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Abstract

Feferman introduced intensional arithmetizations in [1960] and stressed
that some metatheoretic results must be executable thus if they are to
be semantically contentful. This program is particularly interesting in
weak arithmetics where formal results like Gödel’s second incompleteness
theorem are provable only in nonstandard ways, skirting the conditions
for intensional adequacy. We examine some recent attempts to explain
how one might get meaningful metatheoretic results for weak theories
through interpretations of stronger theories where these formal results
have straightforward proofs. These attempts fail doubly by assuming in-
correctly (1) that the proper conditions for intensionality are independent
of the theory one is investigating and (2) that the interpretability of one
theory in another enjoins the latter theory with the former’s semantic rich-
ness. The significance of the result for philosophical foundationalism is
that metamathematical investigations must be sensitive to the strength of
the system one is studying, and in particular the formal notion of relative
interpretability has in many cases no semantic significance.

1 Introduction

Paul Young [1985] improved slightly Fischer and Rabin’s proof that the decision
procedure for Presburger Arithmetic “A” (for addition) is doubly-exponentially
difficult. His principal aim was pedagogical: to demonstrate with his new proof
that Gödel’s undecidability theorem was essentially the same as Fischer and
Rabin’s theorem and to urge that instructors who teach the one theorem teach
also the other. His aim has not been realized in very many curricula in the last
twenty years. That A is decidable, however, is a standard point of emphasis in
courses on incompleteness and undecidability. Students consequently know not
to overstate Gödel’s theorems. For example they are careful to paraphrase the
second theorem thus: “Consistent arithmetic theories with sufficient expressive
power do not prove their own consistency”. The impression one is left with
after brief reflection is that since the weaker an arithmetic theory is the simpler
should be a demonstration of its consistency, examples of weak enough consistent
theories do prove their own consistency.
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A is not a good model to base this impression on, though, because while
Gödel’s second theorem is not provable for A, neither is any proof of A’s con-
sistency formalizable in A. So keeping with this impression one might joke
that Presburger’s theory is too weak even to prove its own consistency. Better
grounding for this impression can be found in Herbrand’s [1931] “On the consis-
tency of arithmetic” where he proves the consistency of his weak arithmetic H
by way of an argument formalizable in H. H certainly is a stronger theory than
A, but as Herbrand points out it too fails to arithmetize its own metamathe-
matical description. For this reason Gödel’s second theorem does not contradict
Herbrand’s result: The theorem cannot be formulated with respect to H. Her-
brand fails to point out, though, that for the same reason the formalizability in
H of the proof of the consistency of H cannot literally be seen as “a proof in H
of the consistency of H”. It takes some reasoning outside of H to interpret the
formal proof as a consistency proof because in H there is no formula expressing
in any sense the consistency of H.

On the other hand, for consistent theories that do adequately arithmetize
their own metamathematics, one expects weaker theories to fall even shorter of
proving their own consistency. Consistency is after all a metatheoretic property,
and since computational strength is needed for any metatheoretic description
we expect weaker theories to say less about their own metatheory than stronger
systems say about theirs. Indeed these expectations are realized. We have, for
example, not only not I∆0 +Exp ` Con(I∆0 +Exp) but also not I∆0 +Exp `
Con(Q).

One has, then, a tension between two trends–a decrease in the complexity
of consistency statements, making these more easily provable, and a decrease in
deductive strength, making everything less easily provable–as one investigates
increasingly weak fragments of arithmetic. A natural question is how this ten-
sion resolves at various points along the arithmetic hierarchy. The consistency
statements of theories at the top of the scale, like PA, are equivalent to those
theories’ Gödel sentences, and therefore proofs of those theories’ consistency
cannot be formalized in the theories if the theories are consistent. Moreover,
these theories can be said to interpret the formulas expressing their consistency
as such. Meanwhile theories at the bottom of the hierarchy are not diagonal-
izable and therefore have no Gödel sentences. These theories very well may
formalize proofs of their own consistency but as a rule cannot “see” these proofs
as such. A third possibility is for Gödel’s Second Theorem formally to hold
for a theory, but for this not to be sensibly interpretable as a demonstration
of the unprovability in T of T’s consistency. This seems to be the case with
induction-free and bounded arithmetics.

Recently Professor Pudlák has argued that a version of Gödel’s second the-
orem for Robinson Arithmetic (Q) can be seen as a demonstration of the un-
provability in Q of Q’s consistency. This is contrary to roughly half a cen-
tury of speculation that begins with Kreisel and includes among its speculators
Bezboruah and Shepherdson, who cautioned against interpreting the theorem
in this way alongside their [1976] proof of the result:
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We must agree with Kreisel that this [result] is devoid of any philo-
sophical interest and that in such a weak system this formula [ConQ]
cannot be said to express consistency but only an algebraic property
which in a stronger system (e. g. Peano arithmetic P) could rea-
sonably be said to express the consistency of Q. (pg. 504)

Pudlák’s argument is based on a strengthening of Shepherdson and Bez-
boruah’s theorem. According to his result, Q proves that it is consistent to
assume that there is a contradiction encoded already by a number in any proper
syntactic cut of its numbers. Such a syntactic cut can be shortened using a
method of Solovay so that it is a definition in Q of a model of a stronger
arithmetic theory (I∆0 + Ω1) that “interprets” consistency unproblematically.
Pudlák argues that this allows a sort of semantic bootstrapping from Q to
I∆0 + Ω1. This would block the third possibility described above, since it puts
Q alongside PA in the first class of theories and since theories weaker than Q fall
uniformly in the second class. It is therefore illuminating to study the argument.
The argument is fallacious though, and so we conclude that Kreisel’s original
intuition was correct.

2 Intensionality of arithmetization

The theory Q was defined by Tarski, Mostowski, and Robinson in [1953]. It’s
language adds to the standard logical symbols one one-place function symbol
S, two two-place function symbols + and ·, and a constant symbol 0. It has six
axioms:

1. ∀xS(x) 6= 0
2. ∀x∀y(S(x) = S(y) → x = y)
3. ∀x(x 6= 0 → ∃y(S(y) = x))
4. ∀x(x+ 0 = x)
5. ∀x∀y(x+ S(y) = S(x+ y))
6. ∀x(x · S(y) = x · y + x)

Extended conservatively with a definition for inequality

x ≤ y ⇔ ∃x(x+ y = y)

Q is the standard base subtheory of most arithmetic systems studied today. It
is strengthened usually by the inclusion of an axiom schema or rule for some
combinatorial principle, or by adding an axiom that stipulates that certain
functions are total. For example Peano Arithmetic is Q together with the rule

A(b),Γ −→ ∆, A(b+ 1)
A(0),Γ −→ ∆, A(t)

where the eigenvariable b does not
occur except as indicated

for induction on all formulas. Elementary Arithmetic (I∆0 + Exp) is Q with
the induction rule restricted to bounded formulas and the axiom
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Exp⇔ ∀x∀y∃z(z = xy)

saying that exponentiation is a total function1.
By itself Q is quite a weak system, though. For example it does not prove

the commutativity of addition, nor even the transitivity of ≤ once this relation
is defined. The claim that it can prove facts about it’s own metatheory (and
not just formulas that from outside the theory one can verify as formulations
of these facts) is initially very surprising.

Let us turn to our task of resolving the tension that arises from the direct re-
lationship that holds between the complexity of a theory’s consistency statement
and the theory’s deductive strength. Already we have suggested that the task is
delicate: One cannot automatically interpret the provability of Gödel’s second
theorem for a theory as a meaningful metamathematical result. One must also
say something about how such an interpretation embeds in the theory being
studied. The formula Conx that appears in the theorem is only a formula. If
we replace the free variable x with an enumeration of a mathematical system,
then the resulting closed formula will in some systems express the consistency
of the enumerated system and in other systems remain uninterpreted. Which
of these possibilities in fact happens when the question of the meaningfulness
of Conτ is put to the theory T that τ encodes has no uniform answer. From
this we may conclude that the provability of Gödel’s second theorem does not
decide the question that it was designed for in every system. In the words of
Georg Kreisel “Gödel’s work on formulae expressing the consistency of classical
arithmetic goes beyond arithmetic concepts because it uses metamathemati-
cal interpretation” ([1958] pg. 177). For foundational purposes one would like
to be able to arithmetize that metamathematical interpretation itself, and the
prospects for doing so successively diminish as one considers increasingly weak
arithmetic systems.

This does not preclude the possibility that some other result might decide the
metatheoretic question for theories that fail to interpret Gödel’s second theorem.
The metatheoretic content of Gödel’s second theorem is that the consistency of
a theory is not provable in that theory unless the theory is inconsistent. But the
standard form of the theorem is an uninterpretable sentence when relativized
to sufficiently weak theories. Intuitively there are two principal sources of this
sort of inscrutability where it arises, so establishing the intended content of the
theorem for such theories can be reduced to reformulating the theorem in a form
immune from these two sources of inscrutability.

One way for the standard form of Gödel’s second theorem to be provable
but uninterpretable is for the theory to be unable to decipher the coding scheme

1Perhaps the most well known fact about bounded arithmetic is that the exponential
function is not definable in any bounded theory. This presents an obstacle even for writing
the axiom Exp. The undefinability of exponentiation is due to Parikh [1971], and remarkably
in the same report Parikh showed a way around this obstacle by explaining that the predicate
P (x, y, z) ⇔ xy = z defining the graph of the exponential function is concrete. Following
suite, one may write the axiom Exp based on this predicate.
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used to construct the binumeration. In this case we say following Feferman that
the arithmetization is not intensional. The appearance of τ in a theorem of T is
uninteresting from within T if T does not recognize itself in τ . Outside of T the
veracity of the coding may be verifiable, but the arithmetization does not admit
genuine self-reference phenomena if the verification is essentially extensional in
that it cannot be executed in T.

Alternatively, the open formula Con(x) may be uninterpretable in T. This
could be because the provability predicate from which it is built is not recogniz-
able within T as a representation of theoremhood. This is a plausible obstacle in
weak theories because standard Hilbert style proofs or sequent calculus proofs
are syntactically complex. From the point of view of T, if T does not prove
an elimination theorem for one of its underlying logic’s inference rules, then a
provability predicate that verifies only encodings of proofs that do not employ
that rule will represent something essentially different than will the standard
provability predicate, even if the rule’s conservativity is something one can read-
ily verify outside of the theory. Once again, theory-independent facts turn out
not to be relevant to meaningful metamathematical results.

For example, the cut rule

Γ −→ ∆, A A,Γ −→ ∆
Γ −→ ∆

can be shown to be redundant in the standard sequence calculus presentation
of first order logic by a routine semantic argument, but this argument is only
as good as the semantic theory on which it is based. One might argue that this
theory is as good as one could ask for, but in so doing one would essentially dodge
certain metatheoretic questions. For if one cannot execute the argument within
an arithmetic theory, then the argument is useless towards gaining ground on
questions of that theory’s consistency.

The uselessness of the argument towards settling the consistency question
is an epistemological uselessness. True, one may base a consistency proof of a
theory on such semantic techniques that extend that theory’s strength. This
would be to assume from the outset the reliability of those techniques, though,
which is an unwelcome assumption when the consistency of the theory under
investigation is a weaker claim than the soundness of the semantic techniques.
This “epistemological uselessness” has been cited repeatedly in the philosophical
literature to suggest that the consistency of various arithmetic theories is quite
open. The suggestion obviously is controversial, and this study advances a far
weaker claim. Here the “epistemological uselessness” of an argument draws into
question whether certain formal constructions are appropriate representations
of metatheoretic facts. That is, whether or not an alleged consistency proof
succeeds actually in securing the consistency of a system or whether or not a
certain rule-elimination is admissible, if the proofs of these results cannot be
carried out in a particular system, then that system neither “proves its own
consistency” nor even recognizes as statements of consistency all the formulas
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that from outside the theory look like consistency statements2. Short of casting
doubt on a theory’s consistency, this casts doubt only on whether a theory
proves its own consistency or on whether a theory can be said conclusively not
to prove its own consistency.

Even in this modest form the point is one of “epistemological uselessness” be-
cause foundational investigations are not restricted to the discovery of metathe-
oretic facts but also are concerned with the amount of formal apparatus one
needs in order to prove facts. The example from this study’s introduction is
illustrative: One might want to investigate the purely logical relationship be-
tween self-reference and the unprovability of consistency by deciding whether
all mathematical systems that compute self-referential statements can be shown
not to prove their own consistency. But to decide this question for any partic-
ular system, the self-reference and consistency claims must be represented in a
way recognizable as such by the system itself.

Something like this insight originally motivated Gentzen’s research on con-
structive proofs of the eliminability of the cut rule. The semantic account of
the redundancy of the cut rule already was known before 1936, but Gentzen
deemed a consistency proof relative to this semantic argument unhelpful for
foundational research. By virtue of its constructive proof-transformation na-
ture, Gentzen’s Hauptsatz gives more foundational insight. It is well known
that the arithmetic consistency result built onto the Hauptsatz is relative to the
consistency of an associated transfinite induction. But even short of applying the
cut elimination theorem to the consistency question, one may ask what the cut
elimination theorem itself teaches us. If the Hauptsatz cannot be arithmetized
in a theory T, then from a certain perspective the theorem says nothing about
T-provability. In particular, the formulas ∃xPrf(x, y) and ∃xCFPrf(x, y) ex-
pressing in turn “there is a proof of y” and “there is a cut-free proof of y” are
not equivalent in such a theory. Hence their corresponding consistency formulas
Conτ ⇔ ¬∃xPrf(x,⊥) and CFConτ ⇔ ¬∃xCFPrf(x,⊥) are not equivalent
either.

In the light of these two types of inscrutability, two new questions emerge:
(1) What are the correct arithmetization schemes relative to a theory? and
(2) What is the correct formulation of provability relative to a theory? In both
cases, correctness is the ability to capture the metatheoretic content of a formula
within the theory.

The first question is the subject of Feferman’s [1960]. He found that there is
no uniform answer and submits this finding as a cautionary note about reading
too much into standard results for theories like PA. Specifically he found (corol-
lary 5.10) a binumeration α∗ of Peano Arithmetic that is extensionally correct,
but whose corresponding consistency statement is provable in PA. One might
hastily conclude that the arithmetization that gives rise to such an enumeration
of PA blocks any generalization of Gödel’s second theorem from the specific
arithmetization of Gödel [1931]. By contrast Feferman concludes that while the

2And conversely, a theory might recognize as a statement of consistency some formula that
from outside the system does not appear to be a consistency statement.
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generalization of the technical result is restricted3 by this variant binumeration,
the generalization of the “unprovability of consistency” is not:

We have maintained that insofar as a formula α expresses member-
ship in A, the formula Prα expresses provability of A in M(P) and
the sentence Conα expresses the consistency of A in (M) and (P ).
Thus, one particular conclusion we can draw is that the formula
α∗, although it extensionally corresponds to A, does not properly
express membership in A. (pg. 69)

The expression of membership in a theory must be intensional in order for
it to be a proper expression on top of which one may define formally metatheo-
retic properties. That is, the failure of Gödel’s second theorem in some general
settings is independent of the stability of the result on the unprovability of con-
sistency when the settings in question are ones where intensional arithmetization
fails.

An arithmetization τ of a theory T in T is intensional to the extent that
salient metatheoretic properties of predicates built on τ are provable in T.
For example Feferman requires an intensionally correct arithmetization of T-
provability to satisfy

T ` ∀u∀v∀w(Fmla(u) ∧ Term(v) → Fmla(sub(u, v)))
T ` ∀A∀B(Thmτ (A) ∧ Thmτ (A→ B) → Thmτ (B))
T ` ∀u(Proofτ (u) → Thmτ (Proofτ (u)))
T ` ∀A∀u(Prfτ (u,A) → Thmτ (Prf(u,A)))
T ` ∀A(Thmτ (A) → Thmτ (Thmτ (A)))

and the variant definition of PA just discussed fails to admit an intensionally
correct arithmetization of PA provability. One might take this argument as a
defense of the Hilbert-Bernays-Löb derivability conditions for the second incom-
pleteness theorem. For if only intensionally correct arithmetizations are admit-
ted, then there is no question about the meaning of Gödel’s second theorem for
PA. Any candidate arithmetization that skirts the derivability conditions does so
by failing to produce an intensionally correct arithmetization of theoremhood.
Therefore even if the resulting consistency statement were a theorem of PA,
this could not count as a proof in PA of the theory’s consistency. Intensionality
criteria are a set of necessary conditions for an arithmetization to meaningfully
represent metatheory in a purely arithmetic environment. Derivability condi-
tions are a set of conditions on a provability predicate sufficient for Gödel’s
second theorem. If derivability conditions are consequences of intensionality
criteria, then one may infer from Gödel’s second theorem the unprovability of a
theory’s consistency. Otherwise Gödel’s second theorem by itself tells one noth-
ing about a theory’s consistency. This study does not investigate the question
whether Feferman’s account of intensional correctness is satisfactory for strong

3Feferman’s study revealed that the result must be restricted to recursively enumerable
representations of theories, though it holds universally for those arithmetizations (theorem
5.6)
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arithmetic systems like PA, but it is worth noting that there is no consensus
about what might be proper conditions for intensionality even in such strong
settings4. The treatment presented below is meant to suggest only that deciding
what the proper conditions are for the intensionality of an arithmetization itself
depends on the strength of the theory one is studying.

The standard arithmetization of Q is not intensional according to these cri-
teria. In fact no formula κ represents Q so that the predicate Thmκ(x) satisfies
Feferman’s intensionality criteria. (This is readily seen since Q is finitely axiom-
atized. For if q(x) is the formula that defines Q simply by listing its axioms, then
for any other definition κ(x) of Q in Q, Q ` Conκ → Conq. Now since the above
criteria fail for the straightforward arithmetization q(x), they fail also for κ(x).)
From a logical point of view, this tells us immediately that the standard proof
of Gödel’s second theorem does not apply to Q, since the Hilbert-Bernays-Löb
derivability conditions fail alongside the intensionality criteria. Philosophically
speaking one can say more than this, specifically that the theorem of Bezboruah
and Shepherdson, since its proof does not utilize the derivability conditions, is
intensionally inadequate.

Let us focus now on the second question. One might say that when prov-
ability with all the inference rules of a theory’s underlying logic separates from
a restricted notion of provability, the unrestricted version has a natural claim
to correctness. Of what consequence is it that a theory doesn’t prove a vari-
ant of Gödel’s second theorem with a seemingly contrived, inefficient version of
provability in place of the standard one? If the theory proves the standard for-
mulation of Gödel’s second theorem, then the unprovable, nonstandard version
is the anomalous one. The failure to prove the nonstandard version of the theo-
rem looks analogous to Feferman’s example of the provability of the “theory’s”
consistency when the theory is arithmetized inefficiently. The burden of cor-
rectness would seem to be on the contrived variant, and the effective separation
of the variant arithmetization or formula from the standard one would appear
to be evidence against it.

One must distinguish restricted and unrestricted provability in a metatheo-
retic sense from their formal counterparts in a theory, however. For when the
notionsdo separate, so too must at least one formulation separate from inten-
sional correctness. In the present case neither formula has a very strong claim
to genuine expression of Q-theoremhood, because of the gap in complexity be-
tween first order derivability (with or without a cut rule) and the expressive
strength of Q. Correctness could be earned by investing one of the formulas
with meaning by proving in Q the equivalence between that formula and a more
wieldy combinatorial sentence. When this is possible for one formula but not for
the other, then the first actually has better claim to correctness for meaningful
foundational results regardless of what looks appropriate extensionally.

The cut-elimination theorem for first order logic cannot be formalized in
Q. One suspects then that “provability in Q” and “cut-free provability in Q”

4In [1988] Detlefsen argues that Hilbert’s foundational project, because of it’s underly-
ing “instrumentalist” epistemology, is in theory realizable by proving in strong arithmetics
formulas that fail to satisfy the derivability conditions.
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should have different “meanings” from the point of view of Q. Indeed, the stan-
dard arithmetizations of these predicates are inequivalent in Q. Similarly, since
Herbrand’s theorem does not hold in Q, “provability in Q” and “the construc-
tion of a Herbrand disjunction of the quantifier free part of a sentence” provably
separate in Q.

The parallel in these two cases is strong. Gentzen argued that provability
without the cut rule corresponds in a certain sense with the construction of
a finite Herbrand disjunction. The reason is the analogy between Gentzen’s
Hauptsatz and Herbrand’s theorem. The “sense” in which the two types of
provability correspond is a slippery one. For example, Gentzen argued that
Herbrand’s theorem was a special case of his Hauptsatz for sequents with empty
antecedents. From another perspective Herbrand’s result seems more general
though, for it treats formulas of arbitrary quantifier complexity. But from ei-
ther perspective the notion of correspondence under scrutiny appears heuristic,
because both fundamental theorems demonstrate the equivalence between the
restricted type of provability they treat and standard provability. It follows that
cut-free provability and Herbrand disjunction construction are equivalent. The
heuristic correspondence is highlighted by an application that Herbrand made
with his theorem: an elimination theorem for modus ponens with respect to a
redundant set of inference rules for the predicate calculus. Such heuristic obser-
vations play a pedagogical role but seem mathematically empty when the proof
systems under consideration all are formally equivalent.

From the perspective of this study, however, the correspondence between
the construction of Herbrand disjunctions and cut-free provability has definite
mathematical content. The equivalence or inequivalence of two types of prov-
ability is not theory-independent. For example, Herbrand’s theorem is provable
in I∆0 + Superexp but not in any bounded theory. At least some arithmetic
theories5 that prove neither cut-elimination nor Herbrand’s theorem do prove
the equivalence between the construction of Herbrand disjunctions and cut-free
provability, however, so the “correspondence” between these two proof systems
holds even in places where Gentzen and Herbrand’s fundamental theorems do
not.

On the other hand, even the correspondence between cut-free provability and
Herbrand provability fails in Q. Since this failure reflects also in the inequiva-
lence of the consistency statements associated with each type of provability, the
question about the meaningfulness of Gödel’s second incompleteness theorem
can be made precise. If one of these variant types of provability is provable
in Q, might it have more claim to an adequate representation of Q’s consis-
tency than has the standard consistency statement? Or if theorems analogous
to Gödel’s can be proven for Q with each of these variant formulations of con-
sistency in the place of the standard one, can this answer our reservations about
the meaningfulness of Gödel’s theorem for this theory?

In a certain sense the two intuitive sources of inscrutability in the appro-
5Theorem 5.19 on pg. 379 of (Hájek and Pudlák [1993]) is the equivalence of Herbrand

and cut-free provability in elementary arithmetic, and it is an open question whether the
equivalence can be demonstrated in a bounded theory.
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priateness of an arithmetization are not entirely distinct. For when arithmetic
theories are presented, as they are above, with deduction rules for combinato-
rial principles like induction over some formulas, the theory’s axioms have a
canonical arithmetization, since only finitely many axioms ever are present6.
Arithmetizing, for instance, the validity of induction over bounded formulas in
I∆0 + Ω1 is built in to the choice of formulation of the predicate “x is a proof”
rather than “x is an axiom”. This study presents arithmetic theories with de-
duction rules, rather than axioms, for induction precisely to make clear that
questions of intensionality are most properly thought of in terms of how best
to formulate metatheoretic properties, rather than–as has become customary–
merely how exactly to define the theory. Another suggestion of the priority of
the second source of inscrutability over the first is evident in the proposed inten-
sionality conditions themselves, which present the definition τ never in isolation,
but rather always embedded in another formula like Proofτ (x) or Thmτ (x).

Feferman [1960] actually discusses both sources of inscrutability in his study.
Considerations of the appropriate manner to arithmetize a theory he describes
as considerations “from the inside”, while those about the arithmetization of
theoremhood and the like he calls considerations “from the outside”. Call-
ing a change in one’s arithmetization a change “from the outside” is meant
to connote artificiality, and Feferman dismisses these sorts of considerations as
technical tricks that can be useful for solidifying formal results but not for gen-
eralizing metatheoretic findings. The reason, he says, is that changes from the
outside essentially are “changes in the notion of logical derivation” (pg. 39).
In the strong arithmetics Feferman studied, “changes in the notion of logical
derivation” from standard provability are departures from meaningfulness and
therefore are perhaps rightly dismissed as irrelevant for intensional purposes.
But in weak arithmetics care in the arithmetization of syntactic properties like
the notion of derivation is called for, since only some of the many extensionally
equivalent notions may be interpretable in the theory. Questions of intension-
ality accordingly extend in these theories to choices at every stage of arithme-
tization, from the representation of axiomhood to more complex constructions.
The optimal arithmetization of axiomhood for Q and the extendability of Q
to stronger arithmetic systems through the introduction of rules in the sequent
calculus, moreover, dissolves the “inside/outside” distinction and exposes the
activity of arithmetizing metatheoretic predicates as the primary stage for ques-
tions of intensionality.

However, the axiomatic framework can be used to distinguish notions of
provability that cannot be formulated in the presentation of a theory with non-
logical deduction rules. The next section presents Herbrand provability and
consistency and develops a simple, informal semantics for these notions. Of
especial significance is that the semantic interpretation presented for provability
and unprovability based on the construction of Herbrand disjunctions is, unlike
their classical counterparts, relativizable to weak theories without any apparent
loss of meaningfulness. But in order to pursue these notions, arithmetic theories

6See the discussion about the canonical axiomatization of Q above.
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must be reformulated. For the claim that φ is a theorem of a theory T will be
construed as their being a tautology

k∨
i=1

[He∗(
l∧

j=1

Tj → φ)(ti1, f1(ti1), ti2, f2(ti1, f1(ti1), ti2), . . .)]

for some finite set {Tj}l
j=1 of the axioms of T, where He∗(φ) is the quantifier-

free part of the Herbrand form of φ. For Robinson’s theory the canonical arith-
metization q(x) of Q-axiomhood allows one to replace the subformula

∧l
j=1 Tj

with the simple conjunction of Q’s axioms, but in order for this formulation
to make sense for theories of even modest strength, combinatorial principles
like induction and collection must be reformulated as axioms instead of de-
duction rules. In the remaining sections, therefore, combinatorial principles in
arithmetic theories are assumed to be presented in terms of axiom schemata.
(Induction over the set of Ψ formulas will be axiomatized by the familiar schema
A(0) ∧ ∀x(A(x) → A(S(x)) → ∀x(A(x)) for A ∈ Ψ). One may keep in the back
of one’s mind the fact that presentations in terms of deduction rules actually are
standard in many proof theoretic investigations and also the lesson just learned
about how the choice of defining a theory, which Feferman emphasizes in his
pioneering study of arithmetization, is only one parameter to consider when
sorting out questions of intensionality7.

3 A theory-dependent interpretation of
Herbrand consistency

Kreisel [1958] argues that since the no-counterexample interpretation of prov-
ability is in a sense simple, it is a more primitive interpretation than the stan-
dard one and therefore is more appropriate when one restricts one’s attention
to constructive methods. He has in mind specifically recursive methods, but
his sentiment can be extended to the kinds of restrictions one encounters when
investigating arithmetization in weak theories. The no-counterexample interpre-
tation is based on Herbrand’s theorem in such a way that theories not proving
Herbrand’s theorem will not prove that the no-counterexample interpretation
is equivalent to standard theoremhood. Kreisel’s intuition, translated into this
arena, is that this testifies against the meaningfulness of the standard formula-
tion of theoremhood for these theories. Since Herbrand proofs are propositional
proofs, they are combinatorially very simple. One might say that weak theo-
ries are able to make sense of them when they are not able to make sense of
the combinatorially more complex sequent or predicate calculus proofs. Her-
brand proofs are at the same time generally much longer than standard proofs,
and therefore more difficult to execute. Statman [1978] proved in fact that no

7In [1985] Sieg demonstrates that the two styles of presenting arithmetic theories are equiv-
alent. His demonstration shows that the induction rule is strong enough only with the inclu-
sion of the side formulas A. For a detailed description of the proof-theoretic benefits of the
rule-based presentation, his report is an excellent resource, as is section 1.4 of (Buss [1998]).
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Kalmar elementary procedure transforms standard proofs into these combina-
torially simpler “direct proofs”. The intuition that seems appropriate is that
meaningful results should be more difficult to prove than meaningless ones.

What concretely can be said about the comparative meaningfulness of stan-
dard formulations of consistency and the nonstandard one based on Herbrand’s
theorem? In weak theories where the two notions separate, it seems that there
is quite a lot to say. The formula ConT says that there are not proofs from the
axioms of Q of a sentence and of its negation. The formula HConT says that
there is not a propositional proof of the quantifier free matrix of a Herbrand
disjunction:

k∨
i=1

[He∗(
l∧

j=1

Tj → ⊥)(ti1, f1(ti1), ti2, f2(ti1, f1(ti1), ti2), . . .)] (1)

where He∗(φ) is the open part of the Herbrand form of φ. To analyze this
construction, let some finite conjunction

∧l
j=1 Tj of T’s axioms be given so that

l∧
j=1

Tj ⇐⇒ ∀x1∃y1∀x2∃y2 · · ·Φ(x1, y1, x2, y2, . . .).

and consider the negation of the right hand side of the above sentence:

∃x1∀y1∃x2∀y2 · · · ¬Φ(x1, y1, x2, y2, . . .).

A natural way to interpret formulas with alternating quantifiers is in terms of
a two player “adversary game”. In this case, the above formula says that there
is a strategy for Eloise (“playing the existential quantifiers” against Abelard)
to falsify the open formula ¬Φ. This is interpreted as Eloise demonstrating the
inconsistency of Q. According to Herbrand’s theorem, the formula is provable
in the predicate calculus just in case there is a propositional tautology of the
form:

l∨
i=1

¬Φ(ti1, f1(ti1), ti2, f2(ti1, f1(ti1), ti2), . . .)

where the tij are terms in the language of Φ expanded to include the function
symbols fj .

This gives the original formula (1) with Φ standing in place of the finite con-
junction of T’s axioms. One would like to recover the adversary game semantics
for this object. Intuitively the functions {fj}j should compute Abelard’s moves
based on the previous moves, and the terms {tij}i,j represent Eloise’ moves. But
on which previous moves are Abelard’s moves based, and on what grounds does
Eloise choose her moves? According to the way Herbrand functionals are intro-
duced in the construction of the disjunction, while Abelard’s moves are defined
by functions over shorter terms (earlier moves) in a single disjunct, Eloise’ moves
are not. Her moves in disjunct i may depend on what she knows of Abelard’s
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move-computing functions from other disjuncts, because nothing prevents terms
computed by functions from disjuncts i from appearing as subterms of terms
tjk from other disjuncts. That is, once a function symbol has been introduced
into the language (by a play of Abelard), Eloise may use it in the terms that
make up her future plays in any of the disjuncts. So in the adversary game,
the individual disjuncts are constructed in parallel rather than sequentially. In
typical cases in fact the parallel construction is necessary in order to arrive at
the disjunction guaranteed by Herbrand’s theorem8.

The semantic interpretation that arises is this. Abelard and Eloise play the
game Φ given by the formula ∃x1∀y1∃x2∀y2 · · · ¬Φ(x1, y1, x2, y2, . . .) on several
boards (indexed by i), with Abelard boasting a winning strategy for Φ (given
by the functions fj). Eloise’s goal is just to win on at least one board, thereby
disproving Abelard’s boast. If Eloise succeeds, then she will have proven T
inconsistent. In that case the terms she plays define a winning “superstrategy”–
that is, these terms define a way to reply to Abelard’s strategy for the game Φ
either by replying directly to a move of Abelard on the board he just played
on, or by using the information learned about a position from one of Abelard’s
moves by making a different move on another board, or by beginning a game
on a new board, adding thereby to the number of disjuncts9.

A tautological Herbrand disjunction of this form would be “a counterexample
to Q”. We may formalize the claim that there is no counterexample as

∀∆(HD(¬Φ,∆) → Tr∃(∃z1 · · · ∃zm¬∆(z1, . . . , zm)))

where Tr∃(x) is a truth definition for existential formulas and HD(x, y) is the
relation that says that y is a Herbrand disjunction for x. In our informal se-
mantics, this last formula says that Abelard has a winning superstrategy for
any Herbrand disjunction that would be, if Eloise had a winning strategy for it,
a counterexample to T’s consistency.

One might think in this case of Herbrand’s theorem as showing us that the
claim that no such formula ∆(z1, . . . zm) is a tautology is a claim about the

8This discussion of Herbrand disjunctions is essentially due to Adamowicz [2005]. See
there or (Pudlák [2004]) for the necessity of the parallel construction. Pudlák in fact presents
Adamowicz’ analysis in terms of games, similar to the presentation in this study. They use
this analysis to define combinatorial principles independent of bounded arithmetic but do not
discuss questions of intensionality. Pudlák, interestingly, does emphasize that although the
combinatorial principles he treats are essentially Π2 and consequently in a sense less interesting
than other, well-known independent sentences, the game semantics suggests that they are more
meaningful in weak settings than the familiar, arithmetically less-complex sentences.

9The scenario is analogous to a human player (Eloise) playing chess against a good chess
program (Abelard) with an option to take back her moves. The computer claims to have a
strategy making it the Chess Master c©and always plays this strategy. The human player, on
the other hand, can at any point rethink a particular move, return to that stage of the game,
and substitute a different move, all the while keeping the board with the original move on it
“alive” in case later it appears preferable after all to play from that position. Since human
time-resources are valuable, most chess players are aware of how difficult it is to beat very
good programs even with the option to take back moves. On the other hand, since we do not
have access to the best strategies due to the combinatorial explosion in chess positions, an
option to take back moves increases our chances substantially.
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consistency of T. We want to suggest the strict converse–that the provability of
Herbrand’s theorem in a weak arithmetic would invest the standard consistency
statement with meaning, by virtue of the meaning of the claim that no such
Herbrand disjunction exists, but that the theorem’s failure in a theory renders
the standard formula meaningless even if the claim about Herbrand disjunctions
is interpretable. In other words, the failure of Herbrand’s theorem in an arith-
metic system casts doubt on the meaningfulness in that setting of the standard
consistency claim. In this case the “no counterexample” construction is the only
one interpretable in T as a consistency statement.

Consider the formula embedded in the consequent of the above “no coun-
terexample” claim:

∃z1 · · · ∃zm¬∆(z1, . . . zm)

This formula says not only that ∆(z1, . . . zm) is not a tautology but also that
Abelard can substitute values for the variables zi in such a way that he beats
Eloise’ strategy (defined by the terms tij in ∆) “on every board”. Exten-
sionally, this sentence is stronger than the mere claim that ∆(z1, . . . zm) is
not a tautology, because its truth depends on what substitutions are effec-
tive in T (The substitution functions must be provably total in T). Likewise∨l

i=1 ¬Φ(ti1, f1(ti1), ti2, f2(ti1, f1(ti1), ti2), . . .) is stronger than a mere claim of
inconsistency, because Eloise’ counterexample construction strategy must be
computable by terms tij of the language of T. In all bounded theories, however,
these strengthenings are unavoidable in meaningful talk about strategies, for if
moves require for their determination the results from a function that one can-
not even prove is total on the natural numbers, then this requirement undercuts
the effectiveness of a proposed strategy. One has in that case no strategy at all.

In particular, in bounded theories like I∆0 + Ω1 or Buss’ S1
2 , one cannot

define the terms needed to construct Herbrand disjunctions for provable formu-
las, because the terms needed are values of functions that those theories cannot
prove total. The failure of Herbrand’s theorem for these theories in fact amounts
just to this. The tautological Herbrand disjunction one gets from the theorem
applied to provable formulas often involves I∆0 +Ω1 or S1

2 -uncomputable func-
tions. In particular the consistency statements for these theories are equivalent,
not to the claim that Abelard can beat any superstrategy that Eloise plays,
but to the non-existence of tautological Herbrand disjunctions that are not
meaningfully interpretable. One can then bifurcate the notion of “Herbrand
consistency” into two distinct claims, neither provably equivalent in bounded
arithmetic to the standard consistency statement. For the first the existence of
all possible counterexample disjunctions is considered. Though inequivalent to
the consistency statement expressed in terms of provability in the sequent calcu-
lus, a Gödel-like theorem is provable for this statement10. A second statement
allows in the disjunctions only terms whose values are polynomial in the size

10. . . in many weak arithmetics. Willard [2002] discusses how strong a theory one needs in
order to prove Gödel-like theorems for direct proof systems. Among his results is a proof that
I∆0 suffices, as conjectured by Wilkie and Paris [1981].
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of their subterms so that the existence of a counterexample depends on plays
decidable with the resources of T itself. However, it is not known how to prove
a Gödel-like theorem with this restriction, or even whether such a theorem can
be proven.

Kreisel’s intuition can now be reformulated in terms of these constructions.
The straightforward two-player game semantics for the predicate calculus can be
adapted to a weak notion of provability based on the construction of Herbrand
disjunctions. Game strategies become match strategies, where the same game is
played on several boards. Abelard plays on all boards the unique move that he
deems best in that position, while Eloise is free to play differently on every board.
(This restriction on Abelard and license for Eloise is the exact reverse of the
scenario from the standard quantifier semantics. This results from Eloise trying
to falsify the originally quantified predicate of interest rather than trying to
confirm it.) Both players’ search strategies, however, are bounded by the terms
of the theory. From the “point of view” of the theory under consideration,
though, this restriction is perfectly natural. We experience not a privation
of strategies for the game at hand, only a realistic focus on strategies that
one actually can find (as opposed to a hypothesized realm of ideal strategies,
the existence of which is more dubious that the consistency of the theory in
question).

The no-counterexample interpretation applied to the question of consistency,
then, results in a semantics relativized to the computational strength of the the-
ory in question. The same cannot be said about the standard formulation of
consistency, which relies still on the arithmetization of combinatorially complex
proof calculi. The significance of the respective ability and inability of these
two formulations of consistency to relativize is evident in weak theories that do
not prove those formulations’ equivalence. If the no-counterexample interpre-
tation, based on Herbrand’s theorem, is interpretable still in such contexts, its
inequivalence with the standard construction draws into question the meaning
of metamathematical results based on the standard construction. In this case
we would say that the arithmetization of the notion of consistency is ambiguous
in the theory, because while a weak notion (Herbrand consistency) has a definite
combinatorial meaning, this meaning is not synonymous with the claim that a
contradiction could not be derived. In fact in such a weak setting one may
not be able sensibly to speak about the possibility of deriving a contradiction,
because that claim is equivalent to a claim about “ideal” match strategies that
are not computable in the system.

This suggests a limitation to the intensionality criteria from the previous
section. Those criteria express facts that seem closely tied in to the notion of
provability, but since sufficiently weak theories don’t prove that proof by natu-
ral deduction is equivalent to proof via construction of Herbrand disjunctions,
the evident interpretability of the latter (in theories strong enough to interpret
it) suggests that arithmetization schemes satisfying the “intensionality criteria”
need not capture adequately the notions of provability and consistency after all.
Since in theories of bounded arithmetic, the standard consistency statement
is provably equivalent to the theory’s Gödel sentence, but the Herbrand con-
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sistency statement is not, “the consistency of bounded arithmetic” construed
informally but meaningfully, is not equivalent to such theories’ Gödel sentence.
Buss ([1985] pg. 145) has shown that for theories containing S1

2 provable equiv-
alence to a the Gödel sentence is unnecessary for the second Gödel theorem,
since the verification of the conditional from a “consistency formula” to the
Gödel sentence suffices for the proof (he proves the theorem for a sequent calcu-
lus version of free cut-free consistency). However, the next section demonstrates
how the establishment of Gödel’s second theorem by alternative means typically
compromises the metatheoretic meaning of the result.

4 The ambiguity of metatheory in
weak arithmetics

In [1996] Pudlák writes:

Bezboruah and Shepherdson proved the second incompleteness the-
orem in Q, which is one of the weakest arithmetic theories. The
result was in a certain sense problematic: if the theory is so weak,
does the particular formulation of ConQ really mean what was in-
tended? A solution, which will be presented below, is to define an
initial segment J of the numbers in Q, which is an inner model of
a stronger theory T and prove that it is consistent to assume that
a proof of contradiction from axioms of Q is encoded by a number
which is already in J. Since T is strong, the meaning of ConQ is not
so ambiguous.

After presenting the proof that it is consistent with the axioms of any theory
containing Q to assume that there is a proof of contradiction from those axioms
encoded in any inductive cut of the theory’s numbers, he adds: “A corollary
of this result [from (Pudlák [1985])] is that the second Gödel’s incompleteness
theorem holds in weak theories, in particular in Q, without any doubts about
what ConT really means there. This is because by [Wilkie’s interpretation of
I∆0 + Ω1 in Q] there is a cut in Q which is a model of I∆0 + Ω1. In such a cut
all reasonable definitions of ConQ are equivalent.”

The argument seems to be that since

1. in the theory I∆0 + Ω1 the consistency of Q is unambiguous,

2. this theory proves Gödel’s second incompleteness theorem for Q, and

3. I∆0 + Ω1 is interpretable in Q,

Q proves not only Gödel’s second incompleteness theorem but also “the un-
provability of Q’s consistency”. In the introductory section of this essay we
described this argument as a bootstrapping argument. There is an implicit con-
cession by Pudlák that Bezboruah and Shepherdson’s proof of Gödel’s theorem
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in Q is not metamathematically meaningful, that Robinson Arithmetic is too
semantically impoverished to recover the meaning of ConQ intensionally. But
in I∆0 + Ω1 an intensional arithmetization is possible. That is, assuming we
adopt Feferman’s criteria directly for this system, I∆0 + Ω1 proves facts about
the predicate ConQ that suffice for it to be an actual statement of Q’s con-
sistency. Pudlák claims that Q can in a sense borrow this stronger theory’s
semantic richness by proving theorems whose quantifiers all are relativized to a
formula that models the stronger theory. We call this a bootstrapping of seman-
tics because ordinary bootstrapping results show how to emulate certain purely
formal constructions in a weak theory through such relativizing of quantifiers or
conservative extensions by definition, while in the present case, the very same
formal result–Gödel’s second incompleteness theorem–is being proved, and only
the stronger theory’s ability to make sense of it is supposedly emulated by the
weaker theory.

Pudlák’s argument fails on two points. First, the “strong” theory I∆0 + Ω1

does not interpret consistency so unambiguously. It distinguishes, in fact, sev-
eral extensionally equivalent formulations of consistency and does not prove a
“Gödel theorem” relative to each of them. Second, the bootstrapping of seman-
tics through interpretability is incoherent from the point of view that we have
presented in this study. The intensional arithmetization of syntax was meant to
invest the metamathematical results following out of this arithmetization with
an epistemologically secure meaning. But if the meaning of a sentence about
the consistency of one theory depends on the interpretation in that theory of
a stronger theory and the properties that it recognizes in that sentence, then
there is no epistemological gain. This is because the adequacy of intensional-
ity criteria, just like the meaningfulness of specific arithmetization schemes, is
theory dependent.

To see the first failure, consider again the notion of Herbrand consistency
from the previous section. We saw there that since Robinson Arithmetic fails to
prove Herbrand’s theorem, it distinguishes the formal expressions of Herbrand
consistency and standard consistency. Of course we are not considering realistic
the prospects that either of these expressions is meaningful in the context of
Robinson’s theory, because even the combinatorially simpler notion of Herbrand
consistency is complex relative to this setting. Our formulation of Herbrand
consistency is a Π2 sentence about the existence of a counter strategy for Abelard
to every counterexample disjunction Eloise might construct by her moves. This
formally is a statement about the totality of a very fast growing function (a
counter strategy finder) that is beyond the power of Q to interpret at all (Since
the function is not provably total in Q).

In fact, Herbrand’s theorem fails also in I∆0 + Ω1. So while extensionally
the formal expression of this theory’s Herbrand consistency and of its stan-
dard consistency are equivalent, intensionally they separate. The separation of
purportedly “metamathematical” formulas in a theory like Q is not very inter-
esting, because those formulas can be seen directly not to have meanings from
the theory’s perspective. The same separation can be more informative when it
arises in theories that arithmetize syntax intensionally, because the separation
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may be of two formulas that correspond with some metamathematical proper-
ties. In the present case formulas that do provably correspond with some of
our intuitions about the consistency of I∆0 + Ω1 are distinct. When one is in-
terested in the consistency of a theory, it seems appropriate only to investigate
the question in a setting free from the assumption of the theory’s consistency.
Specifically, one cannot make more sense of the consistency of I∆0 + Ω1 than
what can be said about it meaningfully in the theory, because beyond this one
would be saying what necessarily only makes sense under the assumption that
I∆0 +Ω1 is consistent. It seems therefore correct to say not only that I∆0 +Ω1

fails to identify its consistency with its Herbrand consistency, but also that its
consistency and its Herbrand consistency really are distinct properties. Here
Kreisel’s point is salient: I∆0 + Ω1 does not associate the lack of a derivation
of contradiction with its Herbrand consistency. Since the no-counterexample
demonstration based on Herbrand provability is epistemologically primitive due
to its simplicity, it seems appropriate to say that I∆0 + Ω1 does not see the
underivability of contradiction as an essential feature of consistency. To be sure,
this reveals a serious weakness in the operative notion of consistency for this
theory, but it is one we are forced to by the theory’s low computational strength.

As for the intensionality criteria, the I∆0 + Ω1-separation of Conδ and
HConδ together with the criteria’s failure for the latter formula suggest that
they are not necessary conditions on an arithmetization of syntax for theorems
related to this arithmetization to be meaningful. The adequacy of these criteria
in the setting of strong arithmetics is derivative from the neat identification
there of several notions of provability one might consider. However one chooses
informally to formulate provability, the notion is sure to meet these criteria by
virtue of its equivalence with Hilbert-style provability. But in a weak setting,
where any informal notions of provability that are interpretable by the theory
itself provably separate from any notion satisfying these criteria, the criteria no
longer seem adequate as conditions of intensionality.

Let us turn to the second failure in Pudlák’s argument.
The fact that Q interprets I∆0 +Ω1 does not make the content of the latter

theory’s theorems or the intensionality of its arithmetization hold also in Q.
If Pudák’s argument were simply this, it would apply also in familiar settings
with shocking results. For example if we add to PA an axiom ¬ConPA saying
that PA is inconsistent, the resulting theory is interpretable in PA11. By the
“simple” argument we are considering, one would conclude that PA proves its
own inconsistency!

Pudlák’s claim must, then, not be simply a heuristic point about the signif-
icance of formal interpretability. One can do it more justice by understanding
it rather as a prescriptive point about how to construct a predicate that unlike
ConQ is an intensionally adequate representation of provability in Q. The pre-
scription depends not only on the interpretability of I∆0 + Ω1 in Q but on the
specific method of interpretation.

11This follows immediately from Theorem 6.6 of (Feferman [1960]).
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The interpretation of I∆0 + Ω1 in Q is via a proper syntactic cut, a for-
mula that Q proves is closed under successor and addition, but not induction.
Formally a syntactic cut of Q’s numbers is a formula J(x) such that

Q ` J(0)
Q ` ∀x(J(x) → J(x+ 1))
Q ` ∀x∀y(y < x ∧ J(x) → J(y)).

If additionally not Q ` ∀xJ(x), then J is a proper cut. PA, since it has a
rule for induction on all formulas, does not have any proper syntactic cuts,
but fragments of PA with induction restricted to formulas beneath a certain
quantifier complexity may have syntactic cuts. Intuitively we think of a cut of
an arithmetic theory’s numbers as an initial segment of a model of that theory,
but not all initial segments of a theory’s models are necessarily definable by a
predicate, and it is possible for a theory to have a syntactic cut that does not
define any tangible geometric structure treatable outside the theory.

Syntactic cuts can be used to interpret relatively strong theories in weaker
ones. Earlier it was pointed out that Q does not prove the commutativity of
addition. It may, however, prove the commutativity of addition for all numbers
that fall under a predicate J , i. e.

Q ` ∀x∀y(J(x) ∧ J(y) → x+ y = y + x).

Of course the above formula is trivially provable in Q when J is empty. There
are, however, predicates J(x) that contain 0, are closed under successor and
addition, and for which the above formula is provable. Since Q doesn’t prove the
commutativity of addition for all natural numbers, Q must not prove induction
over J(x) if Q is consistent, so they define proper syntactic cuts for Q’s numbers.
In such a case one says that Q proves the commutativity of addition “with
quantifiers restricted to J”. If we define the commutativity of addition by the
formula

Commute+ ⇔ ∀x∀y(x+ y = y + x),

then the above formula with quantification restricted to J is abbreviated
CommuteJ

+.
It is possible for a theory to prove, not just properties of arithmetic oper-

ations that it otherwise cannot prove, but also axioms of stronger arithmetic
theories by restricting quantifiers to suitable predicates. For example, Wilkie
and Paris [1987] and Nelson [1986] independently showed that there is a cut I
for which

Q ` ΦI for all theorems Φ of I∆0.

In this case we say that the predicate I(x) is an interpreting domain for I∆0 in
Q: Q can emulate I∆0 by quantifying only over numbers in J . This relation is

expressed Q
I
� I∆0. Wilkie has also shown [1987] that there is a subcut J of I

(i. e. J(x) is a cut and Q ` ∀x(J(x) → I(x))) for which
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Q ` ∀x∀y∃z(J(x) ∧ J(y) → J(z) ∧ z = x(logy)).

This last theorem of Q is the totality of the ω1 function with quantifiers re-
stricted to J (ω1(x, y) = x(logy)). The formula for the totality of ω1 is abbrevi-
ated Ω1. Since Q ` ∀x(J(x) → I(x))), it follows that Q ` ΦJ whenever Q ` ΦI .
Hence

Q
J
� I∆0 + Ω1.

Now Pudlák’s theorem is that for no cut J does Q ` ConJ
Q. This means,

in particular, that we not only have not Q ` ConQ but also not Q ` ConJ
Q

for J such that Q
J
� I∆0 + Ω1. That is, Q cannot prove even that there is no

Q-proof of contradiction whose Gödel number lies in an interpreting domain for
I∆0 + Ω1.

This surely is a strengthening of the theorem of Shepherdson and Bezboruah.
Their result says that Q cannot rule out the possibility that one of its theorems
is ⊥. Wilkie and Pudlák’s results together show that Q cannot rule out ⊥
even from among just those theorem’s whose Gödel numbers are in a model of
I∆0 +Ω1. Intuitively Pudlák’s argument is that Gödel’s theorem in its classical
form might be meaningless for Q because such a weak theory does such a poor
job of defining the natural numbers that it is no wonder it cannot rule out
a proof of ⊥. It after all has to consider a rather wild array of nonstandard
“pseudonumbers”. But if it is consistent with the axioms of Q even for there
to be a proof of ⊥ coded up in a model that Q defines of I∆0 + Ω1, we might
be inclined to understand this as “the unprovability in Q of Q’s consistency”
because models of this stronger theory are so much more well behaved.

Exactly how well behaved must models of I∆0+Ω1 be for this strengthening
to be meaningful? Pudlák says “In such a cut all reasonable definitions of ConQ

are equivalent”. Above it was questioned whether this is true, i. e. if the idea
is that all definitions of “the consistency of Q” are equivalent, the separation in
bounded arithmetic of ConQ and HConQ draws this into question. One might
ask further, even if this were true, whether it would be relevant to the metathe-
oretic meaning for Q of Wilkie and Pudlák’s theorems. Pudlák’s suggestion can
be made precise by pointing out that models of I∆0+Ω1 are sufficiently well be-
haved because the theory proves all the intensionality criteria for theoremhood.
His implicit argument is prescriptive in this sense: Since the predicate ThmQ

is intensionally adequate in I∆0 + Ω1, one need only formulate provability with
the variant predicate ThmJ

Q ⇔ J(x) ∧ ThmQ to attain intensional adequacy in
Q.

The intensionality of an arithmetization of syntax for Q, even with the
variant predicate, is not so simple, though. To see this it is instructive to
review the proof of Gödel’s second theorem. With the intensionality crite-
ria for a theory T ⊇ I∆0 + Ω1 and the existence of a formula φ for which
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I∆0 + Ω1 ` φ↔ ¬ThmT (φ) 12 the theorem for T proceeds in a standard way:

Theorem 1 (Gödel) If T ⊇ I∆0 + Ω1 is decidable and consistent, then not
T ` ConT .

Proof. From the first incompleteness theorem for T, not T ` φ. I∆0 + Ω1 `
¬φ → ThmT (φ). I∆0 + Ω1 ` ThmT (φ) → ThmT (ThmT (φ)) by the fifth
intensionality criterion. I∆0 + Ω1 ` ThmT (ThmT (φ)) → ThmT (¬φ) by the
first intensionality criterion and choice of φ. It follows that I∆0 + Ω1 ` ¬φ →
ThmT (¬φ). Hence I∆0 + Ω1 ` ¬φ→ (ThmT (φ) ∧ ThmT (¬φ)).

Now by the fifth intensionality criterion I∆0+Ω1 ` ThmT (ψ) for any tautol-
ogy ψ, and in particular I∆0 +Ω1 ` ThmT (φ→ (¬φ→ ⊥)). Also by two appli-
cations of the second intensionality criterion I∆0+Ω1 ` ¬φ→ ThmT (¬φ→ ⊥))
and I∆0 +Ω1 ` ¬φ→ ThmT (⊥)). Hence I∆0 +Ω1 ` ConT → φ. The theorem
now follows by the first incompleteness theorem, since T ⊇ I∆0 + Ω1.

a

It is obvious that one cannot readily generalize this proof for arithmetics not
extending I∆0 + Ω1 because even if one had Gödel’s first theorem for such a
weak theory, one would not be able to infer φ from ConT , since the conditional
ConT → φ would not necessarily be a theorem of T. There is a way around this
obstacle, though, as the Shepherdson and Bezboruah’s proof reveals. A solution
that is evident from this study is to recast provability in I∆0 +Ω1 as provability

in a weaker theory T relativized to a syntactic cut J for which T
J
� I∆0 + Ω1.

Still another difficulty remains, however, which is that the intensionality criteria
used throughout the proof might not hold for arithmetizations of weak theories,
even with the relativized predicate ThmJ

T (x). This is an obstacle to generalizing
the proof under consideration to the setting of very weak arithmetics, since these
criteria are cited throughout the proof. More importantly (since we know the
theorem can after all be proven by a different method) this jeopardizes the
meaningfulness of the theorem for theories like Q, in so far as the intensionality
criteria were supposed to secure the theorem’s semantic content.

For example in order to arrive at I∆0 + Ω1 ` ¬φ → ThmT (¬φ), the above
proof relies on I∆0 + Ω1 ` ThmT (φ) → ThmT (ThmT (φ)) which is an instance
of intensionality criterion five (and is one of the Hilbert-Bernays-Löb derivability
conditions). To relativize the proof one would like to show

Q ` ¬φ→ (J(¬φJ) ∧ ThmQ(¬φJ)),

but one cannot so easily establish

Q ` J(φJ) ∧ ThmQ(φJ) → J(φJ) ∧ ThmQ(ThmJ
Q(φJ))13.

12See (Buss [1998]) sections 2.1-2.2 for demonstrations.
13In the proof above, we are able to conclude I∆0 + Ω1 ` ThmT (φ) → ThmT (ThmT (φ))

because by the fifth intensionality condition I∆0 + Ω1 ` ThmT (φ) → Thmδ(ThmT (φ)) and
also I∆0 + Ω1 ` ∀uFmla(u)→ (Thmδ(u)→ ThmT (u)) since T ⊇ I∆0 + Ω1.
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This last sentence is a derivability condition for ThmJ
Q. It does not follow

from a straightforward relativization of the proof because substituting a ∆b
1 defi-

nition of Q for T does not yield I∆0+Ω1 ` ∀A(ThmQ(A) → ThmQ(ThmQ(A)))
but only I∆0 + Ω1 ` ∀A(ThmQ(A) → Thmδ(ThmQ(A))) where δ is a ∆b

1

definition in I∆0 + Ω1 of I∆0 + Ω1. Furthermore, even if one could show
I∆0 + Ω1 ` ∀A(ThmQ(A) → ThmQ(ThmQ(A))), a straightforward relativiza-
tion of this would not result in the desired formula, for

Q ` ∀A(ThmQ(A) → ThmQ(ThmQ(A)))J . (2)

abbreviates

Q ` ∀A(ThmJ
Q(A) → ThmJ

Q(ThmQ(A))). (3)

but from this one may not derive

Q ` ∀A(ThmJ
Q(A) → ThmJ

Q(ThmJ
Q(A))).

because the embedded occurrence of “ThmQ(A)” in (2) and (3) is a numeral
rather than a formula and consequently doesn’t change in the relativization.

In fact, the proof in (Pudlák [1996]) of not Q ` ConJ
Q for Q

J
� I∆0 + Ω1 is

entirely different from the proof of Gödel’s second theorem just presented, as it
relies on bounds on proof length rather than proceeding directly from derivabil-
ity conditions for the relativized predicate ThmJ

Q(x). Without an appeal to the
intensionality of the formula ThmJ

Q(x), however, it is unclear on what grounds
one is to find Gödel’s second theorem semantically contentful for Robinson’s the-
ory. It is possible to prove the intensionality criteria for this formula, though as
we have seen the interpretability of I∆0 +Ω1 in Q and the fact that the criteria
hold in I∆0 +Ω1 alone do not suffice. Since it has been suggested [loc. cite and
[1998] pg. 118] that the intensionality in Q of ThmJ

Q(x) as a representation of
theoremhood is immediate from these two facts, we now show how actually to
prove the criteria in Q.

The proof relies on two additional facts about what I∆0 + Ω1 proves about
Q. The first is that I∆0 +Ω1 proves that all numbers fall, provably in Q, under
all syntactic cuts in Q.

Lemma 2 For every formula I(x) for which Q ` I(0) ∧ ∀x(I(x) → I(x+ 1)),

I∆0 + Ω1 ` ∀xThmQ(I(x)).

The next fact says that the Σ-completeness of Q is provable in I∆0 + Ω1.

Lemma 3 For all Σb
1 formulas ψ(x, y),

I∆0 + Ω1 ` ∀x(∃yψ(x, y) → ThmQ(∃yψ(x, y))).

22



The proofs of these two facts involve techniques in bounded arithmetic not
developed in this study. They are Lemmata 5.21 and 5.24(ii) of Hájek and
Pudlák [1993].

We shall prove only the fifth of Feferman’s intensionality criteria for ThmJ
Q(x)

for two reasons. (i) The first two criteria do in fact follow from the intension-

ality of the arithmetization of I∆0 + Ω1 and the interpretation Q
J
� I∆0 + Ω1,

and it is evident how to prove the third and fourth criteria from the proof of
the fifth. (ii) The fifth criteria entails the derivability conditions that make the
above proof of Gödel’s second theorem possible.

Theorem 4 Q ` ThmJ
Q(φ) → ThmJ

Q(ThmJ
Q(φ)).

Proof. First note that since Q has an explicit finite axiomatization, the
formulas FmlaQ(x), ProofQ(x), PrfQ(x, y), etc. all are ∆b

1 in Q. since the
finite axiomatization of Q ensures a polynomial time decision procedure for
them. (On the other hand ThmQ(x) is not even decidable, of course, by Gödel’s
first theorem.) One cannot say the same about the relativizations PrfJ

Q(x, y),
etc. of these predicates because as the cut J is proper in Q it is relatively
computationally complex. However, by the I∆0+Ω1-formalized Σ-completeness
of Q,

I∆0 + Ω1 ` PrfQ(p, φ) → ThmQ(PrfQ(p, φ)).

Now let J be a cut in Q for which Q
J
� I∆0 + Ω1. By the first lemma,

I∆0 + Ω1 ` ThmQ(J(p) ∧ J(φ)).

From these two formulas it follows that

I∆0 + Ω1 ` PrfQ(p, φ) → ThmQ(J(p) ∧ J(φ) ∧ PrfQ(p, φ)),

which with the ∃ rules yields

I∆0 + Ω1 ` ∃uPrfQ(u, φ) → ThmQ(∃u(J(u) ∧ J(φ) ∧ PrfQ(u, φ))),

or

I∆0 + Ω1 ` ThmQ(φ) → ThmQ(ThmJ
Q(φ)).

And only now, by choice of J ,

Q ` ThmJ
Q(φ) → ThmJ

Q(ThmJ
Q(φ)).

a
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The second incompleteness theorem for the pair (Q, ConJ
Q) is now imme-

diate. What can be said, however, of the semantic content of this theorem?
The argument above was that the meaning of consistency in I∆0 + Ω1 is more
ambiguous than it first appears. Not withstanding the provability of the in-
tensionality criteria for the standard provability formula Thmδ(x), one may
ask whether these criteria are appropriate in such a weak setting. It has been
suggested that the criteria might be too strong to be necessary conditions on
an arithmetization for it to be semantically contentful, among other reasons
because they imply not only that φ is provable only if ThmT (φ) also is, but
also that “they assume certain ontological principles (e.g. that there must exist

numbers A, Prov(A), Prov(Prov(A)), etc. ad infinitum, given the provability
of A) which do not seem to be inherent in the notion of A’s provability” and
which therefore seem unrelated to common intuitions about provability even for
relatively strong theories14. This study suggested that this is especially true in
bounded arithmetic where concepts like Herbrand consistency, which are com-
binatorially very simple and more readily treatable, provably separate from the
standard consistency statement. In the present case, where arithmetization is
achieved via interpretation of a stronger theory, this type of ambiguity is only
compounded. For through interpretation, the separation of these formulations
of consistency sharpens. A stronger separation than the T-provable inequiv-
alence of two formulas is the T-provability of one and T-unprovability of the
other. In the case where this happens the formulas will be called “sharply T-
separated”. The following two results relating Q with the unbounded theory
I∆0 +Exp show that the formulas ConQ and HConQ are sharply Q-separated
when relativized to a sufficiently short cut. The first is a result of Wilkie for
which he gave a model-theoretic proof:

Theorem 5 (Wilkie) For bounded formulas ψ(x) the following are equivalent.

1. Q � Q+ ∀xψ(x)

2. I∆0 + Exp ` ∀xψ(x)

Proof. We need a proof-theoretic version of this theorem since it is more use-
ful for our analysis. Accordingly we will prove actually the equivalence between
2 and the following condition:

3. There is a syntactic cut I(x) in Q such that Q ` ∀x(I(x) → ψ(x)).

This condition is equivalent to 1. Moreover, we shall only use the direction 2
⇒ 3, so we prove only this entailment. For our proof we will need to cite Wilkie’s
result that if I∆0 +Exp ` ∀xψ(x) then there is a k such that I∆0 ` ∀x(∃y(y =
2x

k) → ψ(x)). We assume this result, since we cannot replace Wilkie’s original
proof with one using only techniques from this essay. We also need a lemma of
Solovay known as the technique for shortening cuts:

14Andrew Boucher FOM Digest Vol 30 Issue 1
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Lemma 6 (Solovay) Lemma: Let T ⊇ IΣ1. For each n ∈ ω and each T-cut
I, there is a T-cut Jn such that T ` ∀x(Jn(x) → I(2x

n).

1. Given I, there is a T-cut J such that J ⊆ I and J is closed under addition.

Proof: Define J(x) ⇔ I(x)∧∀y(I(y) → I(x+ y)). It is easy to check that
J ⊆ I and J is a T-cut.

If x, z ∈ J , then for each y ∈ I, z + y ∈ I. Therefore x + z ∈ J .
So x + z + y ∈ I for each y ∈ I. In particular x + z + 0 ∈ I. So
I(x+ y)∧ ∀y(I(y) → (I(x+ z + y)), i. e. J(x+ y). Therefore, J is closed
under addition.

2. For each n ∈ ω there is a T-cut Jn such that T ` Jn ⊆ I and
T ` ∀x(Jn(x) → I(2x

n)).

Proof (by induction on n):

Let J0 = J from 1. Then T ` ∀x(J0(x) → I(x)), so
T ` ∀x(J0(x) → I(2x

0)).

Now suppose Jn is given. From 1 we know that we may assume Jn is
closed under addition, so long as we can show Jn+1 is.

Define In+1 in T by In+1(x) ↔ Jn(x). Then T ` ∀x(Jn(2x) → I(2x
n+1))

by hypothesis. So T ` ∀x(In+1(x) → I(2x
n+1)).

In+1 is a T-cut:

(a) T ` In+1(0) because T ` Jn(1).

(b) T ` ∀x(In+1(x) → In+1(x + 1)) because if x ∈ In+1, then 2x ∈ Jn.
And Jn is closed under addition, thus 2x + 2x ∈ Jn. So 2x+1 ∈ Jn,
and x+ 1 ∈ In+1.

(c) T ` ∀x∀y(In+1(x) ∧ y < x→ In+1(y)) because
T ` ∀x∀y(Jn(2x) ∧ y < x→ Jn(2y)).

Now In+1 is not necessarily closed under addition. But we repeat the
procedure from 1 and define: Jn+1(x) ⇔ In+1(x)∧∀y(In+1 → In+1(x+y)).
Since T ` ∀x(Jn+1(x) → I(2x

n+1)) and also T ` Jn+1(x) → In+1(x), one
has T ` ∀x(In+1(x) → I(2x

n+1)). Moreover Jn+1 is easily seen to be a T-
cut. But unlike In+1, Jn+1 is provably closed under addition, as needed.

a

Now we may prove 2 ⇒ 3 of Theorem 5. Suppose I∆0 + Exp ` ∀xψ(x).
Wilkie showed with a model-theoretic argument that there is a k such that I∆0 `
∀x(∃y(y = 2x

k) → ψ(x)) (we use the definition of the graph of exponentiation in
I∆0). Let us rewrite this last sentence I∆0 ` ∀x(ANT → CONS). Now let J

be a syntactic cut such that Q
J
� I∆0. Then we have
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Q ` ∀x(J(x) → (ANT → CONS)J)
` ∀x(J(x) → (ANT J → CONSJ))
` ∀x(J(x) → (ANT J → ψJ))
` ∀x(J(x) → (ANT J → ψ))
` ∀x(J(x) → ((∃y(y = 2x

k))J → ψ))
` ∀x(J(x) → (∃y(J(y) ∧ y = 2x

k) → ψ))

Now we wish to adapt Lemma 6 to shorten J appropriately. However, the
lemma holds only for arithmetics containing IΣ1. Inspection of the proof reveals
that Σ1-induction is never used, though, since the induction is in the metatheory
and never formalized. The restriction to theories extending IΣ1 was only to
ensure the existence of the exponential function. However, since exponentiation
can be defined even in I∆0 via its graph, the technique for shortening cuts is
applicable for these theories also. Since exponentiation is not provably total in
I∆0, the proof serves also to guarantee the existence of appropriate numerals
for exponential instances: For each n ∈ ω and each syntactic cut K of I∆0,
there is a cut Jn of I∆0 such that I∆0 ` ∀x(Jn(x) → ∃y(y = 2x

n ∧K(y))).
Consider the case where K is improper in I∆0 (i. e. I∆0 ` ∀xK(x)) and

n = k. Then

I∆0 ` ∀x(Jk(x) → ∃y(y = 2x
k)).

Since Q
J
� I∆0, it follows that Q ` ∀x(J(x) → (Jk(x) → (∃y(y = 2x

k))J)), or

Q ` ∀x(J(x) ∧ Jk(x) → ∃y(J(y) ∧ y = 2x
k)).

Define the Q-cut I by I(x) ↔ J(x)∧Jk(x) so that Q ` ∀x(I(x) → ∃y(J(y)∧
y = 2x

k)). Since Q ` I(x) → J(x) and Q ` ∀x(J(x) → ∃y(J(y) ∧ y = 2x
k) → ψ),

it follows that

Q ` ∀x(I(x) → ψ(x)).

a

Theorem 7 (Sheperdson) I∆0 + Exp ` HConQ.

Proof. From our axiomatization of Q construct the open theory Qopen by
removing all the universal quantifiers from Q’s axioms, and replacing the axiom
(3) for the successor function with an equivalent (open) axiom for a predecessor
function. Clearly, Qopen � Q. If I∆0 + Exp ` ¬HConQopen

, then I∆0 + Exp
proves that there is some tautology

k∨
i=1

[He∗(
∧
Qopen → ⊥)(ti1, f1(ti1), ti2, f2(ti1, f1(ti1), ti2), . . .)].
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This is impossible, though, since a truth predicate for open formulas is definable
in I∆0 + Exp. Thus I∆0 + Exp ` HConQopen

.
Define in I∆0 + Exp the formula RConT (n) saying “contradiction is not

provable in T with a proof of cut-rank n” so that RConT (0) ⇔ CFConT . By
the interpretability of Q in Qopen, for every n there is an m such that

I∆0 + Exp ` RConQopen(m) → RConQ(n).

Then by a partial cut-elimination theorem in I∆0 + Exp (Theorem 5.17(ii) of
(Hájek and Pudlák [1993]),

I∆0 + Exp ` CFConQopen
→ RConQopen

(m).

Thus, for all n, I∆0 +Exp ` RConQ(n). In particular, I∆0 +Exp ` CFConQ.
Finally, by the provability in I∆0 + Exp of the equivalence of Herbrand prov-
ability and cut-free provability,

I∆0 + Exp ` HConQ.

a

Corollary 8 There is a cut K such that Q ` HConK
Q and not Q ` ConK

Q for

Q
K
� I∆0 + Ω1.

Proof. The formula HPrfQ(x, y) is bounded (it is ∆b
1-definable in I∆0 +Ω1,

so HConQ is a ∀-theorem of I∆0 + Exp. Therefore by 2 ⇒ 3 of Theorem 5,
there is a cut I(x) in Q such that Q ` ∀x(I(x) → ¬HPrf(x,

∧
Q→ ⊥)). This

last formula is just Q ` HConI
Q. Since subcuts preserve interpretability, choose

K ⊆ I
⋂
J for Q

J
� I∆0 + Ω1. One then has Q ` HConK

Q and not Q ` ConK
Q

for Q
K
� I∆0 + Ω1.

a

Thus there is a very sharp separation between the formulas ConQ and
HConQ when the domain is duly restricted. In particular, the arithmetiza-
tion of metatheory in Q via relativization is less stable than the arithmetization
of metatheory in the theories that Q thereby interprets: Whatever intensionality
can be recovered depends arbitrarily on the cut one chooses for one’s interpreta-
tion. If, as Pudlák suggests, restricting of the domain of quantification increases
the metatheoretic meaning of formulas, then there arises the paradoxical situ-
ation where an increase in semantic content results in a precisification of how
nebulous a notion theoretic consistency is: In particular in Robinson Arithmetic
if one relativizes one’s arithmetization so as to maximize interpretive strength,
whether or not “consistency” even is provable or unprovable depends on exactly
how one phrases the question.
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5 Conclusions

This study began with the question whether arithmetic theories in general strong
enough to arithmetize their own syntax prove the unprovability of their consis-
tency. We have found that the question requires precisification. For there are
different conceptions of adequate arithmetization, and if adequacy entails the
ability to verify purely from within the arithmetic one is studying salient prop-
erties of the arithmetization, then it is possible for an arithmetic to numeralwise
represent its entire classical metatheory without doing so adequately. For in-
stance the result of Bezboruah and Shepherdson is not intensionally adequate
and thus is not a proper demonstration of the unprovability of the consistency
of Q.

The question must be made further precise by an additional criterion for the
proper metatheoretic properties to arithmetize. Since some combinatorial prin-
ciples are needed to associate standard sequent calculus or Hilbert-style proofs
with the construction of Herbrand disjunctions, or to determine that modus
ponens or the cut rule are conservative over direct derivation techniques, arith-
metics lacking such principles do not “understand” provability with indirect
techniques and might be able to rule out the possibility of a Herbrand proof
of contradiction despite proving Gödel’s theorems in their standard form. For
bounded theories like I∆0 + Ω1 this might mean that combinatorially simpler
predicates like Herbrand provability are more appropriate carriers of metathe-
oretic content. To motivate this possibility, it was shown in §3 that the notion
of provability based on the the no-counterexample interpretation relativizes im-
mediately to the theory it is formulated in, since only construction techniques
provably feasible from that theory’s perspective are considered when the ques-
tion of the provability of a formula is put to the theory. This suggests that the
intensionality criteria proposed by Feferman might only be adequate for theories
that view at least all primitive recursive functions as feasible. For a bounded
arithmetic T could conceivably prove such criteria for a predicate Thmτ with-
out being able to prove the equivalence Thmτ (x) ↔ ∃yHPrfτ (y, x)–evidence
that the criteria express properties that, while traditionally seen as central to
or even constitutive of the notion of theoremhood, are not even essential to the
theoremhood as treatable with the resources of T.

In fact, precisely this occurs in the case of the arithmetic I∆0 + Ω1: The
theory proves the intensionality criteria for Thmδ, but doesn’t prove either
Herbrand’s theorem or a Gödel-like theorem for HConδ. The reason for this is
that the propositional proofs that would be needed to construct the Herbrand
disjunctions for some of this theory’s theorems are not sufficiently concrete, fea-
sibly computable, or rather–speaking from the theory’s point of view–they don’t
exist. At the very least, this casts doubt on the adequacy of those conditions
in bounded arithmetic. On the other hand, since those same conditions fail
in bounded arithmetic for arithmetizations of Herbrand provability, it is not
entirely clear that this alternative notion captures theoremhood at all satisfac-
torily either. Saying that bounded theories cannot answer or even formulate
questions about their own theoremhood and consistency seems the most accu-
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rate synopsis.
Finally, however compelling the above analysis of the prospects for an in-

tensional metatheory for bounded arithmetic in general is, the situation seems
bleaker yet in the weakest arithmetics like Robinson’s Q. Since Q doesn’t prove
the proposed intensionality criteria for the standard formulation of provability,
the only hope is to adopt an alternative formulation. The best attempt at this
seems to be the one suggested by Pudlák: relativize the standard formula to a
definition in Q of a model of a theory that proves the criteria. Theorem 4 shows
that it is possible to do this in such a way that the criteria apply also in Q for the
relativized formula. However this technique in the end reveals that the ambigu-
ity of metatheoretic notions in bounded theories is only more rampant in Q, for
the arithmetization of Herbrand consistency is not only inequivalent in suitable
relativizations to the standard consistency statement–it is also provable.

This answers the question posed in the introduction. It is possible for a first
order theory to be strong enough to generate self-reference phenomena without
being able meaningfully to prove the unprovability of its own consistency (or
even meaningfully to pose the question). This suggests that the fine structure
of the lower reaches of the arithmetic hierarchy might prove to be a valuable
resource for discovering further interrelationships among the various metathe-
oretic notions investigated first in the foundational studies of the 1930’s which
in strong arithmetics can only be glossed over.
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