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a b s t r a c t

Within the context of general relativity, we consider a type of “time machine” and introduce the related
“hole machine”. We review what is known about each and add results of our own. We conclude that
(so far) the hole machine advocate is in a better position than the time machine advocate.
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1. Introduction

Within the context of general relativity, we consider a type
of “time machine” and introduce the related “hole machine”.
We review what is known about each and add results of our
own. We conclude that (so far) the hole machine advocate is in a
better position than the time machine advocate.

2. Background structure

We begin with a few preliminaries concerning the relevant
background formalism of general relativity.1 An n-dimensional,
relativistic spacetime (for nZ2) is a pair of mathematical objects
ðM; gabÞ. M is a connected n-dimensional manifold (without
boundary) that is smooth (infinitely differentiable). Here, gab is a
smooth, non-degenerate, pseudo-Riemannian metric of Lorentz
signature ðþ ; � ;…; �Þ defined onM. Each point in the manifold M
represents an “event” in spacetime.

For each point pAM, the metric assigns a cone structure to the
tangent space Mp. Any tangent vector ξa in Mp will be timelike
(if gabξ

aξb40), null (if gabξ
aξb ¼ 0), or spacelike (if gabξ

aξbo0). Null

vectors create the cone structure; timelike vectors are inside the
cone while spacelike vectors are outside. A time orientable space-
time is one that has a continuous timelike vector field onM. A time
orientable spacetime allows us to distinguish between the future
and past lobes of the light cone. In what follows, it is assumed that
spacetimes are time orientable.

For some interval IDR, a smooth curve γ : I-M is timelike if
the tangent vector ξa at each point in γ½I� is timelike. Similarly, a
curve is null (respectively, spacelike) if its tangent vector at each
point is null (respectively, spacelike). A curve is causal if its tangent
vector at each point is either null or timelike. A causal curve is
future-directed if its tangent vector at each point falls in or on the
future lobe of the light cone.

For any two points p, qAM, we write p5q if there exists a
future-directed timelike curve from p to q. We write poq if there
exists a future-directed causal curve from p to q. These relations
allow us to define the timelike and causal pasts and futures of a
point p: I� ðpÞ ¼ fq : qoopg, Iþ ðpÞ ¼ fq : pooqg, J� ðpÞ ¼ fq : qo
pg, and Jþ ðpÞ ¼ fq : poqg. Naturally, for any set SDM, define Jþ ½S�
to be the set [fJþ ðxÞ : xASg and so on. A closed timelike curve is a
timelike curve γ : I-M such that there are distinct points s, s0A I
with γðsÞ ¼ γðs0Þ.

A point pAM is a future endpoint of a future-directed causal
curve γ : I-M if, for every neighborhood O of p, there exists a
point t0A I such that γðtÞAO for all t4t0. A past endpoint is defined
similarly. For any set SDM, we define the past domain of
dependence of S (written D� ðSÞ) to be the set of points pAM such
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that every causal curve with past endpoint p and no future
endpoint intersects S. The future domain of dependence of S
(written Dþ ðSÞ) is defined analogously. The entire domain of
dependence of S (written D(S)) is just the set D� ðSÞ [ Dþ ðSÞ.

We say a curve γ : I-M is not maximal if there is another curve
γ0 : I0-M such that I is a proper subset of I0 and γðsÞ ¼ γ0ðsÞ for all
sA I. A curve γ : I-M in a spacetime ðM; gabÞ is a geodesic if
ξa∇aξ

b ¼ 0 where ξa is the tangent vector and ∇a is the unique
derivative operator compatible with gab. A spacetime ðM; gabÞ is
geodesically complete if every maximal geodesic γ : I-M is such
that I ¼R. We say that a future-directed timelike or null geodesic
γ : I-M without future endpoint is future incomplete if there is an
rAR such that sor for all sA I. A past incomplete timelike or null
geodesic is defined analogously.

A set S�M is achronal if no two points in S can be connected by
a timelike curve. The edge of a closed, achronal set S�M is the set
of points pAS such that every open neighborhood O of p contains a
point qA Iþ ðpÞ, a point rA I� ðpÞ, and a timelike curve from r to q
which does not intersect S. A set S�M is a slice if it is closed,
achronal, and without edge. A spacetime ðM; gabÞ which contains a
slice S such that DðSÞ ¼M is said to be globally hyperbolic. A set
S�M is a spacelike surface if S is an (n � 1)-dimensional
submanifold (possibly with boundary) such that every curve in S
is spacelike.

Finally, two spacetimes ðM; gabÞ and ðM0; g0abÞ are isometric if
there is a diffeomorphism ψ : M-M0 such that ψnðgabÞ ¼ g0ab. We
say a spacetime ðM0; g0abÞ is an extension of ðM; gabÞ if there is a
subset N of M0 such that ðM; gabÞ and ðN; g0abjNÞ are isometric. We
say a spacetime is maximal if it has no extension other than itself.
A spacetime ðM; gabÞ is past maximal if, for each of its maximal
extensions ðM0; g0abÞ with isometric embedding ψ : M-M0, we
have I� ðψðMÞÞ ¼ ψðMÞ. A future maximal spacetime is defined
analogously.

3. Time machines

One wonders if closed timelike curves (CTCs), which allow for
time travel of a certain type, can be “created” by rearranging the
distribution and flow of matter (Stein, 1970). In other words, can
a physically reasonable spacetime contain a “time machine” of
sorts? Here, we examine one way of formalizing the question due
to Earman, Smeenk, and Wüthrich (2009), Earman and Wüthrich
(2010), and Smeenk and Wüthrich (2011).

Consider a past maximal, globally hyperbolic spacetime
ðM; gabÞ. It represents a “time” before the machine is switched
on.2 We would like to capture the idea that this spacetime
“creates” CTCs. Accordingly, we can require that every “physically
reasonable” maximal extension of ðM; gabÞ must contain CTCs.
Consider the following statement.

(T) There is a past maximal, globally hyperbolic spacetime
ðM; gabÞ such that every maximal extension of ðM; gabÞ with
property p contains CTCs.

We seek to find physically reasonable “potency” properties p
which make (T) true. And we know from counterexamples con-
structed by Krasnikov (2002) that (T) will be false unless there is a
potency property p which limits spacetime “holes” in some sense.

Are there any properties p which make (T) true? Yes. We say a
spacetime ðM; gabÞ is hole-free if, for any spacelike surface S in M
there is no isometric embedding θ : DðSÞ-M0 into another space-
time ðM0; g0abÞ such that θðDðSÞÞaDðθðSÞÞ. It has been argued that all
physically reasonable spacetimes are hole-free (Geroch, 1977;

Clarke, 1976). And it turns out that (T) is true if p is hole-
freeness (Manchak, 2009a). The two-dimensional Misner space-
time can be used to prove the result. However, it seems that hole-
freeness cannot be regarded as physically reasonable potency
property after all; it turns out (!) that Minkowski spacetime is
not hole-free (Krasnikov, 2009).

Because hole-freeness fails to be physically reasonable, one
seeks more appropriate alternate potency properties to rule out
holes. Here, we consider two such.3 First we have (Manchak,
2014):

Definition. A spacetime ðM; gabÞ is E complete if, for every future or
past incomplete timelike geodesic γ : I-M, and every open set O
containing γ, there is no isometric embedding φ : O-M0 into some
other spacetime ðM0; g0abÞ such that φ○γ has future and past
endpoints.

One can show that every geodesically complete spacetime (e.g.
Minkowski spacetime) is E complete (Manchak, 2014). In this
sense, E completeness is a more appropriate condition than hole-
freeness.

Our second condition is:

Definition. A spacetime ðM; gabÞ is J closed if, for all pAM, the sets
Jþ ðpÞ and J� ðpÞ are closed.

One can show that every globally hyperbolic spacetime (e.g.
Minkowski spacetime) is J closed (Hawking & Sachs, 1974). In this
sense, J closedness is a more appropriate condition than hole-
freeness.

Now we are in a position to ask two precise questions: Is
(T) true when p is E completeness? J closedness? Let's begin with
the first question. We have:

Proposition 1. If p is E completeness, (T) is true.

Proof. Let ðN; ηabÞ be a Misner spacetime. So, N¼R� S and
ηab ¼ 2∇ðat∇bÞφþt∇aφ∇bφ where the points ðt;φÞ are identified
with the points ðt;φþ2πnÞ for all integers n. Let ðM; gabÞ be such
that M¼ fðt;φÞAN : to0g and gab ¼ ηabjM . One can verify that
ðM; gabÞ is a past maximal, globally hyperbolic spacetime.

Let ðM″; g″abÞ be any extension whatsoever to ðM; gabÞ. For
convenience, take the associated isometric embedding ψ :

M-M″ to be the identity function. In ðM″; g″abÞ there will be a
future incomplete timelike geodesic γ : I-M with past endpoint at
ð�1;0Þ; the geodesic winds around the spacetime, ever approach-
ing but never meeting t¼0 (Hawking & Ellis, 1973).

Let ðM0; g0abÞ be such that M0 ¼R� S and g0ab ¼ �2∇ðat0∇bÞφ0 þ
t0∇aφ0∇bφ

0 where the points ðt0;φ0Þ are identified with the points
ðt0;φ0 þ2πnÞ for all integers n. We know ðM0; g0abÞ is an extension of
ðM; gabÞ (Hawking & Ellis, 1973); let ψ 0 : M-M0 be the associated
isometric embedding. One can verify that ψ 0○γ has past endpoint
at t0 ¼ �1 and future endpoint at t0 ¼ 0. Thus ðM″; g″abÞ is not E
complete. Thus, since ðM″; g″abÞ was arbitrary, every maximal, E
complete extension of ðM; gabÞ contains CTCs. □

Now observe: in the proof above, ðM; gabÞ renders (T) true but it
does so only vacuously. There do not exist any maximal, E
complete extensions of ðM; gabÞ; so all of them must contain CTCs.
This suggests a minor alteration to (T).

(Tn) There is a past maximal, globally hyperbolic spacetime
ðM; gabÞ such that (i) there is a maximal extension of ðM; gabÞ
with property p and (ii) every such extension contains CTCs.

2 All globally hyperbolic spacetimes fail to have CTCs (Wald, 1984). 3 For others, see Clarke (1993), Manchak (2009b), and Minguzzi (2012).
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Is (Tn) true when p is E completeness? This is presently unknown.
Is (Tn) true when p is J closedness? Yes. A proof, using Misner
spacetime, is given in Manchak (2011). We have:

Proposition 2. If p is J closedness, (Tn) is true.

4. Hole machines?

Are J closedness and E completeness physically reasonable
properties to impose on spacetime? In the present context, our
investigation has centered upon the “no hole” properties of
(presumably reasonable) past maximal, globally hyperbolic space-
times and their maximal extensions. Therefore, it seems appro-
priate, at least for the time being, to require p to be such that, for
any past maximal, globally hyperbolic spacetime, there is at least a
chance that there is a maximal extension of that spacetime with p.
This idea (or something close to it) was considered by Clarke
(1976), Earman (1989), and Manchak (2009b). Consider the
following:

Definition. A property p is future Cauchy extendible if, for every
past maximal, globally hyperbolic spacetime ðM; gabÞ, there is a
maximal extension of ðM; gabÞ with property p.

We now have two more precise questions: Is E completeness
future Cauchy extendible? Is J closedness? No and no. The E
completeness case follows directly from the proof of Proposition
1. We have:

Proposition 3. E completeness is not future Cauchy extendible.

Proof. Let ðM; gabÞ be the past maximal, globally hyperbolic
portion of Misner spacetime. As outlined in Proposition 1, any
extension (maximal or not) to ðM; gabÞ fails to be E complete. □

The J closedness case was conjectured by Geroch (private
communication). The result is somewhat surprising; we would
expect a (globally hyperbolic and thus) J closed spacetime to have
some J closed maximal extension. Instead, we have:

Proposition 4. J closedness is not future Cauchy extendible.

Proof. Let ðN; ηabÞ be a Misner spacetime. So, N¼R� S and
ηab ¼ 2∇ðat∇bÞφþt∇aφ∇bφ where the points ðt;φÞ are identified
with the points ðt;φþ2πnÞ for all integers n. Now let ðN0; η0abÞ be a
spacetime such that N0 ¼N�fð0;0Þg and η0ab ¼Ω2ηab where Ω :
N0-R approaches zero as the point ð0;0Þ is approached along the
line fðt;φÞAN0 : φ¼ 0&to0g. Let ðM; gabÞ be such that
M¼ fðt;φÞAN0 : to0g and gab ¼ η0abjM . One can verify that ðM; gabÞ
is past maximal, globally hyperbolic.

Let ðM0; g0abÞ be any maximal extension of ðM; gabÞ. Now, for
every kA ½0;2π�, let γk be the null geodesic whose image is the set
fðt;φÞAM : φ¼ k&�1oto0g. Now, for each k, γk either has a
future endpoint pk or not. Let K be the set of all the endpoints
pk. Because ðM0; g0abÞ is maximal, there will certainly be some k such
that the point pk is in K. But since Ω approaches zero as the point
ð0;0Þ is approached along γ0, the point p0 does not exist. Hence, K
is not (the image of) a closed null curve. This implies that there
will be some point qA Jþ ðpkÞ \ K such that q=2 J� ðpkÞ. But of course,
qA J� ðpkÞ since qAK . So J� ðpkÞ is not a closed set and, therefore,
ðM0; g0abÞ is not J closed. □

Given these results, a time machine skeptic might conclude
that (Tn) unreasonably restricts attention only to maximal exten-
sions which satisfy p. After all, Propositions 3 and 4 seem to show
us that (presumably) reasonable spacetimes do not always have
maximal extensions which are E complete or J closed. In fact, one
might argue that these results actually support the existence

of “hole machines” of a certain type. Consider the following
statement:

(H) There is a past maximal, globally hyperbolic spacetime
ðM; gabÞ such that every maximal extension of ðM; gabÞ fails to
have property p.

One could seek “no hole” properties p which make (H) true. As
before, the past maximal, globally hyperbolic spacetime ðM; gabÞ
represents a “time” before the hole machine is switched on.4

Requiring that every maximal extension of ðM; gabÞ fail to have p
captures the idea that this spacetime “creates” holes. Notice that
an existence clause, as in (Tn), is not needed here since every
spacetime has a maximal extension (Geroch, 1970). Of course, as
corollaries to Propositions 3 and 4, we have:

Proposition 5. If p is E completeness, (H) is true.

Proposition 6. If p is J closedness, (H) is true.

We see that, if p is J closedness, the time machine advocate and
hole machine advocate each has a result in hand. But this is not the
case if p is E completeness; as noted before, it is still an open
question whether (Tn) is true if p is E completeness. So we see one
sense in which (so far) the hole machine advocate is in a better
position than the time machine advocate.

But there are other (more serious) senses in which (so far) the
hole machine advocate is in a better position than the time
machine advocate. Consider the presuppositions made by each.
Both advocates seem to presume that all past maximal, globally
hyperbolic spacetimes are physically reasonable. And both pre-
sume that all physically reasonable extensions to such globally
hyperbolic regions must be maximal. But the hole machine
advocate requires no potency properties to deduce the existence
of holes. In (H), one considers all maximal extensions of ðM; gabÞ;
no demarcation between the reasonable and unreasonable is
presumed.

And not only is it potentially problematic to demarcate
between the reasonable and unreasonable extensions. But in fact
(one might argue) the demarcations presumed (so far) are suspect.
After all, Propositions 5 and 6 show a sense in which J closedness
and E completeness are not satisfied by all physically reasonable
spacetimes. Why, then, should the time machine advocate be
permitted to use these properties as potency properties?5

5. Conclusion

What can the time machine advocate do to better her position?
It seems she must reject the presumption that all past maximal,
globally hyperbolic spacetimes are physically reasonable. Consider
the following statements:

(Tnn) There is a past-maximal, globally hyperbolic spacetime
ðM; gabÞ with property q such that (i) there is a maximal
extension of ðM; gabÞ with property p and (ii) every such
extension contains CTCs.

(Hnn) There is a past-maximal, globally hyperbolic spacetime
ðM; gabÞ with property q such that every maximal extension of
ðM; gabÞ fails to have property p.

4 One cannot require ðM; gabÞ to have property p since some “no hole” proper-
ties (e.g. E completeness) imply the maximality of spacetime (Manchak, 2014). But
all globally hyperbolic spacetimes ðM; gabÞ have the property of “internal causal
compactness”: for all points p; qAM, the closure of I� ðpÞ \ Iþ ðqÞ is compact. This
property “excludes holes” in some sense (Geroch & Horowitz, 1979, p. 251).

5 Thanks to Thomas Barrett and Jim Weatherall for leading me to this idea.
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Here, q is some “local” property (e.g. an “energy condition”)
satisfied by physically reasonable spacetimes (Manchak, 2013). As
before, p is some “no holes” property. The time machine advocate
can hope that, for some choices of p and q, (Tnn) winds up being
true and (Hnn) winds up being false. But it is not yet clear which of
the two advocates benefits more from limiting the discussion in
this way. There is more work to be done here.
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