Chapter 5: Probability Representations
Definition

Suppose that X is a nonempty set (sample space) and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is an algebra of sets on X iff, for every $A, B \in \mathcal{E}$:

1. $-A \in \mathcal{E}$.
2. $A \cup B \in \mathcal{E}$.
Definition

Suppose that X is a nonempty set (sample space) and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is an algebra of sets on X iff, for every $A, B \in \mathcal{E}$:

1. $-A \in \mathcal{E}$.
2. $A \cup B \in \mathcal{E}$

Furthermore, if \mathcal{E} is closed under countable unions, the \mathcal{E} is called a σ-algebra on X.
Kolmogorov Axioms

Definition

Suppose that X is a nonempty set, that that \mathcal{E} is an algebra of sets on X, and that P is a function from \mathcal{E} into the real numbers. The triple $\langle X, \mathcal{E}, P \rangle$ is a (finitely additive) probability space iff, for every $A, B \in \mathcal{E}$:

1. $P(A) \geq 0$.
2. $P(X) = 1$.
3. If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.
Kolmogorov Axioms

Definition

It is a probability space \(\langle X, \mathcal{E}, P \rangle \) is **countably additive** if in addition:

1. \(\mathcal{E} \) is a \(\sigma \)-algebra on \(X \).
2. If \(A_i \in \mathcal{E} \) and \(A_i \cap A_j = \emptyset, i \neq j \), then

\[
P \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} P(A_i).\]
finite X + algebra $\Rightarrow \sigma$-algebra

finite X + probability space \Rightarrow countably additive probability space

$\langle X, \mathcal{E}, P \rangle$ measure space + $P(X) = 1$ $\iff \langle X, \mathcal{E}, P \rangle$ countably additive probability space

Non-countably-additive probability space \iff infinite X + (non-σ) algebra
Necessary Conditions

Definition

Suppose that X is a nonempty set, that \mathcal{E} is an algebra of sets on X, and that \succsim is a relation on \mathcal{E}. The triple $\langle X, \mathcal{E}, \succsim \rangle$ is a **structure of qualitative probability** iff for every $A, B, C \in \mathcal{E}$:

1. $\langle \mathcal{E}, \succsim \rangle$ is a weak ordering.
2. $X \succsim \emptyset$ and $A \succsim \emptyset$.
3. Suppose that $A \cap B = A \cap C = \emptyset$. Then $B \succsim C$ iff $A \cup B \succsim A \cup C$.
Necessary Conditions

Definition

Suppose \mathcal{E} is an algebra of sets an that \sim is an equivalence relation on \mathcal{E}. A sequence A_1, \ldots, A_i, \ldots, where $A_i \in \mathcal{E}$, is a standard sequence relative to $A \in \mathcal{E}$ iff there exist $B_i, C_i \in \mathcal{E}$ such that:

(i) $A_1 = B_1$ and $B_1 \sim A$;
(ii) $B_i \cap C_i = \emptyset$;
(iii) $B_i \sim A_i$;
(iv) $C_i \sim A$;
(v) $A_{i+1} = B_i \cup C_i$.

A structure of qualitative probability is **Archimedean** iff, for every $A \succ \emptyset$, any standard sequence relative to A is finite.
Nonsufficiency of Qualitative Probability

Let $X = \{a, b, c, d, e\}$ and let \mathcal{E} be all subsets of X. Consider any order for which

\[(1)\] \{a\} \succ \{b, c\}, \quad \{c, d\} \succ \{a, b\} \quad \text{and} \quad \{b, e\} \succ \{a, c\}.

Let \(X = \{a, b, c, d, e\} \) and let \(\mathcal{E} \) be all subsets of \(X \). Consider any order for which

\[
\text{(1) } \{a\} \succ \{b, c\}, \quad \{c, d\} \succ \{a, b\} \quad \text{and} \quad \{b, e\} \succ \{a, c\}.
\]

Proposition

If the relation \(\succ \) on \(\mathcal{E} \) satisfies (1) and has an order-preserving (finitely additive) probability representation, then

\[
\{d, e\} \succ \{a, b, c\}.
\]

Proposition

There is a relation \(\succ \) such that \(\langle X, \mathcal{E}, \succ \rangle \) is a structure of qualitative probability and \(\{a, b, c\} \succ \{d, e\} \).
A probability representation has **metrical structure** that a (Archimedean) structure of qualitative probability does not.
Lesson?

A probability representation has **metrical structure** that a (Archimedean) structure of qualitative probability does not.

Recall that, to solve this sort of problem wrt extensive measurement, we had axiom (4) in Definition 3 of Chapter 3 (p. 84). Why not impose a similar axiom here?
Lesson?

A probability representation has **metrical structure** that a (Archimedean) structure of qualitative probability does not.

Recall that, to solve this sort of problem wrt extensive measurement, we had axiom (4) in Definition 3 of Chapter 3 (p. 84). Why not impose a similar axiom here?

*What a great idea! Let’s call it ‘Axiom 5’.***
Sufficient Conditions

Axiom 5

Suppose \(\langle X, \mathcal{E}, \succsim \rangle \) is a structure of qualitative probability. If \(A, B, C, D \in \mathcal{E} \) are such that \(A \cap B = \emptyset \), \(A \succ C \), and \(B \succsim D \), then there exist \(C', D', E \in \mathcal{E} \) such that:

(i) \(E \sim A \cup B \);

(ii) \(C' \cap D' = \emptyset \);

(iii) \(E \supset C' \cup D' \);

(iv) \(C' \sim C \) and \(D' \sim D \).
Proposition

If a finite structure of qualitative probability satisfies Axiom 5, then its equivalence classes form a single standard sequence.
Sufficient Condition

Proposition
If a finite structure of qualitative probability satisfies Axiom 5, then its equivalence classes form a single standard sequence.

Similar to “Lego blocks” in the case of extensive measurement.
Theorem 2

Suppose that \(\langle X, \mathcal{E}, \succsim \rangle \) is an Archimedean structure of qualitative probability for which Axiom 5 holds, then there exists a unique order-preserving function \(P \) such that \(\langle X, \mathcal{E}, P \rangle \) is a finitely additive probability space.
Countably Additive Representation

Definition

Suppose that $\langle X, E, \succsim \rangle$ is a structure of qualitative probability and that E is a σ-algebra. We say that \succsim is monotonically continuous on E iff for any sequence A_1, A_2, \ldots in E and any $B \in E$, if $A_i \subseteq A_{i+1}$ and $B \succsim A_i$, for all i, then $B \succsim \bigcup_{i=1}^{\infty} A_i$.

Theorem 4

A finitely additive probability representation of a structure of qualitative probability, on a σ-algebra, is countably additive iff the structure is monotonically continuous.
Countably Additive Representation

Definition

Suppose that $\langle X, \mathcal{E}, \succsim \rangle$ is a structure of qualitative probability and that \mathcal{E} is a σ-algebra. We say that \succsim is monotonically continuous on \mathcal{E} iff for any sequence A_1, A_2, \ldots in \mathcal{E} and any $B \in \mathcal{E}$, if $A_i \subset A_{i+1}$ and $B \succsim A_i$, for all i, then $B \succsim \bigcup_{i=1}^{\infty} A_i$.
Countably Additive Representation

Definition

Suppose that \(\langle X, \mathcal{E}, \succ \rangle \) is a structure of qualitative probability and that \(\mathcal{E} \) is a \(\sigma \)-algebra. We say that \(\succ \) is monotonically continuous on \(\mathcal{E} \) iff for any sequence \(A_1, A_2, \ldots \) in \(\mathcal{E} \) and any \(B \in \mathcal{E} \), if \(A_i \subset A_{i+1} \) and \(B \succ A_i \), for all \(i \), then \(B \succ \bigcup_{i=1}^{\infty} A_i \).

Theorem 4

A finitely additive probability representation of a structure of qualitative probability, on a \(\sigma \)-algebra, is countably additive iff the structure is monotonically continuous.
Countably Additive Representation

Definition

Let \succsim be a weak ordering of an algebra of sets \mathcal{E}. An even $A \in \mathcal{E}$ is an atom iff $A \succsim \mathcal{E}$ and for any $B \in \mathcal{E}$, if $A \supset B$, then $A \sim B$ or $B \sim \emptyset$.

Countably Additive Representation

Definition

Let \succsim be a weak ordering of an algebra of sets \mathcal{E}. An even $A \in \mathcal{E}$ is an atom iff $A \succsim \mathcal{E}$ and for any $B \in \mathcal{E}$, if $A \supset B$, then $A \sim B$ or $B \sim \emptyset$.

Theorem 5

Suppose that $\langle X, \mathcal{E}, \succsim \rangle$ is a structure of qualitative probability, \mathcal{E} is a σ-algebra, and there are no atoms. Then there is a unique order preserving probability representation, and it is countably additive.
QM-Algebra

Suppose that X is a nonempty set and that E is a nonempty family of subsets of X. Then E is a QM-algebra of sets on X iff,

1. $-A \in E$;
2. If $A \cap B = \emptyset$, then $A \cup B \in E$.

Furthermore, if E is closed under countable unions of mutually disjoint sets, then E is called a QM σ-algebra.
QM-Algebra

Definition

Suppose that X is a nonempty set and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is a QM-algebra of sets on X iff, for every $A, B \in \mathcal{E}$

1. $-A \in \mathcal{E}$;
2. If $A \cap B = \emptyset$, then $A \cup B \in \mathcal{E}$.

Furthermore, if \mathcal{E} is closed under countable unions of mutually disjoint sets, then \mathcal{E} is called a QM σ-algebra.
Axiom 3′

Suppose that $A \cap B = C \cap D = \emptyset$. If $A \succ C$ and $B \succ D$, then $A \cup B \succ C \cup D$; moreover, if either hypothesis is \prec, then the conclusion is \succ.
Axiom 3′
Suppose that $A \cap B = C \cap D = \emptyset$. If $A \succ C$ and $B \succ D$, then $A \cup B \succ C \cup D$; moreover, if either hypothesis is \succ, then the conclusion is \succ.

Theorem 3
If \mathcal{E} is a QM-algebra and if $\langle X, \mathcal{E}, \succ \rangle$ satisfies Axioms 1, 2, 3′, 4, and 5, then there is a unique order-preserving (finitely additive) probability representation on \mathcal{E}.
Independent Events
Necessary Conditions

Definition
Suppose \mathcal{E} is an algebra of sets on X and \perp is a binary relation on \mathcal{E}. Then \perp is an independence relation iff

1. \perp is symmetric.
2. For $A \in \mathcal{E}$, $\{B \mid A \perp B\} \subset \mathcal{E}$ is a QM-algebra.
Independent Events

Necessary Conditions

Definition
Suppose \mathcal{E} is an algebra of sets on X and \perp is a binary relation on \mathcal{E}. Then \perp is an independence relation iff

1. \perp is symmetric.

2. For $A \in \mathcal{E}$, $\{B \mid A \perp B\} \subset \mathcal{E}$ is a QM-algebra.

Definition
Let \mathcal{E} be an algebra of sets and \perp an independence relation on \mathcal{E}. For $m \geq 2$, $A_1, \ldots, A_m \in \mathcal{E}$ are \perp-independent iff, for every $M \subset \{1, \ldots, m\}$, every B in the smallest subalgebra containing $\{A_i \mid i \in M\}$, and every C in the smallest subalgebra containing $\{A_i \mid i \notin M\}$, we have $B \perp C$.
Independent Events
Necessary Conditions

Definition
Suppose that \(\langle X, \mathcal{E}, \preceq \rangle \) is a structure of qualitative probability and \(\perp \) is an independence relation on \(\mathcal{E} \). The quadruple \(\langle X, \mathcal{E}, \preceq, \perp \rangle \) is a structure of qualitative probability with independence iff

3. Suppose that \(A, B, C, D \in \mathcal{E} \), \(A \perp B \), and \(C \perp D \). If \(A \preceq C \) and \(B \succeq D \), then \(A \cap B \preceq C \cap D \); moreover, if \(A \succ C \), \(B \succ D \), and \(B \succ \emptyset \), then \(A \cap B \succ C \cap D \).
Structural Condition

Definition

The structure $\langle X, \mathcal{E}, \succsim, \bot \rangle$ is **complete** iff the following additional axiom holds:

4. For any $A_1, \ldots, A_m, A \in \mathcal{E}$, there exists $A' \in \mathcal{E}$ with $A' \sim A$ and $A' \perp A_i$. Moreover, if A_1, \ldots, A_m are \bot-independent, then A' can be chosen so that A_1, \ldots, A_m, A' are also \bot-independent.
Definition

Suppose \(\langle X, \mathcal{E}, \succsim, \perp \rangle \) is a structure of qualitative probability with independence. Let \(\mathcal{N} = \{ A \mid A \sim \emptyset \} \subset \mathcal{E} \). If \(A, C \in \mathcal{E} \) and \(B, D \in \mathcal{E} - \mathcal{N} \), define

\[
A \mid B \succsim' C \mid D
\]

iff there exist \(A', B', C', D' \in \mathcal{E} \) with

\[
A' \sim A \cap B, \quad B' \sim B, \quad C' \sim C \cap D, \quad D' \sim D ;
\]

\[
A' \perp D' \quad \text{and} \quad C' \perp B' ;
\]

and

\[
A' \cap D' \succsim C' \cap B'.
\]
Conditional Probability

Definition

The structure $\langle X, E, \succsim, \bot \rangle$ is Archimedean iff every standard sequence is finite, where $\{A_i\}$ is a standard sequence iff for all i, $A_i \in E - \mathcal{N}$, $A_{i+1} \supset A_i$, and

\[X \succsim X \succsim A_i | A_{i+1} \sim A_1 | A_2. \]
Axiom 8

If $A|B \preceq' C|D$, then there exists $C' \in \mathcal{E}$ such that $C \cap D \subset C'$ and $A|B \sim' C'|D$.
Conditional Probability

Axiom 8

If $A|B \simeq^* C|D$, then there exists $C' \in \mathcal{E}$ such that $C \cap D \subset C'$ and $A|B \sim^* C'|D$.

* Axiom 8 is somewhere in strength between Axiom 5 and Axiom 5'. In particular, it requires an infinite sample space.
Theorem 7

Suppose that \(\langle X, \mathcal{E}, \succsim, \bot \rangle \) is an Archimedean and complete structure of qualitative probability with independence such that Axiom 8 is satisfied. Then there is a unique probability representation in which conditional probabilities preserve \(\succsim' \).
Conditional Probability

Theorem 7

Suppose that $\langle X, \mathcal{E}, \succsim, \perp \rangle$ is an Archimedean and complete structure of qualitative probability with independence such that Axiom 8 is satisfied. Then there is a unique probability representation in which conditional probabilities preserve \succsim'.

* Axiom 8 is somewhere in strength between Axiom 5 and Axiom 5'. In particular, it requires an infinite sample space.
Chapter 6:
Additive Conjoint Measurement
Decomposable Structures

Definition

Let A_1, A_2 be nonempty sets, and let \preceq be a weak ordering on $A_1 \times A_2$. The triple $\langle A_1, A_2, \preceq \rangle$ is decomposable if there are real valued functions $\phi_1 : A_1 \to \mathbb{R}$, $\phi_2 : A_2 \to \mathbb{R}$, and $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, where F is 1-1 in each variable, such that, for all $a, b \in A_1$ and $p, q \in A_2$,

$$ap \preceq bq \text{ iff } F[\phi_1(a), \phi_2(p)] \geq F[\phi_1(b), \phi_2(q)].$$
A decomposable structure $\langle A_1, A_2, \succsim \rangle$ is additively independent if, for all $a, b \in A_1$ and $p, q \in A_2$,

$$ap \succsim bq \text{ iff } \phi_1(a) + \phi_2(p) \geq \phi_1(b) + \phi_2(q).$$
Examples

Proposition
Suppose \(\langle A_1, A_2, \succeq \rangle \) is a decomposable structure such that

\[
ap \succeq bq \quad \text{iff} \quad \psi_1(a)\psi_2(p) \geq \psi_1(b)\psi_2(q),
\]

for positive real-valued functions \(\psi_1, \psi_2 \). Then \(\langle A_1, A_2, \succeq \rangle \) is additively independent.
Examples

Proposition

Suppose $\langle A_1, A_2, \succ \rangle$ is a decomposable structure such that

$$ ap \succ bq \iff \psi_1(a)\psi_2(p) \geq \psi_1(b)\psi_2(q), $$

for positive real-valued functions ψ_1, ψ_2. Then $\langle A_1, A_2, \succ \rangle$ is additively independent.

$$ ap \succ bq \iff \log \psi_1(a) + \log \psi_2(p) \geq \log \psi_1(b) + \log \psi_2(q) $$
Examples

Momentum

\[p = m v \]

\[m_1 v_1 \geq m_2 v_2 \quad \text{iff} \quad \log m_1 + \log v_1 \geq \log m_2 + \log v_2 \]
Independent Random Variables

Suppose Y_1, Y_2 are random variables on the same probability space, and let $\sigma(Y_i)$ be the smallest σ-algebra for which Y_i is continuous. Define \succeq on $\sigma(Y_1) \times \sigma(Y_2)$ by

$$ap \succeq bq \text{ iff } \Pr(a \cap p) \geq \Pr(b \cap q),$$

for all $a, b \in \sigma(Y_1)$ and $p, q \in \sigma(Y_2)$.

Proposition $\langle \sigma(Y_1), \sigma(Y_2), \succeq \rangle$ is additively independent if and only if X_1 and X_2 are independent.
Examples

Independent Random Variables
Suppose Y_1, Y_2 are random variables on the same probability space, and let $\sigma(Y_i)$ be the smallest σ-algebra for which Y_i is continuous. Define \succsim on $\sigma(Y_1) \times \sigma(Y_2)$ by

$$ap \succsim bq \iff Pr(a \cap p) \geq Pr(b \cap q),$$

for all $a, b \in \sigma(Y_1)$ and $p, q \in \sigma(Y_2)$.

Proposition
$\langle \sigma(Y_1), \sigma(Y_2), \succsim \rangle$ is additively independent if and only if X_1 and X_2 are independent.
Examples

Expected Utility

Suppose $\langle X, \mathcal{E}, Pr \rangle$ is a probability space and \mathcal{A} is a set of commodities with associated utility function U. Define \succeq on $\mathcal{E} \times \mathcal{A}$ by

$$ap \succeq bq \iff Pr(a)U(p) \geq Pr(b)U(q),$$

for all $a, b \in \mathcal{E}$ and $p, q \in \mathcal{A}$.
Definition

A relation \succeq on $A_1 \times A_2$ is independent iff, for all $a, b \in A_1$, $ap \succeq bp$ for some $p \in A_2$ implies that $aq \succeq bq$ for every $q \in A_2$; and, for all $p, q \in A_2$, $ap \succeq aq$ for some $a \in A_1$ implies that $bq \succeq bp$ for every $b \in A_1$.

* \succeq is an independent relation if $\langle A_1, A_2, \succeq \rangle$ is additively independent.
Necessary Conditions
Independence (a.k.a. single cancelation)

Definition

A relation \prec on $A_1 \times A_2$ is independent iff, for all $a, b \in A_1$, $ap \prec bp$ for some $p \in A_2$ implies that $aq \prec bq$ for every $q \in A_2$; and, for all $p, q \in A_2$, $ap \prec aq$ for some $a \in A_1$ implies that $bq \prec bp$ for every $b \in A_1$.

* \prec is an independent relation if $\langle A_1, A_2, \prec \rangle$ is additively independent.
Necessary Conditions
Independence (a.k.a. single cancelation)

Definition
Suppose that \(\preceq \) is an independent relation on \(A_1 \times A_2 \).

(i) Define \(\preceq_1 \) on \(A_1 \): for \(a, b \in A_1 \), \(a \preceq_1 b \) iff \(ap \preceq bp \) for some \(p \in A_2 \); and

(ii) define \(\preceq_2 \) on \(A_2 \) similarly.
Necessary Conditions
Independence (a.k.a. single cancelation)

Lemma 1
If \succsim is an independent weak ordering of $A_1 \times A_2$, then

(i) \succsim_i is a weak ordering of A_i.
(ii) For $a, b \in A_1$ and $p, q \in A_2$, if $a \succsim_1 b$ and $p \succsim_2 q$, then $ap \succsim bq$.
(iii) If either antecedent inequality of (ii) is strict, so is the conclusion.
(iv) For $a, b \in A_1$ and $p, q \in A_2$, if $ap \sim bq$, then $a \succsim_1 b$ iff $q \succsim_2 p$.
A relation \succeq on $A_1 \times A_2$ satisfies **double cancelation** provided that, for every $a, b, f \in A_1$ and $p, q, x \in A_2$, if $ax \succeq fq$ and $fp \succeq bx$, then $ap \succeq bq$. The weaker condition in which \succeq is replaced by \sim is the **Thomsen condition**.
Necessary Conditions
Archimedean Axiom

Definition
Suppose \(\succeq \) is an independent weak ordering of \(A_1 \times A_2 \). For any set \(N \) of consecutive integers (positive or negative, finite or infinite), a set \(\{ a_i \mid a_i \in A_1, i \in N \} \) is a standard sequence on component 1 iff there exists \(p, q \in A_2 \) such that not(\(p \sim_2 q \)) and, for all \(i, i + 1 \in N \), \(a_ip \sim a_{i+1}q \). A parallel definition holds for the second component.
Necessary Conditions

Archimedean Axiom

Definition

Suppose \succ is an independent weak ordering of $A_1 \times A_2$. For any set N of consecutive integers (positive or negative, finite or infinite), a set $\{a_i \mid a_i \in A_1, i \in N\}$ is a standard sequence on component 1 iff there exists $p, q \in A_2$ such that not$(p \sim_2 q)$ and, for all $i, i+1 \in N$, $a_ip \sim a_{i+1}q$. A parallel definition holds for the second component.

Definition

A standard sequence on component 1 $\{a_i \mid i \in N\}$ is strictly bounded iff there exist $a, b \in A_2$ such that, for all $i \in N$, $c \succ_1 a_i \succ_1 b$. A parallel definition holds for the second component.
necessary conditions

archimedean axiom

definition

Suppose \(\succsim \) is an independent weak ordering of \(A_1 \times A_2 \). \(\langle A_1, A_2, \succsim \rangle \) is Archimedean iff every strictly bounded standard sequence (on either component) is finite.
A relation \(\succsim \) on \(A_1 \times A_2 \) satisfies **unrestricted solvability** provided that, given three of \(a, b \in A_1 \) and \(p, q \in A_2 \), the fourth exists so that \(ap \sim bq \).
Sufficient Condition

Solvability

Definition

A relation \(\succcurlyeq \) on \(A_1 \times A_2 \) satisfies restricted solvability provided that:

(i) whenever there exist \(a, \bar{b}, \underline{b} \in A_1 \) and \(p, q \in A_2 \) for which \(\bar{b}q \succcurlyeq ap \succcurlyeq bq \), then there exists \(b \in A_1 \) such that \(bq \sim ap \);

(ii) a similar condition holds on the second component.
Definition

Suppose that \succsim is a relation on $A_1 \times A_2$. Component A_1 is **essential** iff there exist $a, b \in A_1$ and $p \in A_2$ such that not($ap \sim bp$). A similar definition holds for A_2.
Definition
Suppose that \sim is a relation on $A_1 \times A_2$. Component A_1 is essential iff there exist $a, b \in A_1$ and $p \in A_2$ such that not($ap \sim bp$). A similar definition holds for A_2.

Lemma 2
Suppose that \succsim is an independent relation on $A_1 \times A_2$. Then component A_1 is essential iff there exist $a, b \in A_1$ such that $a \succsim_1 b$.
Additive Conjoint Structure

Definition

Suppose that A_1 and A_2 are nonempty sets and \succeq is a binary relation on $A_1 \times A_2$. The triple $\langle A_1, A_2, \succeq \rangle$ is an additive conjoint structure iff \succeq satisfies the following six axioms:

1. Weak ordering
2. Independence
3. Thomsen condition
4. Restricted solvability
5. Archemedean property
6. Each component is essential

The structure is symmetric iff, in addition,

7. For $a, b \in A_1$, there exist $p, q \in A_2$ such that $ap \sim bq$, and for $p', q' \in A_2$, there exist $a', b' \in A_1$ such that $a'p' \sim b'q'$.
Theorem 1
Suppose $\langle A_1, A_2, \succsim \rangle$ is a structure for which the weak ordering, double cancellation, unrestricted solvability, and the Archimedean axioms hold. If at least one component is essential, then $\langle A_1, A_2, \succsim \rangle$ is a symmetric, additive conjoint structure.
Theorem 2

Suppose $\langle A_1, A_2, \succsim \rangle$ is an additive conjoint structure. Then there exist functions $\phi_i : A_i \to \mathbb{R}$ such that, for all $a, b \in A_1$ and $p, q \in A_2$,

$$ap \succsim bq \text{ iff } \phi_1(a) + \phi_2(p) \geq \phi_1(b) + \phi_2(q).$$

If ϕ'_i are two other functions with the same property, then there exists constants $\alpha > 0, \beta_1$ and β_2 such that

$$\phi'_1 = \alpha \phi_1 + \beta_1 \quad \text{and} \quad \phi'_2 = \alpha \phi_2 + \beta_2.$$
Representation Theorem
Uniqueness of multiplicative representation

Proposition
Suppose \(\langle A_1, A_2, \succeq \rangle \) is an additive conjoint structure. Then there exist functions \(\psi_i : A_i \to \mathbb{R}^+ \) such that, for all \(a, b \in A_1 \) and \(p, q \in A_2 \),

\[
ap \preceq bq \quad \text{iff} \quad \psi_1(a)\psi_2(p) \geq \psi_1(b)\psi_2(q).
\]

If \(\psi'_i \) are two other functions with the same property, then there exists constants \(\alpha > 0, \beta_1 \) and \(\beta_2 \) such that

\[
\phi'_1 = \beta_1 \psi_1^\alpha \quad \text{and} \quad \psi'_2 = \beta_2 \psi_2^\alpha.
\]
Suppose $\langle A_1, A_2, \succcurlyeq \rangle$ is a symmetric, additive conjoint structure. It is bounded iff there are $\bar{a}, \tilde{a} \in A_1$, $\bar{p}, \tilde{p} \in A_2$ such that

$$\bar{a} \bar{p} \sim \tilde{a} \tilde{p}$$

and, for $a \in A_1$ and $p \in A_2$,

$$\tilde{a} \succcurlyeq_1 a \succcurlyeq_1 a \text{ and } \tilde{p} \succcurlyeq_2 p \succcurlyeq_2 p.$$
Moreover, for \(a, b \in A_1\), we define:
\[
\pi(a) \in A_2
\]
as the (unique up to \(\sim_2\)) solution to
\[
a \pi(a) \sim a \pi(b);
\]
\[
B_1 = \\{ab | a, b \succ_1 a \text{ and } \bar{a} \pi \succeq a \pi(b)\};
\]
for \(ab \in B_1\),
\[
a \circ b
\]
is the (unique up to \(\sim_1\)) solution to
\[
(a \circ b) \sim a \pi(b).
\]
Similar definitions hold for \(A_2\) with \(\alpha(p)\) playing the role of \(\pi(a)\).

Lemma 5

If \(\langle A_1, A_2, \succeq \rangle\) is a bounded, symmetric, additive conjoint structure, and if \(B_1\) is nonempty, then \(\langle A_1, \succeq_1, B_1, \circ \rangle\) is an extensive structure with no essential maximum.
Moreover, for \(a, b \in A_1\), we define: \(\pi(a) \in A_2\) as the (unique up to \(\sim_2\)) solution to \(a\pi(a) \sim ap\); \(B_1 = \{ab \mid a, b \succ_1 a \text{ and } \bar{ap} \succ \bar{a}\pi(b)\}\); for \(ab \in B_1\), \(a \circ b\) is the (unique up to \(\sim_1\)) solution to \((a \circ b)p \sim a\pi(b)\). Similar definitions hold for \(A_2\) with \(\alpha(p)\) playing the role of \(\pi(a)\).

Lemma 5

If \(\langle A_1, A_2, \succ \rangle\) is a bounded, symmetric, additive conjoint structure, and if \(B_1\) is nonempty, then \(\langle A_1, \succ_1, B_1, \circ \rangle\) is an extensive structure with no essential maximum.
Define the dual relations \(\preceq^{'} \) and \(\preceq^{''} \) as follows:

\[
ap \preceq^{'} b \iff aq \preceq^{''} bp
\]

Theorem 5

If two relations are dual, then transitivity and double cancellation are dual properties, and independence, restricted and unrestricted solvability, and the Archemedean property are self-dual properties.
Define the dual relations \preceq' and \preceq' as follows:

$$ap \preceq bq \text{ iff } aq \preceq' bp.$$

Theorem 5

If two relations are dual, then transitivity and double cancellation are dual properties, and independence, restricted and unrestricted solvability, and the Archimedean property are self-dual properties.