Dedekind Completeness & Denumerability

Let $\mathcal{X} = \langle X \preceq \rangle$ be a totally ordered set. Then \mathcal{X} is said to be **Dedekind complete** if and only if for each nonempty subset Z of X, there exists an element a in X, called the **supremum of Z (in X)**, or sup Z for short, such that

(i) $z \preceq a$ for all z in Z, and

(ii) if b in X is such that $z \preceq b$ for all z in Z, then $b = a$.

A set Y is said to be **denumerable** if and only if there exists a one-to-one function f from \mathbb{I}^+ onto Y.

Let $\langle X, \preceq \rangle$ be a totally ordered set and f a function from a subset Y of X into X. Then f is said to be **\preceq-strictly increasing** if and only if for all x and y in X, if $x \prec y$ then $f(x) \prec f(y)$.
Continuum

\(\langle X, \preceq \rangle \) is said to be a **continuum** if and only if the following four statements are true:

1. **Total ordering**: \(\preceq \) is a total ordering on \(X \).
2. **Unboundedness**: \(\langle X, \preceq \rangle \) has no \(\preceq \)-greatest or \(\preceq \)-least element.
3. **Denumerable density**: There exists a denumerable subset \(Y \) of \(X \) such that for each \(x \) and \(z \) in \(X \), if \(x \prec z \) then there exists \(y \) in \(Y \) such that \(x \prec y \) and \(y \prec z \).
4. **Dedekind completeness**: \(\langle X, \preceq \rangle \) Dedekind complete.
Theorem (Cantor 1895): *(existence)* $\mathcal{X} = \langle X, \leq \rangle$ is a continuum if and only if \mathcal{X} isomorphic to $\langle \mathbb{R}^+, \leq \rangle$.

Theorem: *(uniqueness)* Let $\mathcal{X} = \langle X, \leq \rangle$ be a continuum and \mathcal{F} be the set of isomorphisms of \mathcal{X} onto $\langle \mathbb{R}^+, \leq \rangle$. Then for each f in \mathcal{F} $\mathcal{F} = \{ g \ast f \mid g \text{ is a strictly increasing function from } \mathbb{R}^+ \text{ onto } \mathbb{R}^+ \}$.
Scale Families

Let Y be a nonempty set. A **scale family** (or **scale**) on Y is a nonempty set of functions from Y onto a subset of \mathbb{R}.

Let \mathcal{F} be a scale family on Y. Then the elements of \mathcal{F} are called **measuring functions**.
Some Scale Types

\(\mathcal{F} \) is said to be a **ratio scale** if and only if

1. \(\mathcal{F} \) is a scale family, and
2. for any \(f \) in \(\mathcal{F} \),
 \[
 \mathcal{F} = \{ rf \mid r \in \mathbb{R}^+ \}.
 \]

\(\mathcal{F} \) is said to be an **interval scale** if and only if

1. \(\mathcal{F} \) is a scale family, and
2. for any \(f \) in \(\mathcal{F} \),
 \[
 \mathcal{F} = \{ rf + s \mid r \in \mathbb{R}^+ \& s \in \mathbb{R} \}.
 \]

\(\mathcal{F} \) is said to be an **ordinal scale** if and only if

1. \(\mathcal{F} \) is a scale family, and
2. for any \(f \) in \(\mathcal{F} \), \(\mathcal{F} = \{ g \ast f \mid g \) is a strictly increasing function from \(\mathbb{R}^+ \) onto \(\mathbb{R}^+ \} \).
Extend the modern representational approach by replacing extensive structures with structures of the form $\langle X, \preceq, \oplus \rangle$ satisfying the same axioms as extensive structures, except possibly associativity. Such structures are called PCSs (with a partial operation), or just PCSs when the operation is closed.

In particular, Narens & Luce showed that the major results of *Foundations of Measurement, Vol. 1* could be generalized using PCSs with partial or closed operations in place of extensive structures.
Existence & Uniqueness of Representations

\[\mathcal{X} = \langle X, \preceq, \oplus \rangle \] is a PCS.

Narens & Luce’s formulation of PCSs with partial or closed operations used the following axiom: half elements: for each \(x \) there exists \(y \) such that \(y \oplus y = x \).

With half-elements they showed that there exist a structure \(\mathcal{N} = \langle R, \leq, \oplus \rangle, R \subseteq \mathbb{R}^+ \), such that

- (existence) there exists an isomorphism from \(\mathcal{X} \) onto \(\mathcal{N} \), and
- (uniqueness) for all isomorphisms \(\varphi \) and \(\psi \) from \(\mathcal{X} \) onto \(\mathcal{N} \), if for some \(a \) in \(X \), \(\varphi(a) = \psi(a) \), then \(\varphi = \psi \).
\(\mathcal{X} = \langle X, \preceq, \oplus \rangle \) is a PCS with a partial or closed operation. Then \(\alpha \) is said to be a \textbf{symmetry} of \(\mathcal{X} \) if and only if \(\alpha \) is a function from \(X \) onto itself such that for all \(x \) and \(y \) in \(X \),

\[
x \preceq y \iff \alpha(x) \preceq \alpha(y)
\]

and

\[
\alpha(x \oplus y) = \alpha(x) \oplus \alpha(y).
\]

\(\mathcal{X} \) is said to be \textbf{homogeneous} if and only if for all \(a \) and \(b \) in \(X \), there exists a symmetry \(\alpha \) of \(\mathcal{X} \) such that \(\alpha(a) = b \).
Cohen & Narens (1979)

Cohen: Half-elements not needed. His method of proof used symmetries.

Narens: Homogeneous PCSs are ratio scalable.

A PCS $\mathcal{X} = \langle X, \preceq, \oplus \rangle$ is said to be **homogeneous** if and only if for each x and y in X there exists a symmetry α of \mathcal{X} such that

$$\alpha(x) = y.$$
n-copy operator

\(\mathcal{X} = \langle X, \preceq, \oplus \rangle \) is a PCS.

Let \(1x = x \) and for each positive integer \(n \), let
\((n + 1)x = (nx) \oplus x \). \(nx \) is called the \textit{n-copy operator} of \(\mathcal{X} \).

Theorem The following two statements are equivalent:

1. \(\mathcal{X} \) is homogeneous.

2. For each positive integer \(n \), the \textit{n-copy operator} is a symmetry of \(\mathcal{X} \).
Examples of PCSs

(1) $\langle \mathbb{R}^+, \leq, + \rangle$.

(2) $\langle \mathbb{R}^+, \leq, \oplus_1 \rangle$, where $r \oplus_1 s = r + s + r^{\frac{1}{3}} s^{\frac{2}{3}}$.

(3) $\langle \mathbb{R}^+, \leq, \oplus_2 \rangle$, where $r \oplus_1 s = r + s + r^2 s^2$.

(1) and (2) are homogeneous with multiplications by positives reals as their symmetries.

(3) has the identity as its only symmetry.
Unit Representations

Theorem Suppose $\mathcal{X} = \langle X, \preceq, \oplus \rangle$ a homogeneous PCS, $R \subseteq \mathbb{R}^+$, and φ is an isomorphism of $\langle X, \preceq, \oplus \rangle$ onto $\langle R, \leq, \odot \rangle$. Then the following two statements hold:

1. **Unit Representation**: There exists a function on R such that for all r and s in R,

 $$ r \odot s = s \cdot f \left(\frac{r}{s} \right). $$

2. $\langle X, \preceq, \oplus \rangle$ is an extensive structure if and only if $f(x) = 1 + x$.

PCSs with unit representations produce ratio scale representations and they can be used to generalize extensive measurement and its uses.
(1) Generalized the Cohen & Narens to arbitrary qualitative structures
\[\mathcal{X} = \langle X, R_1, \ldots, R_i \rangle \]
to produce an even more general theory of ratio scale measurement.

(2) Developed a general theory for derived measurement scales for functions of several ratio scalable variables.
Luce & Cohen (1983)

Extended Narens (1981a) to situations involving interval scalable structures, e.g., structures isomorphic to

\[\langle \mathbb{R}, \leq, \oplus \rangle, \text{ where } r \oplus s = \frac{r + s}{2}. \]

(If an interval scalable structure is properly measurable by \(\varphi \), then all other proper measures are of the form \(r\varphi + s \), where \(r > 0 \) and \(s \) is real.)
Luce & Narens (1985)

Synthesized, reformulated, and extended the results of the previous mentioned articles concerning PCSs and its generalizations.

Applied the theory to utility theory, and provided a measurement-theoretic formulation of rank dependent utility theory for two outcome gambles.

Luce (2000) **Utility of Gains and Losses**