
Evolutionary Explanations of Indicatives and
Imperatives

Abstract

Recently there has been some interest in studying the explanation of
meaning by using signaling games. I shall argue that the meaning
of signals in signaling games remains sufficiently unclear to motivate
further investigation. In particular, the possibility of distinguishing
imperatives and indicatives at a fundamental level will be explored.
Thereby I am trying to preserve the generality of the signaling games
framework while bringing it closer to human languages. A number of
convergence results for the evolutionary dynamics of our models will
be proved.

1 Introduction

The main goal of this study is to investigate whether a distinction between
indicatives and imperatives can be drawn at a very basic level. This will be
done by building on work in evolutionary game theory where signaling games
serve as a point of departure for investigating reference and meaning (see,
for example, Lewis 1969; Crawford and Sobel 1982; Skyrms 1996; Nowak and
Krakauer 1999; Harms 2004a; Komarova and Niyogi 2004; van Rooy 2004).
In signaling games information must be encoded and decoded correctly in
order to facilitate social coordination. A sender observes a state of the world
while a receiver responds to the sender’s signal. To coordinate behavior
properly the signals must have some kind of already established meaning.

Harms (2000, 2004a), who is further developing Millikan’s (1984) teleose-
mantics with game theoretic tools, explains the meaning of those signals in
terms of primitive content. A signal has primitive content if it both tracks
the environment and motivates behavior. The tracking function of the signal
specifies the conditions under which it is true to utter it. The motivating
function characterizes which kind of behavior follows from the signal.

Primitive content enables us to characterize animal signals like warning
cries semantically although they are not translateable into human languages
(Harms 2004b). This is due to the fact that many forms of non-human
communication cannot be explained in terms of propositional content. To
see this, note that in philosophical linguistics the meaning of indicatives
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and imperatives is explained in terms of propositions with subject-predicate
structure. Propositions can be thought of as abstract, truth-bearing units.
A proposition may be expressed in different modes like the indicative mode
or the imperative mode. The indicative mode refers to (indicates) a state
of the world. The imperative mode, however, indicates an action or an
outcome. Thus, propositions are fundamentally indicative since the mean-
ing of imperatives derives from indication by turning it to the purpose of
commanding.

According to Harms (2000, 2004a, 2004b), primitive content is able to
explain our common sense notion of correspondence truth and the meaning
of normative statements. Ultimately, however, we need to understand why
norms can be expressed as imperatives while knowledge-oriented systems,
like science, use indicatives. Where do indicatives and imperatives part? Do
some imperatives have a grounding similar to that of indicatives?1 Studying
these questions without imposing propositional structure seems to be the
right place to start.

The results elaborated in this study are based on the following observa-
tion: The main difference between indicatives and imperatives is that the
emphasis in the meaning of imperatives is to motivate behavior while the
emphasis in the meaning of indicatives is to indicate some state of the world.
Of course, an imperative may relate to the world in some way and an in-
dicative may motivate behavior. But imperatives lead to behavior directly
and refer to world states only indirectly. Indicatives may lead indirectly to
behavior but relate to the world directly. “Directly” and “indirectly” are not
to be understood as strict, discrete categories. It is a matter of degree how
directness is judged.

Lewis (1969) suggested that the difference between indicatives and im-
peratives is with deliberation on the part of the sender or the receiver. I
propose that by deliberation we may understand, in the context of signal-
ing games, any mechanism that processes information inputs and eventually
leads to an output (like, e.g., a decision). Deliberation, in this sense, ex-
plains whether relations between messages and states or behaviors can be
called direct or indirect. If information processing has enough behavioral
consequences, then it can be employed as a strategy in some suitable class
of signaling games. This class of signaling games represents a further step in
the evolutionary sequence of the emergence of meaningful communication.

In Section 2 we briefly review some facts about simple signaling games.
Section 3 continues by discussing primitive content. In section 4 I argue
informally that indicatives and imperatives can be distinguished on a funda-
mental level. Section 5 introduces a first formal model. Section 6 presents a
general formal analysis of the class of signaling games that induce indicatives
and imperatives. Section 7 develops a second model. Section 8 concludes
by discussing the relation between our results and the use of imperatives in
normative systems and the use of indicatives in science.
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s1 m1 if σ1, m2 if σ2

s2 m2 if σ1, m1 if σ2

s3 m1 if σ1, m1 if σ2

s4 m2 if σ1, m2 if σ2

r1 α1 if m1, α2 if m2

r2 α2 if m1, α1 if m2

r3 α1 if m1, α1 if m2

r4 α2 if m1, α2 if m2

Figure 1: Sender strategies and receiver strategies

2 Signaling Games

A simple signaling game consists of two players, the sender and the receiver,
n states, n acts and n signals. The sender observes the state of the world and
sends one of the n signals. The receiver has to choose an act. It is assumed
that each act is a proper response to exactly one state. Moreover, the sender
and the receiver get the same payoff for each outcome. Their payoff is a > 0
if the receiver responds correctly. Otherwise both get 0. Thus, the sender
and the receiver have a common interest in coordinating states and acts.
To do this optimally, their combined strategies must constitute a signaling
system. A signaling system corresponds to a combination of a one-to-one
mapping, s, from the set of states S to the set of messages, M , and a one-
to-one mapping, r, from M to the set of acts, A, such that the composition
r ◦ s associates each state σi with the state αi, i = 1, . . . , n.

Suppose n = 2, a = 1, and that each of the two states occurs with equal
probability.2 Then there are four possible sender strategies and four possible
receiver strategies as shown in Figure 1. The payoffs are as in Figure 2.
(s1, r1) and (s2, r2) are two strict Nash equilibria. They are identical to the
two signaling system strategies. There are also four non-strict pure Nash
equilibria, (s3, r3), (s3, r4), (s4, r3) and (s4, r4). In each of these outcomes
the sender sends the same signal regardless of the state and the receiver
chooses the same act regardless of the signal. Thus there are two stable
outcomes where the agents communicate and four stable, but less desirable
outcomes where no information is transmitted. If individuals are in one of
the latter states, it is hard to see how they could get to one of the signaling
systems without communication.

r1 r2 r3 r4

s1 1 0 1
2

1
2

s2 0 1 1
2

1
2

s3
1
2

1
2

1
2

1
2

s4
1
2

1
2

1
2

1
2

Figure 2: A simple signaling game in strategic form (the payoffs are the same
for both players)
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Skyrms (1996) studies this signaling game by simulating a correspond-
ing evolutionary dynamics, the one-population replicator dynamics. Skyrms
(2000) obtains analytical results for a simplified version of these dynamics
where only three types—one signaling system type and two anti-signaling
system types—are present. Huttegger (forthcoming) provides a more gen-
eral analysis of simple signaling games with an equal number of states, acts
and messages, and for signaling games involving probabilistic associations
between states, signals, and acts. It can be shown that the one-population
replicator dynamics will almost surely converge to a signaling system type
in simple signaling games with 2 states, acts and signals if the probability
for the occurrence of the first state equals the probability for the occurrence
of the second state. If this condition fails or if there are more than 2 signals,
states and acts, there are non-communicating or partially communicating
polymorphisms of types (each pure type can be destabilized by a signaling
system type, but not every mixture of types). This suggests that mutations
will carry a population away from the suboptimal polymorphisms.

The evolutionary viewpoint to explain the emergence of meaning in sig-
naling games avoids some difficulties any rational choice approach faces.3 In
particular, evolutionary accounts for the explanation of meaning do not rely
on assumptions about an already existing common understanding of relevant
aspects of the signaling problem and the other players. The replicator equa-
tions are agnostic about the cognitive capacities the agents of the population
might possess individually. The dynamics is driven by the performance of
types with respect to the average payoff in the population. Thus, one of the
strengths of the replicator dynamics as an idealized model is its compatibility
with diverse specifications of the individual agents.

We should expect that some kind of evolutionary dynamics will allow
communication to evolve when we look at the biological evidence we have.
One of the best known examples of a signaling system in animals are the
predator alarm calls of vervet monkeys (Cheney and Seyfarth 1990). There
is a huge number of other examples of signaling systems for various animal
species (Snowdon 1990; Hauser 1997; Maynard Smith and Harper 2003).
Moreover, signaling systems can already be observed on the level of microor-
ganisms (England et al. 1999; Crespi 2001).

The structure of human languages is, of course, far more complex than
the structure of the signaling systems mentioned so far. I do not claim
that all aspects of human language can be captured by viewing them as
signaling systems. Still, there is at least one functional aspect of human
language that can fundamentally be expressed in terms of signaling systems:
communication facilitates social coordination. Human languages share this
function with less complex signaling systems and can thus be viewed in a
similar way from the standpoint of social coordination. From this point of
view, the replicator equations provide a partial explanation for the evolution
of language in a very simplified, but still interesting way.4
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3 The Meaning of Signals in Signaling Games

As long as no signaling system or convention is established in a population,
signals have no meaning. E.g., we do not want to speak about the meaning
of a signal if the sender sends this signal regardless of the state of the world.
On the other hand, meaning may be considered as a property of signals in
equilibrium. If almost all individuals play according to a signaling system,
then signals are representations of parts of the world and have these parts as
contents. To be more specific, signals in a signaling system refer to a state
of the world and to an act that is a proper response to this state. We will
say that signals in signaling systems refer to state-act pairs.5

Harms (2004a, 2004b) proposes that signals in simple signaling games
have primitive content. This means that two sorts of conventions apply in
signaling systems: extensional tracking conventions and intensional conse-
quence conventions. The former specify the state of the world to which the
signal corresponds to or which make it true. The latter specify the conse-
quences or the behavior that is the proper response to the signal.

Harms adopts the terms “extensional” and “intensional” for signals al-
though they are usually associated with the meaning of words, and words
are, in general, not the proper analogues to signals in human languages.
Moreover, something essential is also missing in any analogy between signals
and sentences. Signals in simple signaling games have primitive content.
They refer to state-act pairs. This is not true of sentences, however. In
general, sentences indicate acts or command actions, but not both.

These considerations lead us to our main object of study. In signaling
systems of simple signaling games it is not at all clear whether signals are
indicative or imperative. This is due to the fact that simple signaling games
are not structured in a way that would allow us to talk about indicative and
imperative signals. The next four sections are devoted to the study of models
that may give rise to indicative and imperative signals. Before turning our
attention to those models, allow me to point out some philosophical and
scientific consequences our investigation has. Those consequences also serve
to motivate our models.

First, our study allows us to further elaborate the answers offered to
a skeptical philosophy of language. As we have noted in the previous sec-
tion, Skyrms (1996, 2000) and Huttegger (forthcoming) provide some results
which indicate that signaling systems emerge with high probability under
reasonable evolutionary dynamics. A skeptic might not only call the details
of the model into question.6 A skeptic might also cast doubt on the explana-
tory power of these results by claiming that an account of the emergence of
language conventions that does not include some of the most basic features
of human languages falls short of its main goal, the explanation of meaning.
If the distinction between indicative and imperative sentences is taken to
be a basic semantic feature of human languages, then the skeptic might be
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right.
Second, we may be able to better understand how indicatives compared

to imperatives relate to the world. If a signal has the function to represent
either a particular state of the world σ or a particular act α, then this signal
has, respectively, σ or α as its content. This is just another way to say that
the signal means σ or α. This leads to a number of problems concerning
(i) the explanation of how correspondence between representations and the
world is established; and (ii) the problem whether statements concerning
moral wrongness or rightness and concerning the justification of acts can be
called true or false with respect to some objective standards. Harms’ (2004a,
2004b) account of primitive content promises to resolve these problems. With
the help of our results we will be able to address some issues surrounding
the use of indicatives and imperatives in knowledge-oriented and behavior-
oriented systems. How this might be achieved is outlined in section 8.

Third, one of the main challenges for an evolutionary account of language
is the problem of filling the gaps between simple communication systems and
human language (Maynard Smith and Szathmáry 1995; Maynard Smith and
Harper 2003). Thus, our account might be valuable in making precise just
where meaning as we find it in indicatives and imperatives departs from
primitive content.

Finally, on the scientific side we will be able to reinterpret some animal
signaling systems (some of which will be considered in the next section) in our
model. As we shall see, our models will allow a more coherent interpretation
of signals than was possible with standard signaling games.

4 Indicatives and Imperatives as Interpretations of
Signals

Lewis (1969) distinguishes between signals-that, signals-to and neutral sig-
nals. More specifically, the meaning of signals in simple signaling games can
sometimes reasonably be given as a signal-that (indicative), as a signal-to
(imperative) or as both (neutral). Lewis also mentions criteria to draw these
distinctions. They are based on whether the sender or the receiver has to
deliberate in order to achieve the optimal outcome. If the sender does not
have to deliberate but the receiver must deliberate, then the signal is indica-
tive. If the receiver must not deliberate but the sender has to deliberate,
then the signal is imperative. If both descriptions are compatible with the
signaling behavior of the players, then the signal is neutral.

It will be useful to investigate whether interpreting signals as indicatives
or imperatives can enhance our understanding of actual signaling systems.
There are a number of examples where these interpretations seem to be
possible.

A closer examination of the vervet signaling system (Cheney and Seyfarth
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1990) suggests that we might interpret some of the signals as indicatives and
others as imperatives. E.g., the proper response to the snake alarm call
is to stand bipedally and to look around. Ultimately, the receivers of the
snake alarm call have thus to decide what to do. Hence, the snake alarm
call might be interpreted as indicative. The leopard alarm call, on the other
hand, usually results in the vervet monkeys running up trees immediately. So
we might interpret the leopard alarm call as imperative because the sender
has to classify the situation whereas the receiver must react very fast.

The California ground squirrel seems to have different alarm calls for
ground predators and aerial predators (Owings and Henessy 1984; Snowdon
1990). Terrestrial predators usually approach slowly and their approach is
closely monitored by the squirrels whereas aerial predators show up fast most
of the time. Owings and Henessy (1984) report that alarm calls for aerial
predators are sometimes given to terrestrial predators and sometimes the
alarm call for ground predators is given for aerial predators. This happens
when aerial predators are spotted by the squirrels while they are still far
away or when ground predators are already close before one of the squirrels
observes their presence. Thus, an interpretation of the two alarm calls in
terms of referring to aerial predators or ground predators is ambiguous. We
might, however, interpret the alarm calls as indicative or imperative signals.
An indicative signal is used if a predator approaches slowly and an imperative
signal is used if it approaches fast and there is a much greater urgency to
respond. (Note that the usage of indicative and imperative signals arises out
of the structure of the underlying situation.)

In a study on symbolic communication, Boesch (1991) describes the sig-
naling behavior of the chimpanzees of the Tai national park. In one of the
chimp groups the alpha male, Brutus, sometimes drummed on a tree. Bru-
tus’ drumming was related to three different messages. After drumming on
two trees consecutively, the group changed direction and went on in the di-
rection between the two trees. If Brutus was drumming twice on the same
tree, the group rested for about one hour. By combining these two messages,
i.e. by first drumming twice on a tree and then once on a second tree, Brutus
indicated a short rest and the direction the group should take after the rest.

This example is remarkable in at least two ways. First, Brutus was able
to combine two signals to form a new message. This can be regarded as
a very simple “syntax”. And second, it seems hard not to interpret these
signals as imperative. An interpretation in purely indicative terms might
be possible but would turn out to be rather complicated. It seems that the
emphasis of these signals is on motivating behavior.

These examples show that a distinction between indicative and impera-
tive communication might already be possible at the level of animal signaling
systems. We can also think of human examples. Your doctor usually does
not tell you what is wrong with your health, but what you ought to do to
get healthy again. She decides what is best for your health since you usually
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cannot make this decision yourself. On the other hand, in a situation where
somebody has information that can help you make a decision you don’t want
her to tell you what to do, but to reveal the information.

In simple signaling games a distinction between indicative and imperative
signals that is not just an interpretation of the signals seems to be impos-
sible. Simple signaling games do not have enough structure. But Lewis’
considerations show us one possibility to give a signaling game more struc-
ture. The underlying intuition is that some state-act pairs require the sender
to deliberate, whereas the receiver must not deliberate but just has to act.
This might be because the receiver has to act fast, or because the gathering
of information would be of no use for the receiver to make the right decision
(like in the doctor example). Other state-act pairs require the sender not to
deliberate and the receiver to decide what would be the best thing to do.

This relates in an obvious way to the main distinction we have drawn
between imperatives and indicatives. Indicatives motivate behavior only
indirectly because they need to be combined with other indicatives to de-
termine efficient behavior (see also Harms 2004b). Imperatives relate to the
world indirectly via the sender’s information processing mechanism.7

The rest of this paper is devoted to developing two models that try to
capture these ideas and to present some convergence results on the class of
games they belong to.

5 A First Model

The class of games we shall consider is based on a combination of two coor-
dination problems. One is a state-act coordination problem that underlies
simple signaling games. In a state-act coordination problem exactly one
of the acts is the proper response to each state of the world. Accordingly,
individuals only get a positive payoff if the right act is chosen in response
to a particular state. This scenario is illustrated in Figure 3. The second

α1 α2

σ1 a 0
σ2 0 a

Figure 3: A state-act coordination problem with a > 0

coordination problem is asymmetric. Either player may deliberate or not de-
liberate, but if both do the same they get no payoff. The second coordination
problem is shown in Figure 4.

Our first model is based on a combination of the two coordination prob-
lems. There are two states of the world, σ1 and σ2, and two corresponding
acts, α1 and α2. In addition, each player has to decide if she deliberates
or if she doesn’t deliberate. (σ1, α1) is a state-act pair that requires the
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deliberate don’t deliberate
deliberate 0 b

don’t deliberate b 0

Figure 4: An asymmetric coordination problem with b > 0

row player to deliberate and the column player to act without deliberating.
(σ2, α2) is a state-act pair where the row player must not deliberate and the
column player is required to deliberate. This payoff matrix is illustrated in
Figure 5.

d and α1 n and α1 d and α2 n and α2

If σ1, d 0 1 0 0
If σ1, n 0 0 0 0
If σ2, d 0 0 0 0
If σ2, n 0 0 1 0

Figure 5: A coordination problem where d stands for deliberate and n for
don’t deliberate

So far we have specified the coordination problem which underlies a sig-
naling game that involves deliberation. For the signaling game itself we
suppose that the sender has to decide whether to deliberate or not before
sending a signal. The receiver has to decide whether to choose an act deliber-
ately or not. A sender strategy specifies, for each state of the world, whether
the player spends some time deliberating and what signal is sent. A receiver
strategy specifies, for each message, whether the receiver chooses an act de-
liberately and what act is chosen. Thus there are sixteen sender strategies
and sixteen receiver strategies. There are four groups within each of these,
those who never deliberate, those who always deliberate, those who switch
between deliberating and not deliberating in the wrong way and those who
switch in the right way. Within these four groups there are types who em-
ploy signaling system strategies and types who always send the same signal.
For a list of the strategies see Figure 6. We will assume that P(σ1) = P(σ2)
to avoid the difficulties mentioned in Section 2 for our first analysis. Under
these assumptions, the 16× 16 payoff matrix can easily be computed.

Before we are going to analyze this model let us try to motivate the
additional structure imposed on signaling games. For the new signaling
game we assume that deliberation has enough behavioral consequences to
employ it as a strategy in a game. That is, deliberation comes with costs.
It may cause delays, for instance. Or it may never lead to an appropriate
decision if the player lacks necessary information in principle. In a similar
way, choosing not to deliberate might be costly. It may, for example, forfeit
further moves because decisions relevant for those moves were not made
as a result of deliberation. For a baseline model this characterization of
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Sender strategies
s1 0000
s2 0001
s3 0010
s4 0011
s5 0100
s6 0101
s7 0110
s8 0111
s9 1000
s10 1001
s11 1010
s12 1011
s13 1100
s14 1101
s15 1110
s16 1111

Receiver strategies
r1 0000
r2 0001
r3 0010
r4 0011
r5 0100
r6 0101
r7 0110
r8 0111
r9 1000
r10 1001
r11 1010
r12 1011
r13 1100
r14 1101
r15 1110
r16 1111

Figure 6: Sender and receiver strategies in Model 1. 1 or 0 at the first place
mean that the sender deliberates or doesn’t deliberate if σ1 occurs. The
second place specifies the same for σ2. At the third place, 1 means that the
sender signals m1 if σ1 and 0 means that she sends m2 in this case. The
fourth place specifies the same for state σ2. A receiver strategy is coded in
the same way except that the first and the third place specify what happens
if m1 was sent; the second and fourth place specify the same if m2.

the behavioral consequences of deliberation seems to be enough. In more
advanced models, however, structural effects of choosing to deliberate or
choosing not to deliberate should be made explicit.

In particular, we do not specify how the deliberational process might
look like. It may be something that requires more or less computational
capacities. It might even be a non-cognitive mechanism that makes a decision
according to a number of inputs (think of a cell that reacts in a particular way
after receiving some signals and in response to other environmental states).
It is best to think about it in terms of which agent acquires and processes
information. If the acquiring and processing of information is entirely on
the side of one of them, then we say that the respective agent deliberates
and that the other does not deliberate. We do not assume that deliberation
always leads to the right decision. Regardless of the deliberation mechanism
our agents employ, deliberation leads to the right decision with a certain
probability. The payoffs should thus be understood as expected payoffs.
What we do assume is that agents who start to deliberate or who don’t
deliberate when the situation requires them to do the other thing get no
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payoff. We justify this again by expected payoffs. If the sender is required
to deliberate after the occurrence of a particular state and before sending
a signal but decides not to deliberate, we assume that the chances for the
receiver to nevertheless choose the right act are very low. The same holds
for the receiver and for situations that require the agent not to deliberate.
This assumption will be relaxed in our second model.

For example, a California ground squirrel that spots a nearby predator
may deliberate for some time whether the perception it had resembles a
predator. As soon as it gives the alarm call for a nearby predator, it would
be fatal for the other squirrels to start deliberating. In this situation they
are supposed to react fast and hide in holes. This response would not be
appropriate for predators which are far away. In this case receivers have to
deliberate more than senders.

In order to report simulation results on our first model we have to intro-
duce some concepts from dynamical system theory (Hirsch and Smale 1974;
Hirsch et al. 2004). Let x ∈ Rn and f : W → W where W ⊂ Rn. Then a
discrete time dynamical system on W is given by

x′ = f(x),

where x is the current state of the system and x′ is the state at the next
time step. A point x̄ is called a fixed point of the discrete time dynamical
system if f(x̄) = x̄. If the system reaches a fixed point, then it remains
there forever. x̄ is an attractor or an attracting fixed point for f if there
is a neighborhood U of x̄ such that every orbit starting in U converges to
x̄. The set of all points converging to x̄ is called its basin of attraction. x̄
is a source or a repelling fixed point if there is a neighborhood U such that
all orbits (except x̄) leave U under iteration of f . x̄ is called neutral if it is
neither attracting nor repelling.

The discrete time replicator dynamics for two populations can be used
as a model for biological as well as cultural evolution (like other forms of the
replicator dynamics; for more on the replicator dynamics see Weibull 1995
and Hofbauer and Sigmund 1998).8 These dynamics are given by

x′
i = xi

α + u(xi,y)
α + u(x,y)

and y′j = yj
α + u(yj ,x)
α + u(y,x)

, (1)

where xi and yj are the frequencies of type i senders and type j receivers
at a particular time and x′

i and y′j are their frequencies at the next time
step. The state of the sender population is given by the vector of frequencies
x = (x1, . . . , xn) of the sender types. Likewise, the state of the receiver
population is given by y = (y1, . . . , yn). α is the common background fitness
of individuals in both populations. u(xi,y) and u(yj ,x) are the payoffs to i
and j when the current sender population state is x and the current receiver
population state is y. u(x,y) and u(y,x) are the respective average payoffs.9
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In our first model, there are four sender strategies, s5 to s8, and four
receiver strategies, r1, r6, r11, and r16, that never get it right. This is so
because individuals of one of those sender types choose to deliberate or not
to deliberate wrongly while receivers of one of those receiver types either
choose to deliberate or not to deliberate wrongly or they choose the wrong
act regardless of the message. These strategies can thus be ignored in the
further analysis.

There are 54 Nash equilibria in pure strategies. Only two of them are
strict. The two strict Nash equilibria are (s10, r10) and (s11, r7). Regard-
less of the state, these outcomes guarantee the players the maximum payoff
a. Both are the only combinations of strategies that solve the problem of
deliberation-coordination and are signaling systems. All other combinations
yield a maximum payoff less than a. This is due either to the fact that
they always or never deliberate or because they form no signaling system or
because of both.

In simulations for the discrete time replicator dynamics we observe that
100% of the time populations converge to the states corresponding to the
two strict Nash equilibria (s10, r10) or to (s11, r7). They converge to either
of them approximately half of the time. These results suggest that (s10, r10)
and (s11, r7) are the only attracting fixed points for (1) and that their basins
of attraction are of equal size. The other Nash equilibria seem to correspond
to non-attracting fixed points. To obtain analytical results, we will study
the continuous time replicator dynamics of our model. This will be done in
the next section.

6 Simple Signaling Games With Deliberation

Although we will only consider a special case of signaling games with de-
liberation in this paper, we will give a definition for a more general class
first. The definition of simple signaling games with deliberation is based on
state-act coordination problems like the one illustrated in Figure 3. More
generally, Πn = 〈S, A, u〉 is a n-state-act coordination problem if and only if
S = {σ1, . . . , σn} is a set of n distinct states of the world, A = {α1, . . . , αn}
is a set of n distinct acts, and u is a function that determines the utility of
each state-act pair such that u(σi, αj) = δijai where δii = 1 and δij = 0
for j 6= i. ai is a real number that depends on the state. For simplicity,
we will assume that ai = 1 for all i. Let P = {p1, . . . , pn} be a probability
distribution over S.

Definition 1 (simple signaling game with deliberation) Let Πn be a
n-state-act coordination problem, let M = {m1, . . . ,mn} be a set of n mes-
sages, P a probability distribution over the states and D = {d, n} the set of
deliberation states. Then a d-signaling game Σd

n is a triplet 〈I, {Si}i∈I , {ui}i∈I〉
where
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1. I = {1, 2} is the set of players, the sender, 1, and the receiver, 2;

2. Si, i = 1, 2, is the set of strategies generated by Πn and D as follows:
S1 = {sk|sk : S → D ×M} and S2 = {rl|rl : M → D ×A};

3. ui, i = 1, 2 are the players’ utility functions generated by Πn as follows:

ui(sk, rl) =
n∑

j=1

pj · u (σj , (rl ◦ c ◦ sk)(σj)) , i = 1, 2,

where c : D × M → M is the function defined by c(·,mk) = mk for
k = 1, . . . , n.

Thus, a d-signaling game is an asymmetric two-player game. Condition 2
states that the set of possible sender strategies consists of all functions from
the set of states to the product of the set of deliberation states and the
set of messages. Similarly, the set of possible receiver strategies consists of
all possible functions from the set of messages to the product of the set of
deliberation states and the set of actions. Condition 3 specifies the players’
payoff functions. This specification employs a function c that “cuts away” the
deliberational state of the sender. What the payoffs in fact are depends on
the specification of how deliberational states influence the payoff structure
of the game. This flexibility in choosing how deliberational states effect the
players’ payoffs makes it possible to model situations where deliberational
states influence payoffs in varying degrees.

In the previous section we have used the discrete time two-population
replicator dynamics (1) to obtain some simulation results for a signaling
game Σd

2. To obtain analytical results it is more convenient to work with
continuous time versions of the two-population replicator dynamics. There
are two principal versions of them. We will employ both in our subsequent
analysis.

The standard version of the two-population replicator dynamics is a cou-
pled system of differential equations:

d xi

d t
= xi (u(xi,y)− u(x,y))

d yj

d t
= yj (u(yj ,x)− u(y,x)) (2)

(see Hofbauer and Sigmund 1998). The variables and the state space of this
system are the same as for the discrete time system (1). There is a second
version of the continuous time two-population replicator dynamics whose
qualitative behavior is in general different from the qualitative behavior of
the dynamics (2). It was introduced by Maynard Smith (1982) and is for-
mally similar to the discrete time replicator dynamics (1) since it involves
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normalization by the mean payoff:

d xi

d t
= xi

u(xi,y)− u(x,y)
u(x,y)

d yj

d t
= yj

u(yj ,x)− u(y,x)
u(y,x)

(3)

The appendix provides some propositions on the dynamics of d-signaling
games. In particular, the following basic convergence result for the dynamics
(2) and (3) is proved. (Notice that the convergence results hold for both
versions of the two-population replicator dynamics.)

Theorem 1 Let Σd
2 be a d-signaling game where for both σ1 and σ2 exactly

one pair of deliberational states (one for the sender and one for the receiver)
is optimal. Let P(σ1) = P(σ2). If initially all types are present, then almost
every solution for (2) and (3) converges to a strict Nash equilibrium of Σd

2.

Theorem 1 shows that the simulation results reported in the previous section
hold analytically in a more general setting. The theorem continues to hold
for a more general class of games than just partnership games. Games in
this more general class are structurally similar to partnership games (they
are called rescaled partnership games) but do not require that the players
get the same payoff for each outcome.10

Concerning our first model we obtain a corollary by applying Theorem 1
and observing that the vector fields (2) and (3) are invariant under permu-
tations of the points corresponding to the strict Nash equilibria.

Theorem 2 In Σd
2 with payoffs specified in the previous section, almost ev-

ery solution converges to (s10, r10) or to (s11, r7) for (2) and (3). Moreover,
their basins of attraction are of equal size.

7 A Second Model

The payoffs in our first model are quite rigid. They require the players to
coordinate their deliberational activities strictly. It is possible to relax this
requirement while preserving enough of the original structure of the game.
This will allow us to still talk meaningfully about imperatives and indicatives
in many cases.

We will change our first model according to the following considerations:
If the sender fails to deliberate in state σ1 but the receiver is able to deliberate
and to choose the right act, then they may still get it right. For state σ2, if
the sender starts to deliberate and the receiver is nonetheless fast or lucky
enough to choose the right act, there might be some chance to get a payoff
as well. This gives rise to the payoff structure that is illustrated in Figure 7.
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d and α1 n and α1 d and α2 n and α2

σ1, d 0 1 0 0
σ1, n 1

2 0 0 0
σ2, d 0 0 0 1

2

σ2, n 0 0 1 0

Figure 7: Model 2; d stands for deliberate and n for not deliberate

The game corresponding to this payoff matrix has 28 Nash equilibria
in pure strategies, 6 of which are strict. The sender strategies or receiver
strategies that always got it wrong in model 1 have disappeared. But still
none of these strategies is part of a strict Nash equilibrium. The strict Nash
equilibria are (s10, r10), (s11, r10), (s2, r14), (s3, r15), (s14, r2) and (s15, r3).
The first two give a payoff of 1. The latter four give a payoff of 3

4 . They
are either characterized by a sender strategy that never deliberates and a
receiver strategy that always deliberates or the other way round. But note
that the signaling parts of each of these strict Nash equilibria form signaling
systems. Thus, we have as an important side result that the signaling parts
of all strict Nash equilibria constitute signaling systems.

In simulations for the discrete time replicator dynamics (1) the popula-
tion converged to each of (s10, r10) and (s11, r3) at a rate of about 40%, and
to each of the other strict Nash equilibria about 5% of the time. This indi-
cates that the basins of attraction of the latter ones are considerably smaller
than the basins of attraction of the first two. Theorem 1 informs us again
about convergence.

Theorem 3 Let Σd
2 be given by the above payoffs and let P(σ1) = P(σ2).

Then (s2, r14), (s3, r15), (s10, r10), (s11, r10), (s14, r2) and (s15, r3) are the
only asymptotically stable states under (2) and (3). If initially all types
are present, then almost every solution converges to one of the strict Nash
equilibria.

There are a number of interesting limiting cases we can obtain by chang-
ing the payoff structure. If the players must coordinate deliberations more
precisely than in the second model, we get back to our first model. If the
1
2 payoffs go to one, the distinction between indicatives and imperatives be-
comes less important. If the payoffs are such that sender and receiver get the
same payoff no matter whether sender and receiver deliberate or do not de-
liberate, we are back at simple signaling games where a distinction between
indicatives and imperatives is not meaningful anymore. As we vary the pay-
offs, the meaningfulness of this distinction corresponds to the asymptotically
stable states and the size of their basins of attraction.
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8 Normative and Descriptive Statements

Let us conclude with an application of the previous analysis. The goal of
this application is to gain some heuristic understanding of why norms can
be expressed as imperatives and why science, on the other hand, uses indica-
tives.

In the last part of Harms (2004a) the basic ingredients of a naturalistic
theory of the meaning of descriptive and, in particular, normative statements
are presented. Harms thereby attempts to describe the semantic content
of normative statements by two features. First, they are part of signaling
systems (which we may call normative systems). And second, they enforce
rules of behavior. To see the advantages of this point of view, compare it
to a more traditional characterization of normative imperatives in terms of
propositional content. According to this characterization, norms may be
expressed in the indicative or in the imperative mood. But this yields the
problem of what is indicated with a normative imperative. More generally, if
a proposition is used in the imperative mood, then it might not be clear what
is indicated. E.g., the imperative mood “open the door” of the proposition
“the door is open” looses its regular indicative function because the door
is closed and may never be opened. Essentially the same happens in the
context of norms. Most norms may be expressed in the indicative mood, like
“stealing is wrong”. They may also be turned to the purpose of commanding
like in “don’t steal this”. But even if you steal this, the norm expressed by
“stealing is wrong” does not cease to be a norm.

Harms (2004a), on the other hand, argues that normativity comes from
primitive content. A normative system specifies the appropriate actions for
particular circumstances. In this respect, norms, or normative intuitions,
resemble animal warning cries. We may also think of a normative system as
an internal control mechanism.

The primitive content of a norm specifies some historically determined
standards of how to behave in certain situations. Suppose a convention
prescribes to act according to a certain behavioral rule b if situation s occurs.
Conventions are fallible. A response to a failure of this convention might be
a signaling convention. That is, if an individual fails to act according to b in
s, then another (or the same) individual might respond by sending a signal
m that means something like “In a situation like s act according to b” or “In
a situation like s you ought not act according to b′” if b′ was the individual’s
behavior. This is an example of a second order convention. According to
the primitive content of the signal m, there is an extension, namely “not
b”, that makes the behavior enforcing signal m true. Normative imperatives
are, according to Harms (2004a), linguistic proxies to the intensional part
of the primitive content of a signal. On this level, a normative system has
the function to regulate behavior in the population via the enforcement of
conventions. The primitive content of the signals in the normative system is
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determined by the history of the population.
The evolution of a normative system may be described similarly to the

evolution of other signaling systems (see Section 2). It presupposes special
states and acts, however. For a signaling system to be called a normative
system the states and acts of the underlying coordination problem must be
failures of behavioral conventions and acting according to those conventions,
respectively. Thus the evolution of normative systems presupposes already
existing behavioral conventions. It may also be the case that a normative sig-
naling system and behavioral conventions coevolve. Studying the coevolution
of normative systems and behavioral conventions would be of considerable
interest.

The emergence of indicative and imperative signals marks the departure
from primitive content. A signal can be used in two different ways depending
on the history of the population and the kind of situations it is confronted
with. Notice that in the corresponding class of signaling games we do not
have to talk about the agents’ desires or beliefs. This means that we do
not have to characterize an imperative in terms of an agent’s desires, i.e.
an agent who wants another agent to do something. Our explanation of
indicative and imperative signals is thus more basic since we only require
there to be agents with some information processing mechanism. Agents
with beliefs and desires may, of course, be substituted. Our framework is
compatible with that.

Often, the emphasis of a normative statement is on motivating behavior
since norms enforce rules of behavior. Imperative signals as developed in
the previous sections give a first, basic understanding of what the “linguistic
proxies” to the primitive content of norms are. If the content of norms is
captured by a normative system and if the main function of this system is
to motivate behavior, then it will mostly yield imperative signals as outputs.
That is, we have a simple signaling system on the one hand and a signaling
system that induces imperatives on the other. Both signaling systems have
to be related in some way. This situation is more complex than the ones
considered in this paper and the literature so far.

To be sure, norms (i.e. a set of specific epistemic standards) are also un-
derlying knowledge oriented systems like science. But the purpose of science,
as opposed to, e.g., moral systems, is not to express its underlying epistemic
standards by inducing imperatives. That is to say, as long as this underlying
normative system is “silent”, imperatives do not enter science. At another
level, science may be viewed as a signaling system that is about the world.
As such, it yields indicatives that inform us about the world.

To summarize, simple signaling games are not enough to describe nor-
mative systems completely. But the signaling games studied in the previous
sections are able to give us a first explanation of why different systems may
yield imperatives or indicatives.
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Appendix

I will present a number of results which shed light on the dynamical proper-
ties of generalized simple signaling games and which will be used in the proof
of Theorem 1. Let me introduce the concept of partnership games first. An
asymmetric noncooperative two-player game Γ is a partnership game if the
payoff matrices (A,B) corresponding to Γ are such that B = At.

Proposition 1 Let Σd
n be a d-signaling game. Then Σd

n is a partnership
game.

Proof. Let us denote that payoff matrix for the sender’s payoffs by A and
the receiver’s payoff matrix by B. Then obviously B = At since sender and
receiver get the same payoff for each outcome. �

Proposition 2 Let Σd
n be a d-signaling game. Then the dynamics (2) and

(3) for Σd
n have the same qualitative behavior.

Proof. Let Σd
n be a d-signaling game. By Proposition 1, Σd

n is a partner-
ship game. For partnership games, the average payoffs u(x,y) and u(y,x)
coincide. To see this, note that

u(x,y) = x ·Ay and u(y,x) = y ·Bx,

where · is the dot product. Since

y ·Bx = y ·Atx = x ·Ay

we have
u(x,y) = u(y,x).

Thus (3) involves just a change of velocity compared to (2), but the quali-
tative behavior of the two is the same. �

To formulate our next intermediate result, we have to be clear about
the notion of evolutionary stability in a two-population model. As Weibull
(1995) points out, every reasonably strong analogue to the concept of evo-
lutionary stability for n-population models (n ≥ 2) coincides with strict
Nash equilibria. Accordingly we call a state (x,y) (x and y representing
the states in each population, respectively) evolutionarily stable if (x,y) is
a strict Nash equilibrium of the underlying asymmetric game. Moreover, we
have to introduce the notion of a gradient system. To do this, let V be a
twice continuously differentiable function from an open subset U of Rn to R.
Then

dx
dt

= ∇V (x)
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is a gradient system with potential V . If the gradient ∇V is defined relative
to the standard inner product for Rn, then

∇V =
(

∂V

∂x1
, . . . ,

∂V

∂xn

)
=:

∂V

∂x
.

Notice that due to this relation V gives us a lot of information about the
system. The gradient ∇V may also be defined relative to a non-standard
inner product for Rn by considering the dual vector space for Rn (that is,
the space of all linear mappings from Rn to R). Many of the results for
gradient systems defined with respect to the standard inner product for Rn

continue to hold in this more general setting. This is due to the basic equality
∂V
∂x y = 〈∇V,y〉, where y ∈ Rn and 〈·, ·〉 is an arbitrary inner product. For
more information about gradient systems see Hirsch and Smale (1974).

Proposition 3 Let Γ be a partnership game and (A,At) be the correspond-
ing payoff matrices. Then the following two statements are true:

1. (2) is a gradient system with u(x,y) = x ·Ay as potential.

2. (p,q) is asymptotically stable for (2) and (3) if and only if (p,q) is
evolutionarily stable.

Proof. Let Γ be a partnership game and A be the corresponding payoff
matrix. A proof of 1 can be found in Hofbauer and Sigmund (1998, Theorem
11.2.2). To prove 2, suppose that (p,q) is an equilibrium of (2) but not
evolutionarily stable for a two population model. Thus, (p,q) is not a strict
Nash equilibrium of Γ. We claim that (p,q) is not a strict local maximum of
x · Ay and, thus, not asymptotically stable for (2). This conclusion follows
from the fact that x ·Ay is also a strict Liapunov function for (2).

To prove that (p,q) is not a local strict maximum of (2) note that, since
(p,q) is not a strict Nash equilibrium, there is a s or there is a r such that
s is an alternative best reply to p or r is an alternative best reply to q:

s ·Aq = p ·Aq or p ·Ar = p ·Aq.

Suppose s is an alternative best reply to p. Then every convex combination
λs+(1−λ)p, 0 ≤ λ ≤ 1 is also a best reply to p. From this we can conclude
that in every neighborhood of (p,q) there exist x,y, namely x = λs+(1−λ)p
and y = q, such that (p,q) is no strict maximum of p · Aq. A similar
argument applies to the case where r is an alternative best reply to q.

If (p,q) is evolutionarily stable, on the other hand, then it is a strict
Nash equilibrium. Thus, there is no alternative best reply to (p,q) and it
must therefore be a strict local maximum of x ·Ay. This implies that (p,q)
is asymptotically stable. �

If Σd
n is a d-signaling game, then the only evolutionarily stable states are

strategy combinations where the sender and the receiver deliberate in the
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right way and the signaling parts of their strategies form a signaling system.
In our first model there are two such strategy combinations, (s10, r10) and
(s11, r7). Hence, these strategy combinations are the only asymptotically
stable states for (2) and (3).

Lemma 1 Let Σd
2 be a signaling game with deliberation. If (p∗,q∗) is an

interior rest point for the replicator dynamics (2), then (p∗,q∗) is linearly
unstable.

Proof. (p∗,q∗) is linearly unstable if the Jacobian matrix evaluated at
(p∗,q∗) has at least one eigenvalue with positive real part. The tangent
space at a point (x,y) in the interior of the state space consists of vectors
(ξ, η) with ξ, η ∈ R16

0 = {ζ :
∑16

j=1 ζj = 0}. Set pi = p∗i + ξi and qi = q∗i + ηi

where (ξ, η) is a vector in the tangent space at (p∗,q∗). Then

ξ̇i = ẋi = (p∗i + ξi)(u(pi,q∗ + η)− u(p∗ + ξ,q∗ + η))
= p∗i (u(pi, η)− u(p∗, η)) + ξi(u(pi, η)− u(p∗, η))− (p∗i + ξi)u(ξ, η)

=
∑

j

Ls
ijηj + higher-order terms

where Ls
ij = p∗i (aij −p∗ ·Aej) (aij being the ijth component of the sender’s

payoff matrix A) is the partial derivative of the ith equation of (2) relative
to the jth variable. By a similar calculation we get

η̇i = q̇i ≈
∑

j

L2
ijξj

with L2
ij = q∗i (bij − q∗ ·Bej), bij being the ijth component of the receiver’s

payoff matrix B = At. If we set

L =
(

0 Ls

Lr 0

)
then L is the Jacobian evaluated at (p∗,q∗). L has at least one positive
eigenvalue if L is not negative semi-definite on the tangent space at (p∗,q∗),
i.e. if

〈(ξ, η), L(ξ, η)〉(p∗,q∗) > 0

for some (ξ, η) in the tangent space at (p∗,q∗) (〈·, ·〉 denotes the Shashsha-
hani inner product; see Hofbauer and Sigmund 1998, 128). We claim that
by setting p = εs + (1 − ε)p∗ and q = δr + (1 − δ)p∗, with (s, r) a strict
Nash equilibrium of Σd

2, there exist such points ξ = p− p∗ and η = q− q∗

arbitrarily close to (p∗,q∗).
Observe first that

〈(ξ, η), L(ξ, η)〉(p∗,q∗) =
∑

i

1
p∗i

ξi

∑
j

L1
ijηj +

∑
k

1
q∗k

ηk

∑
m

L2
kmξm

= 2(u(p,q)− u(p∗,q∗))
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The last term is positive since u(p,q) = εδu(s, r) + ε(1 − δ)u(s,q∗) + (1 −
ε)δu(p∗, r) + (1 − ε)(1 − δ)u(p∗,q∗) > u(p∗,q∗). Thus L is not negative
semi-definite. �
Proof of Theorem 1. Let Σd

2 be a d-signaling game with P(σ1) = P(σ2).
By Proposition 3, the replicator dynamics (2) for Σd

2 is a gradient system
and the only asymptotically stable fixed points are the strict Nash equilibria
of Σd

2. This implies that all other rest points are either unstable or weakly
stable (i.e. stable, but not asymptotically stable).

Let us consider the interior of the state space first. The existence of
a potential function (the average payoff) excludes the existence of periodic
orbits since the potential is strictly increasing along every non-stationary
solution. This also implies that interior rest points cannot be weakly stable in
that there are cycling solutions around an interior rest point (the eigenvalues
of the Jacobian evaluated at rest points have zero imaginary part Proposition
3). Moreover, Lemma 1 implies that if (p∗,q∗) is an equilibrium of (2), then
there is no neighborhood U of (p∗,q∗) such that every point in U is an
equilibrium of (2).

These arguments show that interior rest points must be unstable. We
claim that the set of unstable rest points together with the set of points
converging to those unstable rest points has Lebesgue measure zero. In
(Huttegger forthcoming) it is shown that for gradient systems the set of
unstable fixed points has Lebesgue measure zero. If S is a connected, possibly
singleton, set of unstable fixed points in the interior, then the center-stable
manifold theorem (see Kelley 1967) implies that the set of points converging
to points in S is contained in a manifold whose codimension is at least 1 if
points in S have at least one positive eigenvalue. But this last fact follows
from Lemma 1.

All equilibrium points on the boundary where the senders or receivers co-
ordinate their deliberational states suboptimally with positive frequency will
be unstable. To see this consider an arbitrary rest point (x,y). Disregarding
the deliberational states in the supports of x and y defines equivalence classes
of strategies which are just characterized by a sender strategy or a receiver
strategy, respectively. Define a copy (x′,y′) of (x,y) by requiring x′ and y′

to have the right deliberational states for both states of the world and by
setting the frequency of each sender and receiver strategy in x′ and y′ equal
to the frequency of the corresponding equivalence class based on strategies
in the support of (x,y). Perturbing (x,y) in the direction of (x′,y′) clearly
leads away from equilibrium.

Thus the only rest points we still have to analyze are on the bound-
ary where sender strategies and receiver strategies with suboptimal delib-
erational states are not present. Apart from the two signal system types,
equilibria on this boundary are the same as in the two-population replicator
dynamics for signaling games without deliberation. Let x1 and x2 denote
the frequency of the two signaling systems s and s′. Let y1 and y2 denote
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the frequency of the two signaling systems r and r′, (s, r) and (s′, r′) being
the strict Nash equilibria. The vertex x1 = 1 and y2 = 1 is linearly unstable
as is the vertex x2 = 1 and y1 = 1. There is a manifold of equilibria M
where x1 = x2 and y1 = y2. Rest points in M are also linearly unstable
except when all one-to-one strategies have zero frequency. In this case, rest
points are second order unstable: only many-to-one strategies are present,
so introducing a signal system pair will increase the average payoff. There
remain two types of sets of rest points. x1 = 0 = x2 defines a manifold of
rest points which are linearly unstable if y1 6= y2 and second order unstable
otherwise (by the same argument involving average payoff as before). Similar
arguments apply for the manifold where y1 = 0 = y2. �

Proof of Theorem 3. In the second model there is not one pair of
deliberational states which is optimal relative to a state of the world. There
are two pairs for each state which are characterized by being asymmetric: if
the sender deliberates, the receiver isn’t supposed to deliberate, or the other
way round. This means that the same arguments as in the proof of Theorem
1 go through except that convergence will depend on how many of one of
the two configurations of deliberational states are intially present. �
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Notes
1 This question also puzzled 20th century positivists like Dubislav (1937).
2 This is one way to translate the underlying extensive form signaling game
into a game in strategic form.
3 For rational choice interpretations see Lewis (1969) and Cubitt and Sugden
(2003).
4 For more on the semantic differences between human languages and animal
signaling systems see Harms (2004a).
5 From a representational point of view, signals, states and acts might be
viewed as representations of each other if they are part of a signaling system.
Notice that we do not need to introduce any kind of mental representations.
Mental representations could mediate between states and signals or signals
and acts. But our argumentations below do not rely on additional mediating
representations. For more on the relationship between animal signals and
mentalistic language see Radner (1999).
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6 For an analysis of signaling games which include the realistic feature of
local interaction see Grim et al. (2001) and Zollman (2005).
7 On this view, one may wonder about the status of a cry for help like ‘Help!’.
In many such situations the receiver is required to think about what to do
and not to make a decision without deliberation. I don’t think that this
poses any serious problem to Lewis’ proposal. Either it is clear what the
appropriate response to a cry for help is. Or the act of starting to deliberate
about further actions without thinking whether to start it or not is the
required response.
8 Discrete time dynamics are easier to program than dynamics in continuous
time. We used a two population model in order to keep the number of types
in the population reasonably low.
9 Notice that (1) does not necessarily have to be a model for the evolutionary
dynamics of two populations. It may also serve as a model for two agents that
interact repeatedly and have strategies corresponding to the types for (1).
The frequencies then represent the probability with which each agent chooses
a certain strategy. Börgers and Sarin (1997) derive a continuous version of
(1) as a model of individual learning from a variant of reinforcement learning
that was studied in Bush and Mosteller (1955). Other reinforcement learning
dynamics may also lead to a continuous version of (1) (Beggs 2002; Hopkins
and Posch 2005).
10 An asymmetric two-player game with payoff matrices (A,B) is a rescaled
partnership game if there exist constants α, β > 0 and cj , di such that the
game with payoff matrices (A′, B′) defined by a′ij = αaij + cj and b′ji =
βbji + di is a partnership game. See Hofbauer and Sigmund (1998).
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