of classical quantum mechanics17” (Suppes

1966, p. 345-347).

And Gudder writes,

“[M]uch of quantum mechanics can be described in the framework of σ-additive classes...

This will ultimately result in a framework for a general theory of quantum probability

spaces” (Gudder 1988, 169).

The rest of this paper explores the properties of generalized probability spaces, and the extent

to which we can or cannot use them to represent quantum mechanical experiments.

In generalized probability spaces, since unions and intersections of measurable sets are not re-

quired to be measurable, the inclusion-exclusion formula does not hold in general. However, we

have some slightly weaker results.

Lemma 1: If (X,Σ, µ) is a generalized probability space, A,B ∈ Σ, and C = A ∩ B, then the

following are equivalent:

(1) A ∪B ∈ Σ

(2) (A− C) ∈ Σ and (B − C) ∈ Σ

(3) (A− C) ∈ Σ

(4) C ∈ Σ.

16Suppes refers to the objects that I’ve defined to be generalized probability spaces as “quantum-mechanical
probability spaces.”

17Later in his paper, Suppes makes a further abstraction to non-Boolean versions of generalized probability spaces,
but here I’ll deal only with the Boolean structures defined above.
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Proof : (1⇒2) Suppose A∪B ∈ Σ. Then X −A∪B ∈ Σ is disjoint from B so (X −A∪B)∪B ∈ Σ

and hence (A− C) = X − ((X −A ∪B) ∪B) ∈ Σ. Similarly, (B − C) ∈ Σ.

(2⇒3) Trivial.

(3⇒4) Suppose (A − C) ∈ Σ. Then X − A is disjoint from A − C so (X − A) ∪ (A − C) ∈ Σ,

and hence X − ((X −A) ∪ (A− C)) = A ∩B ∈ Σ.

(4⇒1) Suppose C = A∩B ∈ Σ. Then since X−A is disjoint from A∩B, (X−A)∪(A∩B) ∈ Σ,

so A−C = X − ((X −A)∪ (A∩B)) ∈ Σ. Similarly, (B −C) ∈ Σ. Since A−C, B −C, and C are

all disjoint, A ∪B = (A− C) ∪ C ∪ (B − C) ∈ Σ. �

Lemma 2: If (X,Σ, µ) is a generalized probability space and A,B ∈ Σ, then if either A ∩ B or

A ∪B is in Σ, then

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

Proof. If either A∩B or A∪B are in Σ, then by Lemma 1, they both are. The proof then proceeds

exactly as for a classical probability space. �

Notice that if we have two measurable sets A and B such that A ∩ B ∈ Σ and µ(A ∩ B) = 0,

then µ(A ∪B) = µ(A) + µ(B).

Lemma 3: If (X,Σ, µ) is a generalized probability space and A1, ..., An ∈ Σ, then if for all

B ⊆ {A1, ..., An},
⋂
B ∈ Σ, then

⋃n
i=1Ai ∈ Σ and

µ(

n⋃
i=1

Ai) =

n∑
i=1

µ(Ai)−
∑
i<j

µ(Ai ∩Aj) +
∑
i<j<k

µ(Ai ∩Aj ∩Ak) + ...+ (−1)n+1µ(A1 ∩ ...∩An) (1)

Proof. By induction. Base step: If n = 2, then we just have a restatement of Lemma 2.

Induction step: Suppose the claim holds for n. Then consider A1, ..., An+1 ∈ Σ. Suppose that for

all B ⊆ {A1, ..., An+1},
⋂
B ∈ Σ.
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First notice that
⋃n
i=1Ai ∈ Σ satisfies formula (1) by the induction hypothesis.

Next, we claim ((
⋃n
i=1Ai) ∩ An+1) =

⋃n
i=1(Ai ∩ An+1) ∈ Σ. To see this, let Ci = Ai ∩ An+1

and B′ ⊆ {C1, ..., Cn}. Then it follows that
⋂
B′ ∈ Σ because it is just the intersection of some

Ai’s (for i < n) intersected with An+1. In other words
⋂
B′ = Ai ∩ Aj ∩ ... ∩ An+1 (for some

i, j, ...) is one of our original
⋂
B’s, so it is measurable. It follows by the induction hypothesis that⋃n

i=1 Ci = ((
⋃n
i=1Ai) ∩An+1) ∈ Σ satisfies formula (1).

By Lemma 2, since ((
⋃n
i=1Ai) ∩ An+1) ∈ Σ, ((

⋃n
i=1Ai) ∪ An+1) =

⋃n+1
i=1 Ai ∈ Σ satisfies the

following formula:

µ(

n+1⋃
i=1

Ai) = µ(
n⋃
i=1

Ai) + µ(An+1)− µ(
n⋃
i=1

(Ai ∩An+1))

Plugging in the expressions for µ(
⋃n
i=1Ai) and µ(

⋃n
i=1(Ai ∩An+1)) from formula (1) yields the

desired result for n+ 1. �

Notice that in generalizing Lemma 2 to Lemma 3, we require a fairly strong condition (for our

purposes at least) to hold—it must be the case that the intersection of any subset of Ai’s is mea-

surable, which is just the thing that we are not requiring when we move from classical probability

spaces to generalized probability spaces.

Corollary. If (X,Σ, µ) is a generalized probability space and A1, ..., An ∈ Σ, then if for all

B ⊆ {A1, ..., An},
⋂
B ∈ Σ and µ(

⋂
B) = 0, then

⋃n
i=1Ai ∈ Σ and

µ(

n⋃
i=1

Ai) =

n∑
i=1

µ(Ai)

One strange fact follows from the above: we can see that a finite union of measure zero sets in

a generalized probability space does not necessarily have measure zero, even if it is measurable. In

fact, we can have a finite union of measure zero sets that covers the entire space X, thus receiving

measure one. And we can even require that each set in the union be disjoint from some other, and

they will still be able to cover the entire space.
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Proposition 2. There is a generalized probability space (X,Σ, µ) with sets A1, ..., An ∈ Σ such

that:

(i) µ(Ai) = 0, for all i ≤ n,

(ii) For each i ≤ n, there is a j ≤ n such that Ai ∩Aj = ∅, and

(iii) A1 ∪ ... ∪An = X.

Proof. Let X = {1, ..., 5}, and

A1 = {1, 5}

A2 = {2, 5}

A3 = {3, 5}

A4 = {4}

Notice that A4 is disjoint from A1, A2, A3, but no other pairs are disjoint. Furthermore,

X −A4 = A1 ∪A2 ∪A3. Let Σ = {∅, A1, A2, A3, A4, X −A1, X −A2, X −A3, A1 ∪A2 ∪A3,

A1 ∪ A4, A2 ∪ A4, A3 ∪ A4, X − (A1 ∪ A4), X − (A2 ∪ A4), X − (A3 ∪ A4), X}. And we generate µ

by additivity from the following assignments:

µ(∅) = µ(A1) = µ(A2) = µ(A3) = µ(A4) = 0

µ(X) = 1

One can easily check that µ takes on only the values zero or one for every element of Σ. It

follows that (X,Σ, µ) is a generalized probability space that satisfies the constraints. �

The preceding proposition exhibits a very strange feature of generalized probability spaces.

Intuitively, we would not expect the disjunction of a finite number of probability zero events to

have anything but probability zero. However, in a generalized probability space we do not prohibit

the disjunction of a finite number of probability zero events from having probability one, and even

covering the entire space. One might consider adding to the axioms of a generalized probability

space the following, seemingly weak, condition:
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(*) There is not a finite collection of sets A1, ..., An ∈ Σ such that

(i) µ(Ai) = 0, for all i ≤ n,

(ii) For each i ≤ n, there is a j ≤ n such that Aj is non-empty and Ai ∩Aj = ∅, and

(iii) A1 ∪ ... ∪An = X.

While condition (*) may fail as in Proposition 2, there are certain cases where it must hold. If

n is 2 or 3, then (*) holds automatically from the axioms of our generalized probability spaces.

Proposition 3. In a generalized probability space (X,Σ, µ), there is no collection of sets A1, A2 ∈ Σ

such that

(i) µ(Ai) = 0, for all i ≤ 2,

(ii) A1 ∪A2 = X.

Proof. Suppose (i) and (ii) hold. Then (X − A1) ∩ (X − A2) = ∅ so µ((X − A1) ∪ (X − A2)) =

µ(X −A1) +µ(X −A2) = 1 + 1 = 2, and µ(A1 ∩A2) = µ(X − ((X −A1)∪ (X −A2))) = −1, which

contradicts axiom (ii) of generalized probability spaces. �

Proposition 4. In a generalized probability space (X,Σ, µ), there is no collection of sets

A1, A2, A3 ∈ Σ such that

(i) µ(Ai) = 0, for all i ≤ 3,

(ii) A1 ∩A2 = ∅, and

(iii) A1 ∪A2 ∪A3 = X.

Proof. Suppose (i), (ii), and (iii) hold. Then X − A1 ∪ A2 ∈ Σ and is disjoint from X − A3. So

µ((X −A1 ∪A2) ∪ (X −A3)) = 1 + 1 = 2. It follows that µ((A1 ∪A2) ∩A3) =

µ(X−((X−A1∪A2)∪(X−A3))) = −1, contradicting axiom (ii) of generalized probability spaces. �
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Any generalized probability space that doesn’t satisfy (*) exhibits a certain kind of pathology.

One might have thought our very concept of probability together with logic requires the disjunction

of a finite number of probability zero events to have probability zero18. If a generalized probability

space fails to satisfy (*), then it breaks this constraint radically. Furthermore, one might think

that it’s part of the concept of probability that it may serve as a guide to rational action. But any

person who sets their subjective degrees of belief by a generalized probability space that violates

(*) exhibits a form of irrationality: she will take a series of bets (a Dutch book) for which she

is guaranteed to lose money. Suppose we have a sequence of outcomes Ai that violate (*). The

generalized probability spacer will sell us $1 bets on each outcome Ai for free since she assigns

probability zero to each of those events, and she will buy a $1 bet19 on
⋃n
i=1Ai = X for $1. She

is guaranteed to lose on at least one of these bets, so she will always have a net loss. To rule out

these irrationalities, we focus our attention only on generalized probability spaces that satisfy (*).

One might worry that adding condition (*) to the axioms of a generalized probability space

might just bring us back to a classical probability space. It turns out it does not.

Proposition 5. There are generalized probability spaces that satisfy (*), which are not also clas-

sical probability spaces.

Proof. Consider X = {1, 2, 3, 4}, and

A1 = {1, 4}

A2 = {2, 4}

A3 = {3, 4}

Notice none of A1, A2, A3 are disjoint. Let Σ = {∅, A1, A2, A3, (X−A1), (X−A2), (X−A3), X}.
18While (i) and (iii) seem to have an intuitive justification, (ii) may seem less plausible. The motivation for (ii) is

that requiring some pattern of disjointness among our sets should force the additivity axiom to kick in. Also, notice
that adding (ii) strictly weakens the condition. We use (ii) in this paper in order to assume only the weakest addition
to the axioms for a generalized probability space we can think of to obtain the following results. If one wishes, (ii)
can be ignored in order to make the condition more intuitive. Since the resulting condition implies (*), the result of
section 5 will still go through on that assumption as well.

19This bet on the union is included to show that this is an incoherence in a belief system as opposed to a
disagreement between a person’s beliefs and the world. If somehow none of the outcomes Ai were to occur, then the
generalized probability spacer would not lose on any of the individual Ai bets, but would lose on the union.
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We generate µ by additivity from the following assignments:

µ(A1) = µ(A2) = µ(A3) = 1/3

µ(X) = 1

It follows that (X,Σ, µ) is a generalized probability space, it satisfies (*) because the only mea-

sure zero set is the empty set, and it is not a classical probability space because some intersections

of measurable sets are not measurable. �

One might object20 that the example I provided in the previous proof is, in a sense, not good

enough. I have just taken a classical probability space and deleted some of it’s assignments, but

the space has a classical probability space extension as in the following definition.

Definition 9. A generalized probability space (X,Σ, µ) has a classical probability space extension

iff there is a classical probability space (X,Σ′, µ′) such that Σ ⊆ Σ′ and if A ∈ Σ, then µ(A) = µ′(A).

Proposition 6. There are generalized probability spaces that satisfy (*), which have no classical

probability space extensions.

Proof. Consider X = {1, 2, 3, 4}, and

A1 = {1, 4}

A2 = {2, 4}

A3 = {3, 4}

Notice none of A1, A2, A3 are disjoint. Let Σ = {∅, A1, A2, A3, (X−A1), (X−A2), (X−A3), X}.

We generate µ by additivity from the following assignments:

µ(A1) = 1/4

µ(A2) = 0

µ(A3) = 1/2

µ(X) = 1

20Thanks to Sam Fletcher for this point.
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It follows that (X,Σ, µ) is a generalized probability space, it satisfies (*) because the only

measure zero sets are the empty set and A2, but their union is not the whole space. It is not a

classical probability space because some intersections of measurable sets are not measurable.

Suppose (X,Σ′, µ′) were a classical probability space extension of (X,Σ, µ), then µ′(A1 ∪ A2 ∪

A3) = µ′(X) = 1, but µ′(A1∪A2∪A3) ≤ µ′(A1)+µ′(A2)+µ′(A3) = µ(A1)+µ(A2)+µ(A3) = 3/4,

which is a contradiction. So (X,Σ, µ) is a generalized probability space that satisfies (*) and has

no classical probability space extension. �

Notice that the generalized probability space used in the proof of the previous proposition falls

prey to another Dutch book. A generalized probability spacer who sets their degrees of belief by

the above assignments will sell a $4 bet on A1 for $1, sell a $4 bet on A2 for free, sell a $4 bet on

A3 for $2, and buy a $4 bet21 on A1 ∪ A2 ∪ A3 = X for $4. No matter the outcome, she will have

a net loss of $1. This Dutch book arises because the example violated the following condition:

(**) There is not a finite collection of sets A1, ..., An such that

µ(

n⋃
i=1

Ai) >

n∑
i=1

µ(Ai)

Any time condition (**) is violated, one can construct a Dutch book. Of course condition (**) al-

ways holds for classical probability spaces—it follows from the classical inclusion-exclusion formula.

Notice that condition (**) implies (*). So we have just seen two ways in which (**) does not always

hold in generalized probability spaces: in the proof of proposition 2 we exhibited a generalized

probability space that fails to satisfy (*) so it fails to satisfy (**), and in the proof of proposition

6 we exhibited a generalized probability space that satisfies (*) but fails to satisfy (**). We also

learn from this that (*) does not imply (**).

One might think that, because of these Dutch books, we should only consider generalized prob-

ability spaces that satisfy (**). But it is an open question whether there are any generalized

21Once again we include this bet on the union to show a strong sense of incoherence. If somehow none of A1, A2,
or A3 were to occur, the generalized probability spacer would still have a net loss.
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probability spaces satisfying (**), and hence avoiding Dutch books, that do not have classical

probability space extensions22. If there were not, then we would have reason to reject generalized

probability spaces without even considering their compatibility with quantum mechanics. However,

since it is an open question, we do not have the resources to rule out generalized probability spaces

a priori. Instead, in the rest of this paper, we will directly consider the compatibility of generalized

probability spaces with quantum mechanics. We will only use condition (*) because it is strictly

weaker than (**) and it is all that is needed to prove our main result. In any case, a generalized

probability spacer must accept a condition at least as strong as (*) to avoid Dutch books.

The above should motivate the consideration of condition (*). We know it always holds in

classical probability spaces, and we know it holds in some simple cases (n = 2 or 3) for generalized

probability spaces. We seem to have good reason to accept a condition at least as strong as (*) in

order to avoid Dutch books. However, we now proceed to show that if we add condition (*) to our

axioms, then generalized probability spaces cannot solve the problems of quantum mechanics.

5 A “No-Go” Theorem

Definition 10. A quantum mechanical experiment (H, ψ,S) has a restricted generalized probability

space representation iff there is a generalized probability space (X,Σ, µ) with sets A1, ...An ∈ Σ

such that for all Pi, Pj ,

µ(Ai) = pi = 〈ψ, Piψ〉

and if [Pi, Pj ] = 0, then Ai ∩Aj ∈ Σ and

µ(Ai ∩Aj) = pij = 〈ψ, PiPjψ〉
22We conjecture that all generalized probability spaces satisfying (**) have classical probability space extensions.

Here is a sketch of an argument for that claim. Consider a generalized probability space that satisfies (**). Go
through all of the pairwise intersections of measurable sets that are not measurable and assign them measures
that are consistent with the classical inclusion-exclusion formula. Then go through all of the intersections of three
measurable sets and do the same, etc. Eventually all intersections will be assigned a measure and we conjecture the
result will be a classical probability space extension of the original space.
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Definition 11. A quantum mechanical experiment (H, ψ,S) has a full-blown generalized probability

space representation iff there is a generalized probability space (X,Σ, µ) with sets A1, ..., An ∈ Σ

such that for all Pi,

µ(Ai) = pi = 〈ψ, Piψ〉

and for all Pi, Pj , ..., Pk that are compatible (i.e. they pairwise commute), the corresponding sets

Ai, Aj , ..., Ak satisfy Ai ∩Aj ∩ ... ∩Ak ∈ Σ and

µ(Ai ∩Aj ∩ ... ∩Ak) = pij...k = 〈ψ, PiPj ...Pkψ〉

Notice that since all classical probability spaces are generalized probability spaces, the result of

Theorem 4 carries over. If all of the observables of a experimental system commute, then it has a

restricted generalized probability space representation. But now one can ask the following question:

is there a generalized probability space representation for every quantum mechanical experiment?

In order to answer this question, we’ll use another well-known “no-go” theorem, due to Kochen

and Specker, concerning HVTs in quantum mechanics. An alternative way to construct a HVT

would have been to construct a function whose inputs are observables and outputs are definite real

numbers—we would then require that this function satisfies certain natural conditions for exhibiting

the complete hidden state. Kochen and Specker showed that if we require our function to yield

consistent answers to every “yes-no” question, then we are guaranteed that there is a quantum

mechanical experiment for which we will not be able to find this kind of HVT.

Theorem 5. (Kochen-Specker) For any Hilbert space H with dim(H) ≥ 3, there is a sequence of

projection operators S′ = 〈P1, ..., Pn〉 on H such that there is no function f : {P1, ..., Pn} → {0, 1}

which assigns 1 to exactly one element of every subset of {P1, ..., Pn} whose elements are mutually

orthogonal and span H (Kochen and Specker 1967, p. 321).
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Now, we return to the main question of this section. One can show, although I won’t do so

here, that some quantum mechanical experiments23 do have (restricted and full-blown) generalized

probability space representations, and even ones which satisfy (*). This motivates the question: do

generalized probability spaces provide a way of finding HVTs for all quantum mechanical experi-

ments?

Theorem 6. It is not the case that all quantum mechanical experiments (H, ψ,S) have full-blown24

generalized probability space representations (X,Σ, µ) that satisfy condition (*).

Proof.25 Suppose we have an H and sequence of projection operators S′ = 〈P1, ..., Pn〉 on H that

provide a witness to Theorem 5 i.e. there is no f : {P1, ..., Pn} → {0, 1} which assigns 1 to exactly

one element of every subset of S′ whose elements are mutually orthogonal and span H.

Fix some unit vector ψ ∈ H, and let S = 〈P1, ..., Pn, (I−P1), ..., (I−Pn)〉 = 〈P1, ..., P2n〉, which

is still a finite set of projection operators. Now suppose (for contradiction) that for our chosen

quantum mechanical experiment (H, ψ,S), we have the desired full-blown generalized probability

space (X,Σ, µ) that satisfies (*). On this assumption, we construct a function f : {P1, ..., P2n} →

{0, 1}, which when restricted to the domain {P1, ..., Pn} ⊆ {P1, ..., P2n} contradicts Theorem 5.

We would like to fix some point x ∈ X and determine the values of f just by whether x falls in

the set corresponding to a given projection operator. But x may end up in a measure zero set such

that it is in none of the sets corresponding to projection operators that span the space, or such that

it is in the intersection of two sets corresponding to orthogonal projection operators. If we end up in

either of these cases, then the function f we construct will not violate the Kochen-Specker theorem.

So we construct two “problematic” sets to remove from our space—these contain the superfluous

measure zero sets whose removal will not make a difference to the physics. Removing these sets

guarantees we will be able to violate the Kochen-Specker theorem in the way just outlined.

23In particular, see Malament (2012, p. 27) for a proof that the quantum mechanical experiment representing the
EPR setup, which served as a witness to Bell’s theorem and Pitowsky’s theorem, has a generalized probability space
representation satisfying (*). The generalized probability space exhibited there does not, however, satisfy (**).

24It remains an open question whether the result holds for restricted generalized probability space representations.
It also remains an open question whether the result holds if we weaken or get rid of condition (*).

25Thanks to David Malament for detailed discussions concerning the proof of this theorem.
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We know that for any orthogonal Pi and Pj (written Pi⊥Pj), PiPj = PjPi = 0 so Ai ∩ Aj ∈ Σ

and µ(Ai ∩Aj) = 〈ψ, PiPjψ〉 = 0. So, let

D1 = {Ai ∩Aj : Pi⊥Pj}

R1 =
⋃
D1

Each element of D1 is a set of hidden states that has two “contradictory” properties, i.e. properties

corresponding to orthogonal projection operators. So D1 is a finite collection of measure zero sets.

Next, for any Q ⊆ {P1, ..., P2n} whose members are mutually orthogonal and span H, let

RQ =
⋃
Pi∈QAi. Let

D2 = {X −RQ : the members of Q are mutually orthogonal and span H}

R2 =
⋃
D2

Each element of D2 is a set of hidden states that do not have a “tautologous” property, i.e. the

property corresponding to lying in at least one of a set of mutually orthogonal subspaces that span

H. We expect D2 to also be a finite collection of measure zero sets; we show this explicitly below.

Let X ′ = X −R1 ∪R2 and A′i = Ai ∩X ′.

We now check that X ′ is non-empty so we can use a point in it to define our function f , and

that the sets A′i behave as expected, i.e. they allow us to construct the required function f .

Subclaim 1 : X ′ is non-empty.

We show that R1 ∪ R2, the set to be removed, is a finite collection of measure zero sets, each

of which is disjoint from at least one other in the collection. In order for the space to satisfy (*),

there must be points in X that are not in R1 ∪R2.

For any Q ⊆ {P1, ..., P2n} whose members are mutually orthogonal and span H, we know

that for any set of projection operators {Pi, Pj , ..., Pk} ⊆ Q, the corresponding sets satisfy26 Ai ∩

Aj ∩ ... ∩ Ak ∈ Σ and µ(Ai ∩ Aj ∩ ... ∩ Ak) = 〈ψ, PiPj ...Pkψ〉 = 0. Thus, by the Corollary to

26Notice that this is the only place in the proof where we use the fact that we are dealing with a full-blown, rather
than restricted representation.
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Lemma 3, RQ ∈ Σ and µ(RQ) =
∑
Pi∈Q µ(Ai) =

∑
Pi∈Q〈ψ, Piψ〉 = 1. Hence, X − RQ ∈ Σ

and µ((X − RQ) ∪ RQ) = µ(X − RQ) + µ(RQ) = µ(X). It follows that µ(X − RQ) + 1 = 1, so

µ(X −RQ) = 0.

Now we have that R1 is a finite union of sets all of whose measure is zero, and R2 is a finite

union of sets all of whose measure is zero. So R1 ∪ R2 =
⋃

(D1 ∪D2) is likewise a finite union of

sets all of whose measure is zero, i.e. for any set B ∈ (D1 ∪D2), µ(B) = 0, and D1 ∪D2 is a finite

collection of subsets of X.

Furthermore, if Pi⊥Pj , then there is some Q whose members are mutually orthogonal and span

H such that Q contains Pi (at the very least Pi and I− Pi are orthogonal and span H). Moreover,

for this choice of Q, Ai ∩Aj and X −RQ are disjoint, where Ai and Aj are the sets associated with

Pi and Pj and RQ is defined relative to the Q containing Pi. Thus, for each B ∈ D1, there is a

C ∈ D2 such that B ∩ C = ∅.

And given any Q whose members are mutually orthogonal and span H, we can choose two of

the orthogonal projection operators Pi, Pj ∈ Q. For this choice, Ai ∩ Aj and X −RQ are disjoint,

where again Ai and Aj are the sets associated with Pi and Pj , and RQ is defined relative to the Q

containing Pi and Pj . Thus, for every C ∈ D2, there is a B ∈ D1 such that B ∩ C = ∅.

So D1 ∪D2 is a finite collection of measure zero sets, each of which is disjoint from at least one

of the others. By (*), R1 ∪R2 =
⋃

(D1 ∪D2) 6= X. Therefore, X ′ is non-empty.

Subclaim 2 : If the members of Q ⊆ {P1, ..., P2n} are mutually orthogonal and span H, then⋃
Pi∈QA

′
i = X ′.

If the members of Q ⊆ {P1, ..., P2n} are mutually orthogonal and span H, then (X−RQ) ⊆ R2,

so since X ′∩R2 = ∅, X ′∩ (X−RQ) = ∅. But since X ′ ⊆ X, X ′∩ (X−RQ) = X ′−X ′∩RQ = ∅.

Hence, X ′ ∩RQ = X ′. Thus,
⋃
Pi∈QA

′
i =

⋃
Pi∈Q(Ai ∩X ′) = X ′ ∩

⋃
Pi∈QAi = X ′ ∩RQ = X ′.

Subclaim 3 : If Pi⊥Pj , then A′i ∩A′j = ∅.

If Pi⊥Pj , then (Ai ∩ Aj) ⊆ R1 and R1 ∩ X ′ = ∅ so (Ai ∩ Aj) ∩ X ′ = ∅. Thus, A′i ∩ A′j =

(Ai ∩X ′) ∩ (Aj ∩X ′) = (Ai ∩Aj) ∩X ′ = ∅.
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Fix some x ∈ X ′. Let f : {P1, ..., P2n} → {0, 1} be defined for any Pi by:

f(Pi) = χA′
i
(x),

where χA′
i

is the characteristic function of A′i in X ′ (i.e. χA′
i
(x) = 1 if x ∈ A′i and χA′

i
(x) = 0 if

x /∈ A′i).

Consider any Q ⊆ {P1, ..., P2n} whose elements are mutually orthogonal and span H. Since the

members of Q span H, we know that x ∈ A′i for at least one Pi ∈ Q by subclaim 2. And since all

members of Q are orthogonal, we know that x ∈ A′i for at most one Pi ∈ Q by subclaim 3. Thus,

x ∈ A′i for exactly one Pi ∈ Q, and it follows that f(Pi) = 1 for exactly this one member of Q.

Thus, on the assumption that our desired full-blown generalized probability space representation

exists, we can construct the function f that is prohibited by the Kochen-Specker theorem. From

this we conclude that the desired generalized probability space representation does not exist. �

6 Conclusions

We have seen that the consideration of incompatible observables is well motivated in an inves-

tigation of the foundations of probability in quantum mechanics. We can always find a HVT in the

form of a classical probability space if all of the observables of our experimental system are com-

patible, so something funny must be going on when we try to represent incompatible observables

in a classical probability space. The proposal to use generalized probability spaces seemed like a

natural alternative which might solve these problems. In at least a few places in the literature, the

use of generalized probability spaces has been suggested for understanding quantum mechanics.

However, upon investigation, we found that generalized probability spaces have a very strange

feature, namely allowing the union of finitely many probability zero events to cover the whole space.

One might have thought that it was a fundamental property of probability spaces, coming from the

very concept of probability itself, that the union of finitely many probability zero events cannot
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cover the whole space. We do find this to be the case in classical probability spaces. One may

have thought it a virtue of classical probability spaces that they preserved this property with only

a few simple axioms, and one might have thought that the only reason we don’t add condition (*)

as an extra axiom in classical probability spaces is that it is implied by the axioms we have already

displayed. Furthermore, if one sets their degrees of belief by a generalized probability space that

fails to satisfy (*), then one is susceptible to a Dutch book. So one might think that we should add

condition (*) to the axioms for generalized probability spaces, since it is not implied by them.

When we added condition (*) to the axioms of generalized probability spaces, we found that

one cannot represent all quantum mechanical experiments in this way. We cannot find a HVT in

the form of a classical probability space for all quantum mechanical experiments nor can we find

a HVT in the form of a generalized probability space that satisfies (*) for all quantum mechanical

experiments. If one wants to find HVTs in the form of generalized probability spaces for all quantum

mechanical experiments, then one must pay the price of giving up condition (*). The generalized

probability spacer is impaled on the horns of a dilemma: either give up (*) and fall prey to Dutch

books, or else accept (*) and run into Theorem 6. This shows a sense in which the proposal of

getting rid of joint distributions on non-commuting observables and using generalized probability

spaces as HVTs for quantum mechanics fails.

An interesting corollary follows immediately from Theorem 6. Since the Kochen-Specker theo-

rem (Theorem 5) is used essentially in the proof of Theorem 6, it follows that the Kochen-Specker

theorem implies Theorem 6. And since all classical probability spaces are generalized probability

spaces satisfying (*), it also follows that Theorem 6 implies Pitowsky’s theorem (Theorem 3). So

the Kochen-Specker theorem also implies Pitowsky’s theorem. And furthermore, since it was shown

in section 2.2 that Pitowsky’s theorem implies Bell’s theorem, this means that the Kochen-Specker

theorem implies Bell’s theorem as well. This establishes a hierarchy of implication relations between

the “no-go” theorems:

Kochen-Specker Theorem ⇒ Theorem 6 ⇒ Pitowsky’s Theorem ⇒ Bell’s Theorem

29



One might have thought initially that Bell’s theorem, Pitowsky’s theorem, and the Kochen-Specker

theorem were three independent results that show we cannot have HVTs with different sorts of

constraints on them. While Bell’s theorem and Pitowsky’s theorem deal with HVTs that represent

the probabilistic predictions of quantum mechanics, the Kochen-Specker theorem puts only purely

logical constraints on an HVT without any mention of probabilistic predictions. Now we can see

that even though these theorems deal with different constraints on HVTs, they are systematically

related. Just as in section 2.2 we thought of Bell’s theorem as a specialization of Pitowsky’s

theorem to situations where we have further information about distinct measurement apparatuses

and measurement settings, we can think of Theorem 6 and Pitowsky’s theorem as specializations of

the Kochen-Specker theorem to situations in which we have further information about probabilistic

predictions (in the relevant kind of probability space) and maintain the natural logical constraints.

This is a promising beginning to the project of mapping out a conceptual space in which to compare

the constraints and results of these “no-go” theorems.
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