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We consider various curious features of general relativity, and relativistic field theory, in two spacetime
dimensions. In particular, we discuss: the vanishing of the Einstein tensor; the failure of an initial-value
formulation for vacuum spacetimes; the status of singularity theorems; the non-existence of a Newto-
nian limit; the status of the cosmological constant; and the character of matter fields, including perfect
fluids and electromagnetic fields. We conclude with a discussion of what constrains our understanding of
physics in different dimensions.
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1. Introduction

Philosophers of physicsdand conceptually-oriented mathe-
matical physicistsdhave gained considerable insight into the
foundations and interpretation of our best physical theories,
including general relativity, non-relativistic quantum theory, and
quantum field theory, by studying the relationships between these
theories and other “nearby” theories. For instance, one can better
understand general relativity by studying its relationship to New-
tonian gravitation, particularly in the form of geometrized New-
tonian gravitation (i.e. Newton-Cartan theory)1; or by considering
its relationship to other relativistic theories of gravitation.2 Like-
wise, formulating classical mechanics in the language of Poisson
manifolds provides important resources for understanding the
letcher), jmanchak@uci.edu
neider), weatherj@uci.edu

itation, see Trautman (1965)
s that aim to use this theory
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2011, 2014, 2017a, 2017b),
all (2017), and Ehlers (1997).
), Pitts (2016), or Weatherall

998, 2017) for mathematical
hese ideas have been applied
and Feintzeig, (Le)Manchak,
structure of Hilbert space and quantum theory.3 And thinking
about classical field theory using nets of *-algebras on spacetime
can help us better understand quantum field theory.4

The key feature of projects of the sort just described is that they
are comparative: one draws out features of one theory by consid-
ering the ways in which it differs from other theories. But there is a
closely allied projectdor better, strategy for conceiving of proj-
ectsdthat, though often taken up by mathematical physicists, has
received considerably less attention in the philosophy of physics
literature.5 This strategy is to study the foundations of a physical
theory by considering features of that same theory in other di-
mensions. Doing so can provide insight into questions concerning,
for instance, whether inferences about the structure of the world
thatmake use of the theory in fact follow from the theory itself, or if
they depend on ancillary assumptions. For instance, (vacuum)
general relativity in four dimensions is, in a certain precise sense,
deterministic. But as we argue inwhat follows, this feature depends
on dimensionality; in two dimensions the theory, at least on one
understanding, does not have a well-posed initial value
formulation.
4 See, for instance, Brunetti, Fredenhagen, and Ribeiro (2012), Rejzner (2016), and
Feintzeig (2016b,c).

5 To our knowledge, the projects that come closest to this strategy are those that
evaluate arguments that spacetime must have a certain dimensionality (Callender,
2005); or those that consider the details of constructive quantum field theory,
which often considers lower-dimensional models (Hancox-Li, 2017; Ruetsche,
2011).
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A detailed study of the physics of different dimensions can also
reveal striking disanalogies between physics in different di-
mensions, which can then inform other projects. For instance, it is
common in the mathematical physics literature to consider quan-
tizing field theoriesdincluding general relativitydin lower di-
mensions.6 Doing so can provide important hints at what a full
theory of quantum gravity, say, might look like. Moreover, there is a
temptation to try to draw preliminary philosophical morals about
our own universe from these quantum theories in lower dimen-
sionsdparticularly among philosophers who prefer to work with
mathematically rigorous formulations of theories, which in the case
of quantum field theories are only available in lower dimensions.
But there are also reasons to be cautious about such hints: if clas-
sical theories, including general relativity, have very different fea-
tures in different dimensions, the inferences we can draw about
their quantum counterparts in those other dimensions may not
carry over to the four dimensional case.

In what follows, we investigate the features of general relativity
in two spacetime dimensions, on several ways of understanding
what that might mean. In the first instance, we suppose that Ein-
stein's equation holds in all dimensions. As we will show, the
resulting theory is strikingly different, in a number of important
ways, from the standard four dimensional theory. Of course, that
theories can differ dramatically in different dimensions is hardly
newsdespecially to the experts in mathematical physics whowork
on these theories in fewer (or more) than four dimensionsdand it
is well-known that general relativity in two dimensions is “path-
ological” or (arguably) “trivial”. But there are some features that we
discuss below that, to our knowledge, have not been drawn out in
detail in the literaturedincluding, for instance, the status of the
initial value formulation and the non-existence of a Newtonian
limit (where Newtonian gravitation is generalized by assuming that
the geometrized Poisson equation holds in all dimensions). More-
over, in our view it is valuable to collect these features of the two-
dimensional theory together in one place, and to reflect on what
they can teach us about the structure of general relativity more
generally. They also raise the question of what it means to identify
theories across dimensions, particularly when the ostensibly
“same” theory can have very different qualitative features in
different dimensions.

In the next section, we will discuss the status of the Einstein
tensordwhich vanishes identically in two dimensionsdand Ein-
stein's equation (without cosmological constant). In a sense, this is
the principal feature of two-dimensional general relativity from
which the other strange features follow. In the following section,
we will discuss the status of the initial value formulation and sin-
gularity theorems in two dimensions. Next we will consider New-
tonian gravitation in two dimensions, generalized as noted above,
and show that it is not the classical limit of general relativity. In the
following section, we will consider what happens when one in-
cludes a cosmological constant, exploring the consequences for the
character of some matter fields in two dimensions. We will then
discuss what it means to generalize a theory to different di-
mensions, by considering various arguments about alternative
formulations of the theory in two dimensions. We conclude by
arguing that the discussion here of how to generalize a theory to
other dimensions raises questions for a common view according to
which to interpret a physical theory is to characterize the space of
possibilities allowed by that theory.
6 See, for instance, Glimm and Jaffe (1987); for a discussion of quantum gravity in
particular, see Carlip (2003).
2. Einstein's tensor and Einstein's equation

We begin with a few preliminaries concerning the relevant
background formalism of general relativity.7 An n-dimensional
relativistic spacetime (for n � 2) is a pair ðM; gabÞ where M is a
smooth, connected n-dimensional manifold and gab is a smooth,
non-degenerate, pseudo-Riemannian metric of Lorentz signature
ðþ;�;…;�Þ defined on M.8

For each point p2M, the metric assigns a cone structure to the
tangent space Mp. Any tangent vector xa in Mp will be timelike if
gabx

axb >0, null if gabx
axb ¼ 0, or spacelike if gabx

axb <0. Null vectors
delineate the cone structure; timelike vectors are inside the cone
while spacelike vectors are outside. A time orientable spacetime is
one that has a continuous timelike vector field on M. A time ori-
entable spacetime allows one to distinguish between the future
and past lobes of the light cone. In what follows, it is assumed that
spacetimes are time orientable and that an orientation has been
chosen.

For some open (connected) interval I⊆ℝ, a smooth curve
g : I/M is timelike if the tangent vector xa at each point in g½I� is
timelike. Similarly, a curve is null (respectively, spacelike) if its
tangent vector at each point is null (respectively, spacelike). A curve
is causal if its tangent vector at each point is either null or timelike.
A causal curve is future directed if its tangent vector at each point
falls in or on the future lobe of the light cone. A curve g : I/M in a
spacetime ðM; gabÞ is a geodesic if xaVax

b ¼ 0, where xa is the
tangent vector to g and Va is the unique derivative operator
compatible with gab.

The fundamental dynamical principle of general relativity is
known as Einstein's equation. In four dimensions, Einstein's equa-
tion may be written, without cosmological constant, in natural
units as

Rab �
1
2
gabR ¼ 8pTab: (2.1)

Here Rab ¼ Rnabn is the Ricci tensor associated with gab and R ¼ Raa
is the curvature scalar. The left-hand side of this equation is known
as the Einstein tensor, often written Gab; the right-hand side is the
sum of the energy-momentum tensors associated with all matter
present in the universe and their interactions.

In the first instance, we generalize general relativity to other
dimensions by taking this expression to relate curvature and
energy-momentum in arbitrary dimensions (We will return to this
proposal in sections 5 and 6 and consider other possibilities.). In
particular, define, in a spacetime of any dimension, the Einstein
tensor to be Gab ¼ Rab � 1

2gabR.
We have the following immediate proposition.

Proposition 1. Let ðM; gabÞ be a two-dimensional spacetime. Then
Rab ¼ 1

2Rgab and Gab ¼ 0.

Proof. Given a pseudo-Riemannian manifold of any dimension
n � 2, the Riemann tensor Rabcd ¼ ganRnbcd is antisymmetric in the
first two indices and in the last two indices: Rabcd ¼ R½ab�½cd�. It fol-
lows that Rabcd can be written as a linear combination of outer
products of two-forms. But the space of two-forms on a two-
dimensional manifold is one-dimensional, and so we have
Rabcd ¼ f εabεcd, where εab is either volume element on M
7 The reader is encouraged to consult Hawking and Ellis (1973), Wald (1984), and
Malament (2012) for details.

8 We also assume M to be Hausdorff and paracompact. All objects that are can-
didates to be smooth in what follows are assumed to be so, even when not
mentioned explicitly.



11 Other arguments are available to support the claim that any viable candidate
for the Weyl tensor must vanish identically. For instance, in the proof of Prop. 1, we
show that Rabcd is proportional to the scalar curvature, and thus vanishes if and only
if its trace does.
12 In three dimensions, the Weyl tensor is defined, but vanishes identically;
conformal flatness is equivalent to the vanishing of a different tensor, known as the
Cotton tensor: Cabc ¼ VcRab � VbRac � 1

2ðn�1Þ ðVbRac � VcRabÞ. Observe that unlike
the Weyl tensor, the expression for the Cotton tensor is well-defined in two di-
mensions, but it follows from Prop. 1 that it vanishes identically. We are grateful to
Brian Pitts for pointing out an error related to the Weyl and Cotton tensors in an
earlier draft.
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determined by gab.
9 (Observe that f is independent of the choice,

since it is the square of the volume element that appears here; ifM
is non-orientable, one can proceed locally.) It follows, from stan-
dard identities concerning volume elements, that
Rab ¼ f enaebn ¼ fgab, and thus R ¼ 2f . Thus
Gab ¼ Rab � 1

2Rgab ¼ fgab � 1
2 ð2f Þgab ¼ 0.

Let us now draw out some of the consequences of Prop.1. First, it
follows, at least on this generalization of general relativity to other
dimensions, that every two-dimensional spacetime ðM; gabÞ is a
vacuum solution to Einstein's equation. It is tempting to conclude
from this result that there can be no matter in a two-dimensional
spacetime; in fact, this holds only if we assume that the total
energy-momentum tensor vanishes only if all matter fields vanish,
which is not necessarily true in two dimensions (We return to this
point in section 5).

Here is another consequence. Recall that in four dimensions,
vacuum spacetimes always have vanishing Ricci curvature
(Rab ¼ 0), but in general they have non-vanishing Weyl curvature,
which is defined by

Cabcd ¼ Rabcd �
2

n� 2

�
ga½dRc�b þ gb½cRd�a

�
� 2
ðn� 1Þðn� 2ÞRga½cgd�b: (2.2)

But the situation in two dimensions is strikingly different. In
particular, Prop. 1 immediately implies that being a vacuum solu-
tion in two dimensions does not imply that a spacetime has van-
ishing Ricci curvature. To the contrary, all solutions with non-
vanishing Ricci curvature are vacuum solutions.10

Conversely, there is a sense in which vacuum solutions in two
dimensions have vanishing Weyl curvature. To make this idea
precise requires some work. The reason is that the definition of the
Weyl tensor in Eq. (2.2) only makes sense in 3 or more dimensions.
Still, we can ask whether there is any tensor in two dimensions that
might be a suitable analog for the Weyl tensor. For instance, the
Weyl tensor is defined as the “trace-free” part of the Riemann
tensor, i.e., the trace-free tensor one gets by subtracting appropriate
terms linear in the Ricci tensor and the scalar curvature. To ask if a
candidate Weyl tensor is available in two dimensions, then, we
might consider tensors of the form

Cabcd ¼ Rabcd � k
�
ga½dRc�b þ gb½cRd�a

�
� [Rga½cgd�b;

where k and [ are unspecified constants. We then ask: for which
values of k and [ is this quantity trace-free, in the sense that
Cn

abn¼0?
The first thing to observe is that since Rab ¼ 1

2Rgab, the terms
proportional to k and [ are in fact proportional to one another. Thus,
by redefining constants, it is sufficient to consider only tensors of
the form

Cabcd ¼ Rabcd � kRga½cgd�b:

Taking the trace of both sides, we find that this will be trace-free
just in case

0 ¼ Rab þ
k
2
Rgab ¼ Rð1þ kÞ

2
gab;
9 Compare with Wald (1984, p. 54).
10 One can confirm that there exist two-dimensional spacetimes with non-
vanishing Ricci curvature by direct computation; an example is offered in section 4.
i.e., if k ¼ �1. A short calculation similar to the proof of Prop. 1 then
yields that

Cabcd ¼ Rabcd þ Rga½cgd�b ¼ 1
2
Rεabεcd �

1
2
Rεabεcd ¼ 0:

We thus have a sense in which the natural candidate for a two-
dimensional Weyl tensor is identically zero.11 To check that this
makes sense, recall that the vanishing of the Weyl tensor in four or
more dimensions is associated with a spacetime being “con-
formally flat”, in the sense that, at least locally, gab ¼ U2hab, where
hab is flat.

12 It turns out that something closely related holds in two
dimensions: there is no non-vanishing candidate for a Weyl tensor,
and all two-dimensional spacetimes are (locally) conformally flat13

Fact 2. Let ðM; gabÞ be a two dimensional spacetime. Then in some
neighborhood of every point, there exists a flat metric hab such that
gab ¼ U2hab in that neighborhood.

In sum, all two-dimensional relativistic spacetimes are vacuum
solutions to Einstein's equation in two dimensions. Moreover, these
spacetimes may be Ricci curved, but are always conformally
flatdeven in the presence of non-trivial Riemann curvature. This is
precisely the opposite of what we are accustomed to in four
dimensions.

3. Determinism and singularities

We now turn to another, in many ways more substantial, set of
consequences of Prop. 1. Recall that in four dimensions, general
relativity admits a well-posed initial value formulation for vacuum
solutions.14 In other words, if appropriate initial data are specified,
then there exists a unique vacuum solution that is the maximal
evolution of that data. The upshot of this result is a clear sense in
which “Laplacian determinism holds” in general relativity (Earman,
1986, p. 188).

To make this precise, we require some further preliminaries. We
say two spacetimes ðM; gabÞ and ðM0; g0abÞ are isometric if there is a
diffeomorphism. 4 : M/M0 such that 4�ðgabÞ ¼ g0ab. A spacetime
ðM; gabÞ is extendible if there exists a spacetime ðM0; g0abÞ and a
(proper) isometric embedding 4 : M/M0 such that 4ðMÞ3M0.
Here, the spacetime ðM0; g0abÞ is an extension of ðM; gabÞ. A space-
time is inextendible if it has no extension.

We say a curve g : I/M is notmaximal if there is another curve.
g0 : I0/M such that I is a proper subset of I0 and gðsÞ ¼ g0ðsÞ for all
s2I. A spacetime ðM; gabÞ is geodesically complete if every maximal
geodesic g : I/M is such that I ¼ ℝ. A spacetime is geodesically
incomplete if it is not geodesically complete.

For any two points p; q2M, we write p≪q if there exists a
future-directed timelike curve from p to q. We write p< q if there
exists a future-directed causal curve from p to q. These relations
allow us to define the timelike and causal pasts and futures of a point
13 The “local” qualification is very important here, and often dropped in informal
discussions. For instance, it is a consequence of the Gauss-Bonnet theorem that
there is no flat metric on the 2-sphere.
14 The non-vacuum case depends crucially on the type of matter being considered
(Wald, 1984, pp. 266e267).



15 If I�ðpÞ∩S is noncompact, then S is a poor choice of initial data set (e.g. the
spacelike hyperboloid contained in the causal past of a point in Minkowski
spacetime). See Earman (1995, p. 76).
16 See Geroch (1977) for an earlier definition and for a discussion of why a revision
was needed.
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p: I�ðpÞ ¼ fq : q≪pg, IþðpÞ ¼ fq : p≪qg, J�ðpÞ ¼ fq : q< pg, and
JþðpÞ ¼ fq : p< qg. Naturally, for any set S⊆M, define Jþ½S� to be the
set ∪fJþðxÞ : x2Sg and so on. A set S3M is achronal if S∩I�½S� ¼ Ø.

A point p2M is a future endpoint of a future-directed causal
curve g : I/M if, for every neighborhood O of p, there exists a point
t02I such that gðtÞ2O for all t > t0. A past endpoint is defined
similarly. A causal curve is future inextendible (respectively, past
inextendible) if it has no future (respectively, past) endpoint. If an
incomplete geodesic is timelike or null, there is a useful distinction
one can introduce. We say that a future-directed causal geodesic g :

I/M without future endpoint is future incomplete if there is an
r2ℝ such that s< r for all s2I. A past incomplete causal geodesic is
defined analogously.

For any set S⊆M, we define the past domain of dependence of S,
written D�ðSÞ, to be the set of points p2M such that every causal
curve with past endpoint p and no future endpoint intersects S. The
future domain of dependence of S, written DþðSÞ, is defined analo-
gously. The entire domain of dependence of S, writtenDðSÞ, is just the
set D�ðSÞ∪DþðSÞ. The edge of an achronal set S3M is the collection
of points p2S such that every open neighborhood O of p contains a
point q2IþðpÞ, a point r2I�ðpÞ, and a timelike curve from r to q
which does not intersect S. A set S3M is a slice if it is closed, ach-
ronal, andwithout edge. A spacetime ðM; gabÞwhich contains a slice
S such that DðSÞ ¼ M is said to be globally hyperbolic and the set S is
a Cauchy surface.

We define the future Cauchy horizon of S, denoted HþðSÞ, as the
set DþðSÞ � I�½DþðSÞ�. The past Cauchy horizon of S is defined
analogously. One can verify that HþðSÞ and H�ðSÞ are closed and
achronal. The Cauchy horizon of S, denoted HðSÞ, is the set
HþðSÞ∪H�ðSÞ. We have HðSÞ ¼ _DðSÞ and therefore HðSÞ is closed.
Also, a non-empty, closed, achronal set S is a Cauchy surface if and
only if HðSÞ ¼ Ø.

Now consider the triple ðS;hab; kabÞ. Here, S is a connected
manifold of dimension n� 1, hab is a Riemannian metric on S, and
kab is a symmetric field on S. Let(n�1)R be the scalar curvature of hab
and let Da be the unique derivative operator compatible with hab.
We take ðS;hab; kabÞ to be a (vacuum) initial data set if the following
constraint equations are satisfied (Wald, 1984, p. 259):

ðn�1ÞR� �kaa�2 þ kabk
ab ¼ 0;

Dbk
b
a�Dakbb¼0:

Let ðS;hab; kabÞ be an initial data set. We call a spacetime ðM; gabÞ
a maximal Cauchy development of ðS;hab; kabÞ if it has the following
properties: (i) ðM; gabÞ is a vacuum solution to Einstein's equation.
(ii) ðM; gabÞ is globally hyperbolic with Cauchy surface S. (iii) The
induced metric and extrinsic curvature of S are hab and kab. (iv)
Every other spacetime which satisfies (i)e(iii) can be mapped
isometrically into a subset of ðM; gabÞ. Note that, by property (iv), a
maximal Cauchy development of an initial data set ðS;hab; kabÞ is
unique. We can now state the following celebrated result.

Proposition 3. (Choquet-Bruhat and Geroch (1969)). Let
ðS;hab; kabÞ be an initial data set with S three-dimensional. There
exists a maximal Cauchy development of ðS;hab; kabÞ.

Sowe have a clear sense inwhich the state of the universe at any
particular “time” can be used to uniquely determine the state of the
universe at all other “times” if attention is restricted to spacetimes
that are four-dimensional vacuum solutions that are appropriately
maximal. Now, given that every two-dimensional spacetime is a
vacuum solution, it should not be too surprising that the above
proposition does not generalize. We have the following.
Proposition 4. Let ðS;hab; kabÞ be an initial data set with S one-
dimensional. There is no maximal Cauchy development of ðS;hab; kabÞ.

Proof. Let ðS;hab; kabÞ be an initial data set where S is one-
dimensional. Let us proceed indirectly: Suppose there exists a
maximal Cauchy development of ðS;hab; kabÞ and let this two-
dimensional spacetime be ðM; gabÞ. Let O3M be any open set
which is disjoint from S3M. Consider the spacetime ðM; g0abÞ
where g0ab ¼ U2gab andU : M/ℝ is a smooth, strictly positive scalar
function which is chosen so that UðpÞ ¼ 1 for all p2M � O and the
spacetimes ðM; gabÞ and ðM; g0abÞ are not isometric.

By Prop. 1 above, ðM; g0abÞ is a vacuum solution. Since ðM; gabÞ is
globally hyperbolic with Cauchy surface S, and is conformally
related to ðM; g0abÞ, the latter spacetime is globally hyperbolic with
Cauchy surface S as well. Because gab ¼ g0ab on M � O, the induced
metric and extrinsic curvature of S3M � O in the spacetime
ðM; g0abÞ are hab and kab respectively. Thus, by the definition of
maximal Cauchy development, ðM; g0abÞ can be isometrically
embedded into a subset ðM; gabÞ. But this is impossible since
ðM; gabÞ and ðM; g0abÞ are not isometric.

All by itself, the non-existence of maximal Cauchy de-
velopments in two-dimensional general relativity marks another
significant break from the usual four-dimensional case; there is a
kind of breakdown of determinism here that is not present in four
dimensions. But there is an interesting corollary one finds as well:
without maximal Cauchy developments, one loses an important
tool commonly used to distinguish between “physically reason-
able” and “physically unreasonable” models of general relativity.
Take, for example, the “cosmic censorship conjecture” (Penrose,
1979) which is the idea that all “physically reasonable” space-
times are free of the “ghastly pathologies of naked singularities”
(Earman, 1995, p. 66). The physical formulation of one influential
version of the conjecture is this: “All physically reasonable space-
times are globally hyperbolic” (Wald, 1984, p. 304).

To express the statement more precisely, we require a further
definition. We will say that a spacetime ðM; gabÞ is strongly causal if
for any point p2M, and any neighborhood O of p, there exists a
neighborhood V⊆O of p such that no causal curve intersects Vmore
than once. The cosmic censorship hypothesis may then be
expressed as follows (Geroch & Horowitz, 1979; Wald, 1984).

Conjecture 5. Let ðS;hab; kabÞ be an initial data set with S three-
dimensional. If the maximal Cauchy development of this initial data is
extendible, for each p2HþðSÞ in any extension, either strong causality
is violated at p or I�ðpÞ∩S is noncompact.15

Given that maximal Cauchy developments do not exist in two
dimensions, how might one express (a version of) the cosmic
censorship conjecture in a general way?

Let ðK; gabÞ be a globally hyperbolic spacetime. Let 4 : K/K 0 be
an isometric embedding into a spacetime ðK 0; gab0Þ. We say ðK 0; g0abÞ
is an effective extension of ðK; gabÞ if, for some Cauchy surface S in
ðK; gabÞ, 4½K� is a proper subset of intðDð4½S�ÞÞ and 4½S� is achronal.
Hole-freeness can then be defined as follows.16 A spacetime ðM; gabÞ
is hole-free if, for every set K⊆M such that ðK; gabÞ is a globally hy-
perbolic spacetime with Cauchy surface S, if ðK 0; gabÞ is not an
effective extension of ðK; gabÞwhere K 0 ¼ intðDðSÞÞ, then there is no
effective extension of ðK; gabÞ.

With this background, Earman (1995, pp. 75e98) suggests the
following formulation of the cosmic censorship hypothesis.



Fig. 1. The set I�ðpÞ∩S is compact.
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Conjecture 6. Let ðM; gabÞ be an inextendible, hole-free, vacuum
solution. If S3M is a slice and there exists a p2HþðSÞ, then either
strong causality is violated at p or I�ðpÞ∩S is noncompact.

This latter conjecture is, as far as we know, still open when
ðM; gabÞ is four-dimensional. But in fact it is false in the two-
dimensional case.

Example. Let ðM; habÞ be two-dimensional Minkowski space-
time.17 Let q be any point in M and S3M be any slice such that
q2Iþ½S�. Let M0 ¼ M � fqg and consider a smooth, strictly positive
scalar field U : M0/ℝ that approaches infinity as the “missing
point” q is approached. Now consider the spacetime ðM0; gabÞwhere
gab ¼ U2hab. Because the conformal factor U blows up, it renders
the spacetime ðM0; gabÞ geodesically complete. It is thus hole-free
and inextendible (Manchak, 2014). By Prop. 1 above, the space-
time is a vacuum solution. Now consider any point p2HþðSÞ. We
know that strong causality is not violated at p since the spacetime is
stably causal (because the spacetime admits a global time function;
see Wald (1984, p. 199)) and that I�ðpÞ∩S is compact (See Fig. 1).

Does the above example show the two-dimensional version of
the “cosmic censorship conjecture” to be false or does it merely
suggest a variant formulation of the conjecture? This is not an easy
question to pursue given the “large and diverse class of ideas and
motivations” falling under the label “cosmic censorship” (Earman,
1995, p. 99). One thing is clear, however: the example certainly
demonstrates just how difficult it is to get a grip on any charac-
terization of “physically reasonable” two-dimensional space-
times.18 The construction of the example seems to be somewhat
“artificial” and yet it is about as locally well-behaved as one could
demanddit is a vacuum solution, after all. Globally, the example
also checks all the usual boxes required of “physically reasonable”
spacetimes: it is stably causal, inextendible, and free of holes.
Possibly the only count against the example is that it is geodesically
17 That is, we suppose M is diffeomorphic to ℝ2 and hab is flat and geodesically
complete.
18 These difficulties in two dimensions exacerbate the problem of characterizing
“physically reasonable” spacetimes in any dimension. See Manchak (2011) for
details.
complete while the singularity theorems of Hawking and Penrose
(1970) suggest that many “physically reasonable” spacetimes are
geodesically incomplete. There are two separate responses to this
line of reasoning, however.

First, one can easily consider a closely related example where
the conformal factorU : M0/ℝ goes to zero as the “missing point” q
is approached. The resulting spacetime ðM0;U2habÞ is now geo-
desically incomplete but remains a counterexample to the
conjecture.

The second response is of some independent interest: it is not
clear that the singularity theorems are well-motivated in two di-
mensions. A crucial assumption for all of the major singularity
theorems is the “causal convergence condition,” which is the
requirement that Rabx

axb � 0 for all causal vectors xa (Hawking &
Ellis, 1973; Senovilla, 1998). Usually, this assumption is justified
by mentioning that, in four dimensions, it is equivalent to the
“strong energy condition”dthe requirement that Tabx

axb � 1
2 T � 0

for all unit timelike vectors xa. It is often assumed that the strong
energy condition is satisfied by all “physically reasonable” models
of the universe (Hawking & Ellis, 1973).19

We close this section by drawing attention to the fact that this
equivalence between the conditions does not hold in two
dimensions.

Proposition 7. In two dimensions, the causal convergence condition
is not equivalent to the strong energy condition.

Proof. Let ðM; habÞ be two-dimensional Minkowski spacetime
whereM ¼ ℝ2 and hab ¼ VatVbt � VaxVbx, for standard coordinates
ðt; xÞ. Let U : M/ℝ be the function Uðt; xÞ ¼ expðt2Þ. Consider the
spacetime ðM; gabÞ where gab ¼ U2hab. Because ðM; gabÞ is two-
dimensional, by Prop. 1 above, we know (via Einstein's equation)
that its associated Tab is the zero tensor. This clearly implies that
ðM; gabÞ satisfies the strong energy condition. But, using the fact
that ðM; habÞ is flat, one can verify (Wald, 1984, p. 446) that
Rab ¼ �2hab ¼ �2exp

�� 2t2
�
gab where Rab is the Ricci tensor

associated with ðM; gabÞ. Thus, if xa is a unit timelike vector at the
point ð0;0Þ2M, we find Rabx

axb there to be �2. Thus, ðM; gabÞ fails
to satisfy the causal convergence condition.
4. No newtonian limit

We now consider the relationship between general relativity
and Newtonian gravitation in two dimensions in light of Prop.1. We
begin by reviewing some facts about the sense inwhich Newtonian
gravitation is a limit of general relativity in four dimensions, and
then show that the same limit does not obtain in two dimensions.

Recall that in four dimensions, one can present Newtonian
gravitation as a theory set in a classical spacetime,20 which is a
quadruple ðM; ta;hab;VÞ, where M is a connected 4-manifold of
events, ta is a non-vanishing one-form on M, hab is a smooth
symmetric tensor field such that for all one-forms ta onM, habtb ¼
0 iff ta ¼ ata for some smooth scalar field a; and V is a covariant
derivative operator on M. We assume that V is compatible with ta
and hab, in the sense that Vatb ¼ 0 and Vahbc ¼ 0. Wewill say that a
vector xa is timelike if xatas0; otherwise it is spacelike; a curve is
timelike (resp. spacelike) if its tangent field is, everywhere.

In this framework, “ordinary” Newtonian gravitation is a theory
in which V is flat, and gravitational effects are described using a
19 Actually, there are good reasons to be skeptical that the strong energy condition
is satisfied in all physically reasonable spacetimes; see Curiel (2017). Still, it is
widely assumed and so its status is of interest here.
20 For details on the formulations of Newtonian gravitation discussed here, see
Trautman (1965) and Malament (2012, Ch. 4).



S.C. Fletcher et al. / Studies in History and Philosophy of Modern Physics 63 (2018) 100e113 105
gravitational potential 4 satisfying Poisson's equation,
VaV

a4 ¼ 4pr, where Va4 ¼ hanVn4 and r is a scalar field repre-
senting the mass density in spacetime. Given a solution to this
equation, small bodies will accelerate according to the law
xnVnx

a ¼ Va4, where xa is the unit tangent to the center-of-mass
worldline of the body. One can also formulate Newtonian gravita-
tion as a “geometrized” theory, on which spacetime is curved, with
Ricci curvature satisfying Rab ¼ 4prtatb; on this theory, small
bodies follow timelike geodesics.

In four dimensions, there is a precise sense in which the
geometrized theory may be understood as a “classical limit” of
general relativity, i.e., a limit inwhich c/∞, where c is the speed of
light.21 In particular, supposewe have, on a fixedmanifoldM, a one-
parameter family l1gabðlÞ of Lorentz-signature metrics, for l

defined on ð0; kÞ⊆ℝwith k � 0, a closed one-form ta, and a smooth
tensor field hab, all satisfying the following two conditions22

lim
l/0

gabðlÞ ¼ tatb;

lim
l/0

lgab ¼ �hab;

where the limit is taken in the so-called C∞ point-open topology.23

Then we have the following result.

Theorem 8. (Malament (1986)).

Let M be a 4-manifold and let gabðlÞ be a one-parameter family
of Lorentzian metrics satisfying the following conditions.

1. The family gabðlÞ converges to fields tatb and hab as just
described; and

2. The Einstein tensor GabðlÞ converges to some smooth field Tab.24

Then there exist on M a derivative operator V and a smooth field
r, such that.

1. V
l
/V as l/0;

2. ðM; ta;hab;VÞ is a classical spacetime satisfying Ra c
b d ¼ Rc a

d b;
3. GabðlÞ/rtatb as l/0; and
4. Rab ¼ 4prtatb, where Rab is the Ricci tensor determined by V.
21 For details on the sense in which this limiting procedure captures the idea that
the speed of light is diverging, see Fletcher (2014). Observe that our claim is that
any sequence of models of general relativity satisfying the conditions described in
the main text converge to models of Newtonian gravitation, and not that any model
of general relativity has a natural or unique classical analog, nor that every model of
Newtonian gravitation arises as the limit of a sequence of relativistic spacetimes.
22 In addition, we assume all of the one-parameter families we consider are
differentiable, to all orders, in l.
23 Here we follow Künzle (1976) and Malament (1986), but one can consider limits
taken in other topologies; see Fletcher (2014) for a discussion; nothing in what
follows turns on the difference.
24 One might be surprised by this condition. Malament (1986) assumes that there

is a one-parameter family of fields TabðlÞ that converge to some smooth field Tab;
and he assumes that Einstein's equation holds for each l, in the form

R
l

ab ¼ 8p

 
TabðlÞ � 1

2 T
l
gabðlÞ

!
, where T

l
is the trace of TabðlÞ and R

l

ab is the Ricci

tensor associated with gabðlÞ. But in four dimensions, these two conditions are
equivalent to requiring that the Einstein tensors determined by gabðlÞ converge to

some smooth field Tab . Still, one might think that we should begin with this
alternative formulation of Einstein's equation, which is only equivalent to Eq. (2.1)
in four dimensions. But as we describe in sections 6.2 and 6.3, in two dimensions
the alternative version of Einstein's equation that Malament considers decouples
curvature from energy-momentum, and so there is no chance that it will yield
Poisson's equation in a classical limit.
We now consider the two-dimensional case. As we have char-
acterized it here, one can certainly make sense of a notion of two-
dimensional classical spacetime: one simply defines the structures
described above on a 2-manifold of events rather than a 4-
manifold. (Note that in this case, no analog to Prop. 1 holds,
because the derivative operator V is not determined by a non-
degenerate metric.) To be sure, Newtonian gravitational theory in
this setting has some strange features: for instance, in the non-
geometrized theory, the solution to a central force problem, for a
point mass located at the origin (in an appropriate coordinate
system ðt; xÞ), yields a (discontinuous) gravitational potential

4 ¼

8><
>:

�m
2
x for x>0;

m
2
x for x<0;

whose associated gravitational field

Va4 ¼

8><
>:

�m
2
xa for x>0;

m
2
xa for x<0;

is always attractive, but has magnitude independent of the distance
from the central body.25 (Observe that this gravitational potential
does not satisfy the boundary condition 4/0 as jxj/∞; moreover,
4 is generally unique only up to addition of a homogeneous solution
to Poisson's equation, which in this setting takes the form 4 ¼ Ax
for some constant A, and so the boundary condition cannot be
realized for non-vanishing 4.) More generally, the force between
two point massesm andm0 will be given by Fa ¼ �mm0ra, where ra

is the unit (spacelike) vector relating them.
But these strange features are not barriers to the theory being

mathematically well-defined; moreover, general relativity is also
strange in two (spacetime) dimensions. The point wewant to make
now is that these two theories are strange in different, incompat-
ible ways. Perhaps most strikingly, in geometrized Newtonian
gravitation in two dimensions, one can have matter sources in the
geometrized Poisson equation. This is because the Ricci tensor
associated with an arbitrary derivative operator compatible with
classical metrics ta and hab need not vanishdjust as the Ricci tensor
associated with an arbitrary Lorentzian metric need not vanish
(even though the associated Einstein tensor always does vanish).

This difference between the theories leads us to the striking
(further) observation that in two dimensions it is no longer the case
that Newtonian gravitation is a “classical limit” of GR, at least not in
the sense we described above in four dimensions. To see why,
suppose that we have a family of Lorentzian metrics gabðlÞ on a 2-
manifold, converging to fields tatb and hab as above. It immediately
follows, from Prop. 1, that their associated Einstein tensors also
convergedand that they converge to 0. But the Ricci tensor, RabðlÞ
associated to each gabðlÞ need not vanish for any l, and indeed, may
not vanish in the limitdeven when the derivative operators asso-
ciated with gabðlÞ converge to a derivative operator V compatible
with ta and hab.

To make this concrete, consider the manifold ℝ2 with standard
coordinates t; x. In units where c ¼ G ¼ 1, consider the following
one-parameter family of metrics:
25 This result is not so unexpected, perhaps: it arises for the same reason that in
electrostatics (in three spatial dimensions), an infinite sheet with uniform charge
density gives rise to an electric force that is independent of the distance from the
sheet: it is a consequence of Gauss's law in one dimension.



27 Here we follow Earman (2003, p. 561), who distinguishes “two senses in which
the cosmological constant can be a constant: the capital L sense, according to
which L is a universal constant, and the lower case l sense, according to which l is
the same throughout spacetime but can have different values in different uni-
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gabðlÞ ¼ dat dbt � l
�
1þ t2

�
dax dbx

Clearly this family converges pointwise to tatb as l/0, where
ta ¼ dat is, by construction, a closed one-form; likewise we have

�lgabðlÞ/hab ¼ 1
1þt2

�
v
vx

�a�
v
vx

�b

. The derivative operator associ-

ated with gabðlÞ for each lmay be written V
l
¼ ðv;Ca

bcðlÞ Þ, where v

is the coordinate derivative operator and Ca
bcðlÞ ¼ t

2 l

�
v
vt

�

adbx dcxþ 2t
1þt2

�
v
vx

�a

dðbx dcÞt; this has associated Ricci tensor

RabðlÞ ¼ 1
2RgabðlÞ, where R ¼ � 2

ð1þt2Þ2 has no dependence on l. One

can easily confirm, then, that V
l
/V ¼ ðv; 2t

1þt2

�
v
vx

�a

dðbx dcÞt
�
,

satisfying Ra c
b d ¼ Rc a

d b; and that RabðlÞ/1
2Rtatb. It follows that

ðℝ2; ta;hab;VÞ is a classical spacetime, but with matter source
r ¼ 1

8pRs0, even though for every l>0, ðM; gabðlÞÞ is a vacuum
spacetime. It is in this sense that (geometrized) Newtonian gravi-
tation is not the classical limit of general relativity in two di-
mensions: the limit does not preserve both sides of Einstein's
equation.26

In summary, we have proved the following result (Comparewith
Theorem 8.).

Proposition 9. There exists a 2-manifold M and a one-parameter
family gabðlÞ of Lorentzian metrics on M satisfying the following
conditions:

1. The family gabðlÞ converges to fields tatb and hab as just
described; and

2. The Einstein tensor GabðlÞ converges to some smooth field Tab.

Moreover, there exist onM a derivative operator V and a smooth
field r, such that.

1. V
l
/V as l/0;

2. ðM; ta;hab;VÞ is a classical spacetime satisfying Ra c
b d ¼ Rc a

d b;
and

3. Rab ¼ 4prtatb, where Rab is the Ricci tensor determined by V.

But it is nonetheless not the case that GabðlÞ/rtatb as l/0.

5. Non-zero cosmological constant and matter

Thus far, we have considered a generalization of general rela-
tivity to two dimensions based on the assumption that Eq. (2.1)
holds. We have thus ignored the possibility of a cosmological
constant term Lgab appearing in Einstein's equation. We now
consider what happens if we do include this term. In other words,
we now suppose that the equation

Rab �
1
2
gabR�Lgab ¼ 8pTab (5.1)

holds in two dimensions, where Tab is understood once again to be
the total energy-momentum density associated with matter and
Ls0 is taken to be a constant of naturedi.e., it is a quantity that
26 In this example, the value of r achieved in the limit is everywhere negative. But
this does not hold in all such examplesdconsider instead the family of metrics
gabðlÞ ¼ dat dbt � t dax dbx defined on ℝ2 for t >0, for which we find, in the limit,
R ¼ 1

2t2 >0, yielding positive r.
takes the same (unspecified) value at every spacetime point, and in
all models of the theory.27 (Observe the sign of the L term in Eq.
(5.1), which arises because of our metric signature convention.)

The first thing to observe about this case is that Prop.1 continues
to hold. But it no longer implies that all spacetimes are vacuum
solutions; instead, Eq. (5.1) simplifies in two dimensions to

�L

8p
gab ¼ Tab: (5.2)

Thus, ifLs0 we have a (non-degenerate) field equation relating
the spacetime metric to energy-momentum.

SinceL is a constant with some fixed value, Eq. (5.2) asserts that
the energy-momentum tensor associated with matter is always
some (fixed) multiple of the metric gab. This in turn implies that Tab

is (necessarily) non-vanishing, which means that no spacetimes are
vacuum spacetimes, and indeed, Tab is nowhere vanishing. It fol-
lows from this observation that one can have matter, but not (iso-
lated) bodies. It also implies that Tab is always constant, since
VaðLgbcÞ ¼ 0; that T ¼ �L=4p, where T is the trace of Tab; and that
Tab ¼ 1

2 Tgab.
Given these strong constraints on energy-momentum in two

dimensions, one might wonder if there are any candidate matter
fields whose stress-energies can satisfy them. Indeed, perhaps as
one would expect, for some standard systems of equations, there
are no non-trivial solutions compatible with Eq. (5.2) in two di-
mensions. For instance, one can consider solutions to the Einstein-
Klein-Gordon equations, where the Einstein equation is understood
as Eq. (5.2) and the Klein-Gordon equation has the same form as in
four dimensions:

VaV
a4þm24 ¼ 0; (5.3)

with the associated energy-momentum tensor given by

Tab ¼ Va4Vb4� 1
2
gab
�
Vn4Vn4�m242

�
:

Taking the trace of both sides yields T ¼ m242, which can be
constant only if 4 is constant. But if 4 is constant, then by Eq. (5.3),
m24 ¼ 0, and thus either m ¼ 0 or 4 ¼ 0. In either case, we find
T ¼ 0, which is incompatible with Eq. (5.2) for Ls0. (On the other
hand, it seems that the m ¼ 0 Klein-Gordon equation admits con-
stant, non-vanishing solutions whose energy-momentum tensor
vanishes identically, and which thus solve the Einstein-Klein-
Gordon equations in two dimensions without cosmological
constant.)

Still, it turns out that at least some matter fields with non-
vanishing energy-momentum tensors can be defined in two di-
mensions. Consider the case of electromagnetism with a perfect
fluid source, assuming that analogs of the Maxwell equations for
the Faraday (field strength) tensor Fab and charge-current density Ja

in four dimensions hold in two:
verses”, and then argues that it is the capital L sense that is taken for granted in
standard approaches to deriving Eq. (5.1) from an action principlednote however
that many such approaches are inequivalent in two dimensions (Deser, 1996). See
also Bianchi and Rovelli (2010). We do not take a stand onwhether one should think
of L in this way, i.e., as a constant of nature, or perhaps as something that can vary
from model to model, as in unimodular gravity.
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V½aFbc� ¼ 0; (5.4)

VaFab ¼ Jb: (5.5)

Further suppose that the energy-momentum tensor associated
with Fab in two dimensions is also the analog of its expression in
four, and similarly for the energy-momentum tensor associated
with the charged fluid:

Tab
EM

¼ FamFmbþ
1
4
gabðFmnFmnÞ; (5.6)

Tab
PF

¼ rhahb � pðgab � hahbÞ; (5.7)

where ha is the four-velocity field of the fluid and r and p are its
scalar mass-energy density and pressure, respectively. (We assume,
for simplicity, that the four-velocity field ha is defined [and non-
zero] everywhere.)

It will be convenient to express the metric and the Faraday
tensor in terms of ha. In particular, at least locally we can express

gab ¼ hahb � cacb (5.8)

for a unit spacelike field ca orthogonal to ha, which in two di-
mensions is unique up to a choice of sign. This determines a volume
element

εab ¼ 2h½acb�; (5.9)

which is the unique 2-form on the manifold up to a multiplicative
scalar field. So, one can express the Faraday tensor Fab, which is
anti-symmetric, as

Fab ¼ f εab ¼ 2fh½acb�; (5.10)

where f is a scalar field on M. Note in particular that

FamFmb¼ðf eamÞðf embÞ ¼ f 2ðhacm � cahmÞðhmcb � cmhbÞ
¼ f 2ðhahb � cacbÞ ¼ f 2gab;

(5.11)

FmnFmn ¼ �2f 2: (5.12)

Using these two facts, we can express the total energy-

momentum tensor Tab ¼ Tab
EM

þ Tab
PF

as

Tab ¼ FamFmbþ
1
4
gabðFmnFmnÞ þ rhahb � pðgab � hahbÞ

¼ f 2ðhahb � cacbÞ �
1
2
f 2ðhahb � cacbÞ þ rhahb þ pcacb

¼
�
rþ 1

2
f 2
�
hahb þ

�
p� 1

2
f 2
�
cacb:

Equating this with the expression for the energy-momentum
given by Einstein's equation,
Tab ¼ �ðL=8pÞgab ¼ �ðL=8pÞðhahb � cacbÞ, yields the following
two equations in three variables (r; p; f 2):

r ¼ �1
2
f 2 � L

8p
; (5.13)

p ¼ 1
2
f 2 þ L

8p
: (5.14)
Thus the energy density and pressure of the fluid are critically
balanced (p ¼ �r) and are quadratic in the “magnitude” of the
Faraday tensor, offset by the cosmological constant.

There are a few special cases to note.
L ¼ 0: When the cosmological constant vanishes, so does the

energy-momentum tensor. Contrary to expectation (cf. Collas
(1977)), it is possible to have non-vanishing matter fields even
when the total energy-momentum tensor vanishes, because it is
possible for the contributions from the electromagnetic field and
the perfect fluid to cancel each other exactly. That said, in this case
we have negative mass density and p ¼ �r, which implies that the
energy-momentum tensor associated with the perfect fluid does
not satisfy the weak energy condition. (Compare this case with the
discussion of scalar fields above.)

f 2 ¼ 0: Without electromagnetic fields, the energy density and
pressure must be everywhere constant and balanced exactly by the
cosmological constant: r ¼ �p ¼ �L=8p, and r>0 implies that
L<0.

p ¼ 0: If pressure vanishes, we must have f 2 ¼ �L=4p, which
implies that r ¼ 0 (and L<0). Therefore dust (whether charged or
not) is impossible in two dimensions. In this case, since f is con-
stant, Maxwell's equations imply that Jb ¼ 0, yet any observer with
four-velocity xa at a point measures a constant electric field
Ea ¼ Fabx

b ¼ fsa, where sa is a spacelike unit vector orthogonal to
xa. (The magnetic field is undefined.) In such a model, charged test
particles are a bit like Rindler observers in special relativity: they
accelerate at a constant rate forever.

This example shows that there are some cases in which matter
fields may be defined in two dimensions, both when Ls0 and
otherwise. But as wewill now argue, even if we do have matter, the
relationship between matter and geometry in two dimensions is
strikingly different from in four dimensions. In particular, there is a
sense in which matter in two dimensions does not (necessarily)
“gravitate”. To see this, fix any flat metric hab on a two-dimensional
manifoldM (admitting some flat metric). It follows that this metric
is a solution to Eq. (5.2), for Tab ¼ �ðL=8pÞhabs0. Thus, the pres-
ence of matter does not imply that the spacetime has non-
vanishing Ricci curvature or non-vanishing curvature scalar.
Contrast this result with the standard claim in four dimensions
that, if Tab satisfies the strong energy condition (discussed in sec-
tion 3) then gravity is attractive, in the sense that nearby geodesics
tend to converge. In two dimensions, Tab may satisfy any energy
condition at all, while the “geodesic deviation” of the spacetime,
measuring the degree to which nearby geodesics accelerate relative
to one another, vanishes identically (cf. Malament, 2012; x2.7).

Before moving on, we note that the discussion of this section,
concerning matter in two dimensions when Ls0, may strike some
readers as very strange. After all, although matter may be defined,
its dynamics is so constrained as to barely deserve the name.
Moreover, although matter is (necessarily) present, as a conse-
quence of Eq. (5.2), the relationship between matter and geometry
is much weaker than in four dimensions. One might conclude from
this discussion that a non-zero cosmological constant in two di-
mensions is unphysical, and so one ought to conclude that L must
be 0 in two dimensions. (Of course, one might equally argue that
even the L ¼ 0 case is unphysical. But it seems to us that a theory
with a large number of vacuum solutions is physically significant in
a way that a theory with no vacuum solutions and necessary,
unphysical matter is not.)

But if one finds this argument compelling, it has the following
consequence. We arrived at Eq. (5.2) by supposing that the correct
form of Einstein's equation, irrespective of dimension, is given by
Eq. (5.1), for some (fixed) value of Ls0. But from this perspective,
the assignment of a value to L is independent of the choice of
dimensionality of the spacetime manifold. This means that, if L



29 See also Navarro and Navarro (2011) for a simplified proof connecting these
results with the geometric concept of natural tensor fields. Although Lovelock's
theorem places strong constraints on the form of gravitational field equations
(satisfying the conditions described) in lower dimensions, it is more permissive
in higher dimensions, which has led many theorists to focus on so-called
”Lovelock theories” in higher dimensions, i.e., theories with field equations
distinct from Einstein's equation but which satisfy the conditions of Lovelock's
theorem. Thus it is tempting to think that in higher dimensions, but not lower
dimensions, one can find various theories with similar syntactic and semantic
features to general relativity in four dimensions, and that this leads to an
important distinction between the two cases. But the arguments we give in
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must be 0 in some subset of the permissible models in the theory,
then L must be 0 in every case, independent of the dimensionality
of any of the particular models.

Of course, there are ways to respond to this argument without
accepting the conclusion. For instance, one could deny the premise
with which we began this section, that the cosmological constant
should be taken to have the same value in all models of the theory.
Perhaps one could allow it to vary generally; or one could imagine it
is the same in all models of a given dimension, but varies between
dimensions. One could also argue along the lines of what we will
present in section 6.2, that one should not generalize general rel-
ativity to two dimensions by assuming Einstein's equation holds,
with or without cosmological constant. But any of these responses
raises new questions concerning how we are to determine what
can and cannot vary when one considers the space of possibilities
according to a theory. One principled answer, which we have
adopted here for the sake of argument, is that constants of nature
never vary across models; other answers are possible, but pre-
sumably require defense.

6. On the choice of generalizing general relativity via
Einstein's equation

The laundry list of unusual features of the version(s) of general
relativity in two dimensions that we have been considering draw
attention to the assumption with which we began, that Einstein's
equation in two dimensions is the same as in four dimensions. But
should we accept that assumption? Why should the two-
dimensional equation have the same syntactic form as the four-
dimensional equation? What kind of inductive evidence could we
have to secure such an inference?

One line of evidence comes from various theoretical results
establishing conditions under which the Einstein equation (or
perhaps a class of equations including it) is uniquely determined as
the field equation connecting geometry and matter in a spacetime
theory. We review the bearing of these on two-dimensional gravity
in section 6.1. These theorems have assumptions that could be
questioned, of course, so in section 6.2 we describe how their
conclusions could be and have been evaded. Some of the alternative
field equations proposed are justified in entirely different ways.
Finally, in section 6.3, we consider howany of these proposals could
make contact with our empirical evidence for the four-dimensional
theory, raising the possibility that what the “correct” two-
dimensional theory is has no answer and consequently that there
is a plurality of two-dimensional theories that are viable in
different contexts.

6.1. Lovelock variations

Why ought the Einstein equation be the appropriate field
equation for general relativity even in four dimensions? There is a
long history of attempts to provide an axiomatic or principled
justification beyond Einstein's heuristic reasoning. These ap-
proaches have generally been founded on the following
assumptions28

1. The field equation must take the form

~GabðgÞ ¼ Tab; (6.1)
28 See Misner et al. (1973, x17.5) for a discussion of these approaches pre-Lovelock
and some other, more heuristic approaches to determining the Einstein equation.
where Tab is the usual energy-momentum tensor field (although
not necessarily assumed to be symmetric) and ~Gab is some (0,2)-
tensor field whose value at a point depends only on the metric and
its derivatives at that point.

2. The conservation condition holds, i.e., in light of the first con-
dition, Va

~G
abðgÞ ¼ 0.

The first condition ensures that the field equation is defined
pointwise by the metric gab and its derivatives, and that it equates
the “marble” of geometry with the “wood” of matter. The second
condition demands that the conservation condition follows from
the form of ~Gab alone. Together, they do not imply that
~GabfGab �Lgab, but with a few extra conditions, they do (Cartan,
1922; Vermeil, 1917; Weyl, 1922):

3. ~GabðgÞ depends only on the metric gab and its first and second
derivatives.

4. ~GabðgÞ is linear in the second derivatives of the metric gab.
5. ~GabðgÞ is symmetric.

Note that there is no assumption concerning the dimensionality
of spacetime. One can maintain the same conclusion, however, by
dropping conditions 4 and 5 and adding such an assumption:

6. Spacetime is four-dimensional.

This celebrated result, due to Lovelock (1971, 1972), is often
quoted as one of the strongest foundations for the Einstein equation
in four dimensions, yet it can be applied to two dimensions as well.
For, Lovelock (1971) provides a general form for tensor fields ~GabðgÞ
satisfying conditions 1e3 and 5 that yields a unique answer in the
two-dimensional case, too29

~GabðgÞ ¼ Agab; (6.2)

for some constant A2ℝ. Recently Navarro (2014) has shown how to
achieve the same conclusions without condition 5, so we may state
the most general conclusion about two-dimensional general rela-
tivity thus:

Proposition 10. Any divergence-free tensor field ~Gab in two di-
mensions naturally definable pointwise from the metric gab and its
first and second derivatives must take the form of Eq. (6.2).

A variation on Lovelock's approach, first described by Aldersley
(1977) and elaborated by Navarro and Sancho (2008), drops con-
dition 3 for the following “dimensional analysis” condition:
section 6.2 suggest that it is too fast, because insofar as one can question the
assumptions of Lovelock's theorem in lower dimensions, one can also question
them in higher dimensions. It seems to us, then, that more needs to be said even
in the higher dimensional case to justify a particular choice of generalization of
Einstein's equation.
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7. ~GabðgÞ is independent of the unit of scale, i.e., for any l>0,
~Gabðl2gÞ ¼ ~GabðgÞ.

In other words, condition 7 states the invariance of ~Gab under
homothetic transformations of the metric. In fact, this assumption
proves a conclusion somewhat stronger:

Proposition 11. Any divergence-free tensor field ~Gab in two di-
mensions naturally definable pointwise from the metric gab and its
derivatives must take the form ~Gab ¼ AGabð¼ 0Þ.

Thus, condition 7 rules out the cosmological constant term from
appearing in the “marble” geometry of the field equation. Does this
imply that the proposition's assumptions are in conflict with the
observed non-zero value of L? Both Aldersley (1977) and Navarro
and Sancho (2008) counsel that it does not insofar as it forces
one to place that term on the right-hand side of Eq. (6.1), strongly
suggesting that L be interpreted as a material contribution to the
equation rather than a geometrical one. This counsel applies equally
in two dimensions as it does in four.

The strength of this result clearly depends on condition 7; how
should we interpret it? A homothetic transformation gab1l2gab, it
is often said, “amounts to a change in the time unit,” so that con-
dition 7 means that ~Gab (hence Tab) is “independent of [the choice
of] the time unit” (Navarro & Sancho, 2008; x6), but such an
interpretation must be handled with care. While it is true that a
homothetic transformation effectively multiplies the lengths of all
timelike curves by a constant factor, the resulting spacetime may
not necessarily be interpreted as simply the same as before but
with different units. This can occur if the equations relating fields
on the spacetime contain dimensional (i.e., not purely numerical)
constants that set an absolute scale for dimensional quantities
(Aldersley, 1977, pp. 372e3). Thus a better description of condition
7 is that the field equation is temporally (and, from the constancy of
the speed of light, spatially) scale invariant: changes of temporal (or
spatial) scale are dynamical symmetries in the sense that they leave
the field equation invariant.

In light of this, it is easy to see how the inclusion of the
cosmological constant term breaks this symmetry, as a non-zero
value thereof introduces a time (and therefore length) scale into
the theory. This is distinct from Newtonian gravitation, which does
not have any such absolute scale. It must be remarked, however,
that it is difficult to see how scale invariance could be an a priori
condition on a theory of gravitation. Whether it holds seems rather
to be an empirical matter.30
6.2. Alternative field equations

What the approaches described in section 6.1 all have in com-
mon are the first two conditions: the form of the field equation (6.1)
and the conservation condition. It is not difficult to find arguments
for the conservation condition (e.g., see Misner, Thorne, and
Wheeler (1973, x17.2)). Yet the assumption that the connection
between geometry andmatter must take the form prescribed in Eq.
(6.1) is hardly ever questioned explicitly in the literature. Why
should the relationship between geometry and matter be so simply
expressed?
30 This is not to say that it is an implausible assumption. If one believes, in some
sense, geometry to be prior to matter, one might argue that the introduction of an
absolute length or time scale arises only through the peculiar particularities of
specific types of matter, so that in fact ~Gab should be scale invariant. However, it is
still hard to see how this argument establishes anything more than the plausibility
of condition 7.
For instance, in four dimensions the usual form of Einstein's
equation is equivalent to

Rab ¼ 8p
�
Tab �

1
2
gabT

�
�Lgab; (6.3)

where T ¼ Ta
a is the trace of the energy-momentum tensor. To

show this, beginning with either equation, one can take the trace of
both sides to establish that R ¼ �8pT � 4L, and substituting R for T
(or vice versa) in the relevant place in the equation. But this
argument involves taking the trace of themetric, the value of which
is the dimensionality of spacetime, so the equivalence depends on
the assumption that spacetime is four-dimensional. In any other
dimension, including two, it does not hold.

Consequently, one could instead take the form given in Eq. (6.3),
instead of the usual form, to be the field equation connecting ge-
ometry and matter in two dimensions. But in this case, Prop. 1 still
holds, so we have that

1
2
Rgab ¼ 8p

�
Tab �

1
2
gabT

�
�Lgab;

whose trace yields that R ¼ �2L. Thus, this alternative version of
Einstein's equation would lead us to conclude that

Tab ¼ 1
2
Tgab: (6.4)

In this theory, curvature and matter play roles converse from
those reached by beginning with the other form of Einstein's
equation: instead of the Ricci tensor being proportional to its trace
times the metric and the energy-momentum proportional to the
cosmological constant times the metric, the energy-momentum is
proportional to its trace times the metric and the Ricci tensor is
proportional to the cosmological constant times themetric. In other
words, this equation yields a universe of constant curvature whose
geometry is totally decoupled fromthe energyof ponderablematter.

Unlike with the usual form of Einstein's equation, Eq. (6.3) does
not guarantee that the conservation condition VaTab ¼ 0 holds
(except in four dimensions). If one adds this as a separate field
equation, then from Eq. (6.4) one immediately derives that VaT ¼ 0,
i.e., T must be constant. Thus the conservation condition forces the
energy-momentum to take the same form as before, except the role
played by the cosmological constant is nowplayed by the (constant)
trace of the energy-momentum. In a sense, the resulting theory
allows for strictly fewer possibilities than before: with the analog of
the original form of Einstein's equation, solutions were parameter-
ized by a single real scalar field (the scalar curvature R), whereas
with Eq. (6.3) and the conservation condition, they are parameter-
ized by a real number (the trace T of the energy-momentum).31

Is there a different field equation that escapes the form (6.1) and
yet provides possibilities that seem more physically reasonable
than the ones considered above in two dimensions? In fact, the very
considerations arising from Prop. 1don the one hand, the lack of
constraint on geometry, and on the other, the severe constraint on
matter32dhave led physicists, starting with Teitelboim (1983,
31 If one allows L to vary between models, then in both cases one also may
parameterize models by values of the cosmological constant. But that is a real
number in both cases, and so it does not change the analysis.
32 An historical aside: as Wald (1984, p. 72) notes, Einstein came to reject an
earlier field equation in which TabfRab precisely because it demanded that both R
and T are constant.
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1984) and Jackiw (1984, 1985), to propose instead the field
equations33

R�L ¼ 8pT; (6.5)

VaTab ¼ 0: (6.6)

Notably, the conservation condition is assumed separately from
the field equation, which, though it equates geometry with energy-
momentum, does so through scalar quantities instead of (0,2)-
tensors. Unlike higher-dimensional cases, however, in which this
would underdetermine both geometric and matter degrees of
freedom, in two dimensions the only degree of freedom in the
geometry comes through the scalar curvature.

Eq. (6.5) is not obviously syntactically related to Einstein's
equation in four dimensions. Indeed, as Boozer (2008, p. 320)
points out, the field equations are analogous to those of
Nordstr€om's 1913 theory (Misner et al., 1973, p. 429),

R ¼ 24pT ;

Cabcd ¼ 0;

since, as we argued before, the only candidates for the Weyl tensor
Cabcd in two dimensions must vanish. What would make Einstein's
theory in two dimensions essentially the same as a clearly distinct
theory in four?

One can adduce three sorts of arguments. The first and most
commonly argued position is that the qualitative similarities be-
tween the solutions of Eqs. (6.5) and (6.6) and the four-dimensional
Einsteinian theory are the relevant factors for comparison, not the
language in which the equations are described. Such claimed fea-
tures include (Christensen & Mann, 1992; Sikkema & Mann, 1991):

� being derivable from a local action principle,
� a Newtonian limit,
� Robertson-Walker cosmological solutions,
� gravitational waves, and
� the gravitational collapse of dust into a black hole with an event
horizon analogous to that of the four-dimensional Schwarzs-
child solution.

Hence, this theory's advocates have (if only implicitly) suggested
that it is not the syntactic features of the field equation but quali-
tative semantic featuresdthose of its modelsdthat provide evi-
dence that it is a relevant analog of general relativity in two
dimensions.34 But this evidence does not extend to any claim of
uniqueness.

We have found further two arguments in the literature for some
sort of uniqueness, but neither is conclusive. The first, as developed
by Mann (1992), begins by pointing out that the usual Einstein
equation in n dimensions is equivalent to the following two equa-
tions, representing its trace and trace-free parts, respectively:
33 Caution: there is some variation in the literature on the choice of numerical
coefficients and whether to exclude the cosmological constant or matter. The
presentation here essentially follows that of Christensen and Mann (1992).
34 Boozer (2008) provides two “derivations” of the theory, one from a two-
dimensional Newtonian theory and another using a “principle of equivalence”
argument assuming that gravitation is represented by a scalar field. The former
shows a sense in which Eq. (6.5) is a relativistic analog of the two-dimensional
Poisson equation, while the latter results only in an “effective” geometry overlaid
on an undetectable Minkowski background. These are fine as heuristic or motiva-
tional arguments, but because of the many assumptions and unforced choices made
in the course of their development, they do not provide, in our opinion, evidence
beyond those of the qualitative features already established.
�
1� n

2

�
R ¼ 8pGnT ; (6.7)

Rab �
1
n
Rgab ¼ 8pGn

�
Tab �

1
n
Tgab

�
; (6.8)

where Newton's constant Gn is now assumed to depend on n. In
particular, if one assumes that Gn=ð1� n=2Þ is well-defined, non-
zero, and n can be treated as a continuous parameter, then one can
define

G0
2 ¼ lim

n/2

Gn

1� n=2
(6.9)

as a kind of “renormalized” gravitational constant. In this case the
trace equation yields (the cosomological constant-free version of)
Eq. (6.2), and the trace-free equation becomes a mathematical
identity.

The difficulty with this argument, aside from the mathemati-
cally dubious treatment of n as a continuous parameter, is that it is
not obvious how to justify that Newton's constant should depend
on dimensionality, much less in precisely the way that makes G0

2
well-defined and non-zero. If this dependence is not of a very
particular form then one could well arrive at different field
equations.35

The second argument, described by Lemos and S�a (1994), also
proposes to derive Eq. (6.5) from a limiting procedure. Their
argument is that because there is a case for general relativity to be a
limiting case of Brans-Dicke theory in dimensions greater than two,
whatever theory results from the same limit for two-dimensional
Brans-Dicke theory ought to be considered the two-dimensional
analog of GR. Brans-Dicke theory is an alternative gravitational
theory involving a scalar field f, interpreted as a kind of variable
gravitational constant, and a new dimensionless constant, the
Brans-Dicke constant u, which mediates the strength of the
coupling between the variability of f and matter.36 There are ar-
guments to the effect that taking u/∞ results in GR, and Lemos
and S�a (1994) suggest to extend this inductively to the two-
dimensional case.

However, to achieve this result, the authors must assume that
the “effective” field f, cosmological constant L0, and energy-
momentum trace T 0 are actually functions of u of the following
forms:

f ¼ f0 þ
4

4u
þ O

�
u�2

�
; (6.10)

L ¼ L0 þ
L

2u
þ O

�
u�2

�
; (6.11)

T 0 ¼ T0 �
T

4e2f0u
þ O

�
u�2

�
; (6.12)

where f0;L0; T0 are real constants and 4 is a scalar field.37

Clearly some of the difficulties with this argument are similar to
those for the argument described by Mann (1992). As before, it is
difficult to see why the “renormalized” field T 0 and parameter L

should depend on u in the way they must to arrive at the desired
conclusion. These dependencies can be easily changed to arrive at
35 Note, too, that one would need to take a constant of naturedNewton's con-
stantdto vary with dimension. Compare with the discussion at the end of section 5.
36 Specifically, ,f ¼ ½8p=ð3þ 2uÞ�T , where , is the Laplace-Beltrami operator.
37 We have adjusted the notation somewhat to align it with that used so far.
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different field equations. (Unlike in typical applications of running
constants or effective fields depending on, say, the energy scale, the
parameter u is constant: it cannot vary from context to context in a
model.) Moreover, the security of the premises that the u/∞ limit
of Brans-Dicke should be always identified as GR, regardless of
dimension, presumes dubiously that our evidence for the correct
form of that theory is better than for GR. Finally, besides ques-
tioning the cogency of the result in general on conceptual or
mathematical grounds (Bhadra & Nandi, 2001; Chauvineau, 2003;
Faraoni, 1999), one simply is not logically compelled to accept the
inference from the n � 3 case to the n ¼ 2 case.

6.3. The empirical content of low-dimensional gravity

The previous subsections described a few different approaches
to justifying what, exactly, the field equation(s) in two-dimensional
general relativity ought to be. But we have argued that none of the
arguments for uniqueness succeed without questionable premises,
and so the question of what, exactly, two-dimensional general
relativity is supposed to be seems not yet to have a conclusive
answer, if that question is well-posed at all. If there is any theory
which deserves to be called the two-dimensional version of GR,
there needs to be a principled way in which that theory is sup-
ported. Are there other considerations that might be brought to
bear?

As suggested at the beginning of this section, one might try to
determine the relevant field equation, or at least constraints on
what it could be, through the empirical evidence we have for four-
dimensional GR. What relationship, though, does evidence for the
four-dimensional theory have with a two-dimensional theory?
Since it is less obviously tasked with accurate or otherwise suc-
cessful description, to what criteria must a two-dimensional theory
be held? Such questions are, perhaps surprisingly, rarely addressed
in the literature on two-dimensional gravity. One exception is
Jackiw (1985), who concedes that study of two-dimensional gravity
probably has only pedagogical value. His primary interest in low-
dimensional gravity, in other words, is as a toy model for the real
case of interest, four (or higher) dimensions, in which various cal-
culations and ideas (especially pertaining to quantization) can
proceed less encumbered from the complexities that more di-
mensions introduce.38 Such strategies, after all, have been suc-
cessful for other branches of study, such as condensed matter
physics. Consequently, if one has those sorts of goals in mind in
investigating two-dimensional gravity, then the qualitative features
of the solutions to Eq. (6.5) would override considerations coming
from Lovelock's theorem and its variants.

Jackiw (1985, p. 344) does consider two further possibilities,
which are that lower-dimensional theories could have a kind of
duality with higher-dimensional theory, and that lower-
dimensional theories could describe the behavior of configura-
tions of matter in four dimensions that are confined to move in
fewer dimensions. He dismisses them as either physically
nonsensical or speculative, but this seems too quick to us. Falling
within the former sort of case, at least considered broadly, are sit-
uations inwhich the symmetries of a spacetime reduce the degrees
of freedom to those of a two-dimensional model.39 Falling within
the latter are models in which matter is (at least as a sufficiently
38 For more on the use of toy models in physics, see Hartmann (1995), Marzuoli
(2008), Luczak (2017), and Reutlinger, Hangleiter, and Hartmann (2017).
39 The literature on dimensional reduction is voluminous, not least because of the
polysemy of the term. For a small sample of the literature on the sense in which it is
used here, see Cadoni and Mignemi (1995), Kiem and Park (1996), and Schmidt
(1999). For a comparison with the method of Mann (1992) discussed above, see
Mann and Ross (1993).
good idealization) confined to an embedded two-dimensional
Lorentzian submanifold. In either case, evidence for the two-
dimensional theory could be inherited from evidence for four-
dimensional GR, simply because the two-dimensional theory de-
scribes a part of a world like ours.

One difference, however, is that there is no guarantee in these
cases that there be a single two-dimensional theory that deserves to
be called the rightful analog of GR. Indeed, perhaps we must be
prepared to admit that multiple theories of two-dimensional gen-
eral relativity may be viable. This plurality of theories need not be
problematic, however, as it would be if there were no good reasons
to pick amongst the different versions yielding conflicting de-
scriptions of phenomena. Rather, different two-dimensional the-
ories could apply in different contexts, depending on how that
context is related to the more familiar four-dimensional theory for
which we have more direct empirical evidence.40 A thorough
investigation of what these theories can be, and the contexts in
which they arise, must be left to future research.
7. Conclusion

We have described various features of general relativity in two
dimensions, on several different ways of understanding what that
theory should consist in. As we have argued, general relativity in
two dimensions is strikingly different from the theory in four di-
mensions. On one natural way of understanding the two-
dimensional theory, several of the characteristic features of the
four-dimensional theorydsuch as the existence of an initial-value
formulation, a well-defined Newtonian limit, and a dynamical
dependence of spacetime on the presence of matterddo not
appear to hold in two dimensions. Alternative versions of the two-
dimensional theory, meanwhile, eschew Einstein's equation. Given
this, it seems one needs to either qualify one's assertions con-
cerning the features of general relativity, or else conclude that
there is some sense in which general relativity requires spacetime
to have four dimensions (or at least, have dimension greater than
two). As we argue in section 5, if one adopts the first option, there
are consequences for what value the cosmological constant can
takedat least if one adopts the view that the cosmological con-
stant is a constant of nature, in the sense described by Earman
(2003).

We conclude by observing that the sort of extended reflection
on a physical theory in other dimensions as presented here-
dwhich, we emphasize, is hardly unusual in the physics literatur-
edraises important questions for philosophers of physics (and
others) concerning how we understand the space of physical pos-
sibilities. Briefly, many philosophers of physics would like to take
the space of models of our physical theories as characterizing a
space of “physically possible worlds” (Ruetsche, 2011; Ch. 2). We do
not wish to take a stand on whether this is always the best way of
understanding the notion of possibility captured by physical
theorizing. When one uses theory to describe physical toy models,
for example, those models are not intended to describe physical
possibilities directly so much as to serve as tools for analogical
reasoning about physical possibilities, among other uses; as dis-
cussed in section 6.3, this is the explicit attitude of Jackiw (1985)
towards two-dimensional gravitational models.
40 See, however, Fletcher (2017) for arguments for the same pluralistic conclusion
for four-dimensional GR. If distinct versions of four-dimensional general relativity
are confirmed, the various two-dimensional theories derived from them through
dimensional reduction could also be confirmed. In this sense, a plurality of four-
dimensional theories does not undermine the empirical basis for a plurality of
two-dimensional theories.
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But if one does think that physical theorizing is intended to
capture the space of physical possibilities, then it seems that there
is a certain indeterminacy in what this space consists in. In
particular, either it is possible that the world had a different
number of dimensions than we observe, or not. In the former case,
the space of physically possible worlds presumably includes worlds
with different numbers of dimensions. But then, one might think
that theremust be some fact about the laws in thoseworlds. Canwe
know what the laws are? Should we be committed to the idea that
the laws in other dimensions take the same form as in four di-
mensions, or should other considerations, such as we discuss in
section 6, enter into our deliberations? Do constants of nature vary
among these possibilities, and if so, do they vary only when one
changes dimension? Should we be satisfied if, having chosen some
way of generalizing some theory, the possibilities in other di-
mensions turn out to be qualitatively different from those in four
dimensions?

In the latter case, meanwhile, where it is not possible for the
world to have been two-dimensional, it seems that there can be no
fact of the matter about whether analyses of models with other
dimensions (as happens in both quantum gravity andmathematical
quantum field theory) track anything about the world at all,
because there are no physical possibilities to which these models
correspond.
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