
On Space-Time Singularities, Holes,
and Extensions

John Byron Manchak*y

Here, we clarify the relationship among three space-time conditions of interest: geodesic
completeness, hole-freeness, and inextendibility. In addition, we introduce a related fourth
condition: effective completeness.

1. Introduction. In what follows, we consider three space-time conditions
of interest: geodesic completeness, hole-freeness, and inextendibility. How
are these three conditions related? Here, we review what is known and con-
tribute a few ðminorÞ results of our own. We take no position as to which of
these conditions are satisfied by any or all physically reasonable space-times.1

We seek only to shed light on the connections among them.

2. Background Structure. We begin with a few preliminaries concerning
the relevant background formalism of general relativity.2 An n-dimensional,
relativistic space-time ðfor n ≥ 2Þ is a pair of mathematical objects ðM, gabÞ.
Object M is a connected n-dimensional manifold ðwithout boundaryÞ that
is smooth ðinfinitely differentiableÞ. Here, gab is a smooth, nondegenerate,
pseudo-Riemannianmetric of Lorentz signature ð1,2, . . . ,2Þ defined onM.

*To contact the author, please write to: Department of Philosophy, University of Washing-
ton, Seattle, WA 98195; e-mail: manchak@uw.edu.

yI am grateful to Erik Curiel, Bob Geroch, David Malament, and Jim Weatherall for helpful
comments on previous drafts.

1. In the literature, geodesic completeness is usually taken to be violated by some physi-
cally reasonable space-times, while hole-freeness and inextendibility are usually taken
to be satisfied by all such space-times. See, e.g., Clarke ð1976, 1993Þ and Earman ð1989,
1995Þ.
2. The reader is encouraged to consult Hawking and Ellis ð1973Þ and Wald ð1984Þ for
details. An outstanding ðand less technicalÞ survey of the global structure of space-time
is given by Geroch and Horowitz ð1979Þ.
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Note that M is assumed to be Hausdorff; for any distinct p, q ∈ M, one
can find disjoint open sets Op and Oq containing p and q, respectively. We
say two space-times ðM, gabÞ and ðM 0, g 0

abÞ are isometric if there is a dif-
feomorphism J : M →M 0 such that J

*
ðgabÞ5 g 0

ab.
For each point p ∈ M, the metric assigns a cone structure to the tangent

space Mp. Any tangent vector ya in Mp will be timelike if gaby
ayb > 0, null

if gaby
ayb 5 0, or spacelike if gaby

ayb < 0. Null vectors create the cone
structure; timelike vectors are inside the cone, while spacelike vectors are
outside. A time orientable space-time is one that has a continuous timelike
vector field on M. A time orientable space-time allows one to distinguish
between future and past lobes of the light cone. In what follows, it is as-
sumed that space-times are time orientable.

For some open ðconnectedÞ interval I ⊆ R, a smooth curve g : I →M is
timelike if the tangent vector ya at each point in g½I � is timelike. Similarly, a
curve is null ðrespectively, spacelikeÞ if its tangent vector at each point is
null ðrespectively, spacelikeÞ. A curve is causal if its tangent vector at each
point is either null or timelike. A causal curve is future directed if its tan-
gent vector at each point falls in or on the future lobe of the light cone.

We say a curve g : I →M is not maximal if there is another curve g 0 : I 0

→M such that I is a proper subset of I 0 and gðsÞ5 g 0ðsÞ for all s ∈ I.
A curve g : I →M in a space-time ðM, gabÞ is a geodesic if yaray

b 5 0,
where ya is the tangent vector and Da is the unique derivative operator com-
patible with gab.

For any two points p, q ∈ M, we write p ≪ q if there exists a future-
directed timelike curve from p to q. We write p < q if there exists a future-
directed causal curve from p to q. These relations allow us to define the
timelike and causal pasts and futures of a point p: I2ðpÞ 5 fq : q ≪ pg,
I1ðpÞ 5 fq : p ≪ qg, J2ðpÞ 5 fq : q < pg, and J1ðpÞ 5 fq : p < qg.
Naturally, for any set S ⊆ M, define J1½S� to be the set [fJ1ðxÞ : x ∈ Sg,
and so on. A set S ⊂ M is achronal if S \ I2½S�5 ∅. We say a space-time
ðM, gabÞ is stably causal if there is a smooth function f : M → R such that,
for any distinct points p, q ∈ M, if p ∈ J1ðqÞ, then f ðpÞ > f ðqÞ.

A point p ∈ M is a future endpoint of a future-directed causal curve
g : I →M if, for every neighborhood O of p, there exists a point t0 ∈ I such
that gðtÞ ∈ O for all t > t0. A past endpoint is defined similarly. A causal
curve is future inextendible ðrespectively, past inextendibleÞ if it has no
future ðrespectively, pastÞ endpoint.

For any set S ⊆M, we define the past domain of dependence of S, written
D2ðSÞ, to be the set of points p ∈ M such that every causal curve with past
endpoint p and no future endpoint intersects S. The future domain of de-
pendence of S, written D1ðSÞ, is defined analogously. The entire domain of
dependence of S, written DðSÞ, is just the set D2ðSÞ [ D1ðSÞ. The edge of
an achronal set S ⊂ M is the collection of points p ∈ S such that every open
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neighborhood O of p contains a point q ∈ I1ðpÞ, a point r ∈ I2ðpÞ, and a
timelike curve from r to q that does not intersect S. A set S ⊂ M is a slice if
it is closed, achronal, and without edge. A space-time ðM, gabÞ that contains
a slice S such that DðSÞ 5 M is said to be globally hyperbolic.

3. Singularities and Holes. There are a number of ways to define a space-
time singularity but “none, with the exception of geodesic incompleteness,
seems to have found any significant applications” ðGeroch and Horowitz
1979, 258Þ. Here, we take this position for granted and refer the reader to
Curiel ð1999Þ for thorough and convincing arguments in its favor. We now
make the condition precise.

DEFINITION 1.—A space-time ðM, gabÞ is geodesically complete ðGCÞ if ev-
ery maximal geodesic g : I →M is such that I 5 R. A space-time is geo-
desically incomplete if it is not geodesically complete.

Physically, a timelike incomplete geodesic represents a freely falling ob-
server who does not record all possible watch readings. If an incomplete
geodesic is timelike or null, there is a useful distinction one can introduce.
We say that a future-directed timelike or null geodesic g : I →M without
future endpoint is future incomplete if there is an r ∈ R such that s < r for
all s ∈ I. A past incomplete timelike or null geodesic is defined analogously.

The singularity theorems of Hawking and Penrose ð1970Þ show that a
large number of seemingly physically reasonable space-times fail to be geo-
desically complete. Thus, the condition is somewhat strong.

Of course, there are also a large number of geodesically incomplete space-
times that seem to have “artificial” singularities. Indeed one can show that any
space-time with one point removed from the manifold is geodesically incom-
plete. In such a space-time, a type of indeterminism is also present; the do-
main of dependence of some spacelike surface is not “as large as it could
have been.” We turn our attention now to this type of indeterminism—due
to space-time “holes”—and its connections with geodesic incompleteness.

Initially, one defined ðGeroch 1977Þ a space-time ðM, gabÞ to be hole-
free if, for every spacelike surface S ⊂ M and every isometric embedding
J : DðSÞ→M 0 into some other space-time ðM 0, g 0

abÞ, we have JðDðSÞÞ5
DðJðSÞÞ. The definition seemed to be satisfactory. Indeed, one can show
that any space-time with one point removed from the manifold is not hole-
free. But surprisingly, it turns out that the definition is too strong; Minkowski
space-time fails to be hole-free under this formulation ðKrasnikov 2009Þ.
But one can make minor modifications to avoid this consequence ðManchak
2009Þ.

Let ðK, gabÞ be a globally hyperbolic space-time. Let J : K → K 0 be an
isometric embedding into a space-time ðK 0, g 0

abÞ. We say ðK 0, g 0
abÞ is an ef-
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fective extension of ðK, gabÞ if, for some Cauchy surface S in ðK, gabÞ,
J½K� ⊊ intðDðJ½S�ÞÞ and J½S� is achronal. Hole-freeness can then be defined
as follows.

DEFINITION 2.—A space-time ðM, gabÞ is hole-free ðHFÞ if, for every set K
⊆ M such that ðK; gabjKÞ is a globally hyperbolic space-time with Cauchy
surface S, if ðK 0

; gabjK 0 Þ is not an effective extension of ðK; gabjKÞ where K 0

5 intðDðSÞÞ, then there is no effective extension of ðK; gabjKÞ.

What is the relationship between hole-freeness and geodesic complete-
ness? One can easily show that the former does not imply the latter.

EXAMPLE 1.—Let ðR2; habÞ be Minkowski space-time, and let p be any
point in R2, and let q be any point in I2ðpÞ. Let M be the manifold
I2ð pÞ \ I1ðqÞ. Clearly, the space-time ðM; habjMÞ satisfies HF but not GC.

One wonders whether the implication relation holds in the other direc-
tion. And it has been conjectured by Geroch ðprivate communicationÞ that
there even exists some physically significant intermediate completeness con-
dition that is weaker than geodesic completeness but stronger than hole-
freeness ðsee fig. 1Þ.

Why might such an intermediate condition be of interest? As noted above,
geodesic completeness is a somewhat strong condition in the sense that not
all seemingly physically reasonable space-times satisfy it. However, hole-
freeness is a somewhat weak condition in the sense that some space-times
ðe.g., example 1Þ that satisfy it can be constructed by removing points from
otherwise geodesically complete space-times. An intermediate condition may
be strong enough to rule out these seemingly artificial singularities but weak
enough to allow the more physically reasonable, geodesically incomplete
space-times guaranteed by the singularity theorems.

4. Singularities and Extensions. One way to rule out space-times that are
constructed by removing points from the manifold is to require that space-
time be “as large as it could have been.” In other words, one can require that
space-time be inextendible. We have the following definition.

DEFINITION 3.—A space-time ðM, gabÞ is extendible if there exists a
space-time ðM 0, g 0

abÞ and an isometric embedding J : M →M 0 such that

Figure 1. Is there a physically significant intermediate condition that is implied by
GC and implies HF?
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JðMÞ⊊M 0. Here, the space-time ðM 0, g 0
abÞ is an extension of ðM, gabÞ. A

space-time is inextendible ðIÞ if it has no extension.

One can show that every extendible space-time has a ðnot necessarily
uniqueÞ inextendible extension. What is the relationship between geodesic
completeness and inextendibility? One can show that the former implies the
latter ðClarke 1993Þ. And a simple example shows that the implication does
not run in the other direction.

EXAMPLE 2.—Let ðR2; habÞ be Minkowski space-time, and let p be any
point in R2. Let M be the manifold R2 2 f pg, and let ðM 0, gabÞ be the uni-
versal covering space-time of ðM; habjMÞ. Clearly, the space-time ðM 0, gabÞ
satisfies I but not GC.

The example above shows that inextendibility is a somewhat weak con-
dition. Indeed, some inextendible space-times that are extraordinarily well
behaved ðe.g., have flat metrics and manifolds diffeomorphic to RnÞ may
nonetheless be geodesically incomplete. As before, one wonders whether
there is a physically significant intermediate condition that is strong enough
to rule out these seemingly artificial singularities but weak enough to allow
the more physically reasonable, geodesically incomplete space-times guaran-
teed by the singularity theorems ðsee fig. 2Þ.

One such intermediate condition was thought to have been given by
Hawking and Ellis ð1973Þ. A space-time ðM, gabÞ is said to be locally ex-
tendible if there is an open set O ⊂ M with noncompact closure and an
isometric embedding J : O→M 0 into some other space-time ðM 0, g 0

abÞ such
that the closure of JðOÞ is compact. A space-time is locally inextendible if it
is not locally extendible. Clearly, local inextendibility implies inextend-
ibility. And the problematic example 2 given above is counted as locally
extendible. But it turns out that the condition is not implied by geodesic
completeness. Indeed, the condition is much too strong in the sense that
Minkowski space-time can be shown to be locally extendible ðBeem 1980Þ.
5. Holes and Extensions. Hole-freeness and inextendibility are indepen-
dent conditions. Example 1 shows that hole-freeness does not imply inex-
tendibility. And example 2 shows that inextendibility does not imply hole-
freeness. So, the conditions serve to rule two different types of seemingly
artificial singularities. And therefore one routinely finds that both hole-

Figure 2. Is there a physically significant intermediate condition that is implied by
GC and implies I?
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freeness and inextendibility are assumed to be satisfied by all physically
reasonable space-times ðsee Clarke ½1976, 1993� and Earman ½1989, 1995�
for examplesÞ.

In the two previous sections we have wondered about the existence of
two intermediate conditions: one between geodesic completeness and hole-
freeness and another between geodesic completeness and inextendibility.
Might there be a single ðphysically significantÞ intermediate condition that
is implied by geodesic completeness and implies both hole-freeness and
inextendibility ðsee fig. 3Þ? Such an intermediate condition may be strong
enough to rule out, in one fell swoop, both types of seemingly artificial sin-
gularities at issue ðand possibly other types as wellÞ but weak enough to allow
the more physically reasonable, geodesically incomplete space-times guaran-
teed by the singularity theorems.

6. An Intermediate Condition. Here, we show the existence of the inter-
mediate condition mentioned in the previous section. We introduce the
following definition.

DEFINITION 4.—A space-time ðM, gabÞ is effectively complete ðECÞ if, for
every future or past incomplete timelike geodesic g : I →M and every
open set O containing g, there is no isometric embedding J : O→M 0 into
some other space-time ðM 0, g 0

abÞ such that J○g has future and past end-
points.

The condition is a variation of one found in Clarke ð1982Þ and Earman
ð1989Þ. But these authors use the mathematically cumbersome and physi-
cally dubious concept of “b-incomplete” curves instead of incomplete time-
like geodesics.3 The physical significance of effective completeness is as
follows: if a space-time fails to be effectively complete, then there is a freely
falling observer who never records some particular watch reading but who
“could have” in the sense that nothing in her vicinity precludes it. The
condition is satisfied by the ðgeodesically incomplete but physically rea-
sonableÞ standard “big bang” cosmological models ðWald 1984Þ.

We note here that a variant of effective completeness can be formulated
using arbitrary ðinstead of timelikeÞ geodesics. The two conditions are not
equivalent.4 But the stronger variant seems to be less significant physically

3. See Schmidt ð1971Þ and Ellis and Schmidt ð1977Þ for details concerning b-incomplete
curves. See Geroch, Can-bin, and Wald ð1982Þ and Curiel ð1999Þ for details concerning
their physical significance—or lack thereof.

4. A counterexample can be constructed by considering fig. 8.3 in Earman ð1989Þ and
“turning it on its side” so that g is spacelike and no timelike geodesic can reach the
“apex” point.
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and moreover is simply not needed to show that effective completeness
implies hole-freeness and inextendibility ðsee belowÞ. And it follows im-
mediately from our formulation that geodesic completeness implies effec-
tive completeness.

PROPOSITION 1.—GC ⇒ EC.

A simple example shows that the two conditions are not equivalent.

EXAMPLE 3.——Let ðR2; habÞ beMinkowski space-time, and let p be any point
in R2. Let M be the manifold R2 2 f pg. Let Q : M → R be a smooth,
strictly positive function that approaches zero as the missing point p is ap-
proached. Let gab be the conformally flat metric Q2hab. Clearly, the space-
time ðM, gabÞ satisfies EC but not GC.

Examples 1 and 2 above show that hole-freeness and inextendibility
each do not imply effective completeness. It follows as a direct corollary
to proposition 1.3.1 in Clarke ð1993Þ that a violation of inextendibility im-
plies a violation of effective completeness. So, we have the following prop-
osition.

PROPOSITION 2.—EC ⇒ I.

Finally, we show here that effective completeness implies hole-freeness.
ðAll of the implication relationships between the four conditions can be
summarized in fig. 4.Þ

Figure 3. Is there a physically significant intermediate condition that is implied by
GC and implies both HF and I?
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PROPOSITION 3.—EC ⇒ HF.

Proof.—Let ðM, gabÞ be a space-time that does not satisfy HF. Then for
some K ⊆ M such that ðK; gabjKÞ is a globally hyperbolic space-time with
Cauchy surface S, we know that ðiÞ intðDðS ÞÞ5 K and ðiiÞ there is a space-
time ðM 0, g 0

abÞ and an isometric embedding J : K →M 0 such that J½S�
is achronal and J½K�⊊ intðDðJ½S �ÞÞ. Without loss of generality, we may
take M 0

5 intðDðJ½S�ÞÞ. So, ðM 0, g 0
abÞ is globally hyperbolic with Cauchy

surface S 0
5 J½S�.

Let p 0 be a point in _K 0 where K 0
5 J½K�. Now, assume p 0 ∈ D1ðS 0 Þ. ðA

similar proof can be constructed if p 0 ∈ D2ðS 0 Þ.Þ Clearly, p 0 ∈ I1½S 0 �. Let
g : I → K 0 be a timelike geodesic with future endpoint p0 and past end-
point in S 0. Either J21○ g has a future endpoint or not.

First, assume J21○ g does not have a future endpoint. It follows that
J21○ g is a timelike future incomplete geodesic. But by construction,
J ○ J21○ g5 g has future and past endpoints. So in this case, ðM, gabÞ
does not satisfy EC. Second, assume that J21○ g does have a future end-
point p in _K. Consider the open set U 0 5 I2ðp 0Þ \ I1½S 0 �. Clearly, U 0 ⊂
K 0. Let U 5 J21½U 0 �. Note that U ⊂ D1ðSÞ. We also know that U 0 is
compact ðWald 1984, theorem 8.3.12Þ. Now, either U is compact or not.
Our next step is to show that the former case is impossible.

Assume that U is compact. Now, let l : I →M be any past inexten-
dible casual curve with future endpoint p. Either l leaves the set U or not.
Assume the latter case first. SinceU ⊂ D1ðSÞ, we can show that, for every
q ∈U , either q ∈ _S or every past inextendible timelike curve from q in-
tersects S ðsee Wald 1984, proposition 8.3.2Þ. But one can verify that,
because l never leavesU, l never intersects S. So, for all s ∈ I, there is a
timelike curve ls : I

0 → U with future endpoint lðsÞ and past endpoint
in S. We know that, for each s ∈ I, the timelike curve J ○ ls has a future

Figure 4. Relationships among EC, GC, HF, and I.
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endpoint in U 0 ðWald 1984, lemma 8.2.1Þ. Let l0
: I →M 0 be a ðcon-

tinuousÞ causal curve defined as follows: for each s ∈ I, let l
0ðsÞ be the

future endpoint of J ○ ls. Since l
0
is confined to U 0, it has a past endpoint

q 0 ∈ U 0 ðWald 1984, lemma 8.2.1Þ. Let fsig be a sequence of points in
I such that the sequence fl0ðsiÞg has an accumulation point q 0. Now
consider the sequence flðsiÞg in U. Since U is compact by assumption,
flðsiÞg has an accumulation point q ∈U. But this implies that l can be
extended in the past: a contradiction.

Now, assume that l leaves U at point q ∈ _U. For some I 0 ⊂ I, let
l̂ : I 0 →U be the ðuniqueÞ past-directed causal curve with future endpoint
p and past endpoint q such that ljI 0 5 l̂. There are two subcases to con-
sider: q is inS or not. Assume the latter. Let fqig be a sequence in U that
accumulates at q. The compactness of U 0ensures that fJðqiÞg has an ac-
cumulation point q 0 ∈U 0. Clearly, q 0 ∉ S 0. So, every past directed causal
curve from q 0 must remain in U 0 for some interval. But this implies that
every past directed causal curve from q must remain in U for some in-
terval: an impossibility since l leaves U at q.

Now assume that q ∈S. It is not hard to verify that q cannot be in _S. ðIf
it were, one could find a sequence of points fqig in S \ U that accumulate
at q. But the sequence fJðqiÞg accumulates at a point q in S 0. Therefore,
J21ðq 0Þ5 q is in S: a contradiction since S is open.Þ Thus, l meets S. And
since l was chosen arbitrarily, we have p ∈ D1ðSÞ. Now, let f pig be a
sequence of points inM 2DðSÞ with limit point p. Let flig be a sequence
of past inextendible causal curves with corresponding future endpoints
f pig that also fail to meet S. We know that there is a past inextendible
causal curve through p that is a limit curve of the sequence ðWald 1984,
lemma 8.2.6Þ. Since p ∈ D1ðSÞ, this limit curve must intersect S. But S is
open, and therefore some of the flig must meet S as well: a contradiction.
So,U is not compact.

Finally, let frig be a sequence of points in U without accumulation
point in U . Since U 0 is compact, the sequence fJðriÞg accumulates at
some point r 0 ∈ U 0. One can verify that rmust be in I1½S 0�. Let z : I → K 0

be a timelike geodesic with future endpoint r 0 and past endpoint in S 0.
Clearly, J21 ○ z has no future endpoint. It follows that J21 ○ z is a timelike
future incomplete geodesic. But by construction, J ○ J21 ○ z 5 z has future
and past endpoints. So in this case as well, ðM, gabÞ does not satisfy EC.
QED

7. Conclusion. One final note on how the causal structure of space-time
is connected with the preceding.5 Of course, under the assumption of any

5. For a recent related discussion on causal structure and an alternate version of hole-
freeness, see Minguzzi ð2012Þ.
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causal condition, the implication relations outlined in the previous section
remain intact. And all the counterexamples given satisfy stable causality ðand
therefore any causal condition it impliesÞ. What about the stronger causal
condition of global hyperbolicity?

One can easily find globally hyperbolic examples showing that effective
completeness does not imply geodesic incompleteness, inextendibility does
not imply effective completeness, hole-freeness does not imply effective
completeness, and hole-freeness does not imply inextendibility. ðAll of the
examples can be constructed using the manifold in example 1 and adding
various conformally flat metrics.Þ

But it turns out that under the assumption of global hyperbolicity, we find
that inextendibility implies hole-freeness ðManchak 2009Þ. It has been con-
jectured ðPenrose 1979Þ that all physically reasonable space-times are glob-
ally hyperbolic. Thus, if the conjecture is true, we seem to have a useful
hierarchy of conditions ðsee fig. 5Þ.

REFERENCES

Beem, J. 1980. “Minkowski Space-Time Is Locally Extendible.” Communications in Mathematical
Physics 72:273–75.

Clarke, C. 1976. “Space-Time Singularities.” Communications in Mathematical Physics 49:17–23.
———. 1982. “Local Extensions in Singular Space-Times.” Communications in Mathematical

Physics 84:329–31.
———. 1993. The Analysis of Space-Time Singularities. Cambridge: Cambridge University Press.
Curiel, E. 1999. “The Analysis of Singular Spacetimes.” Philosophy of Science 66 ðProceedingsÞ:

S119–S145.
Earman, J. 1989. World Enough and Space-Time. Cambridge, MA: MIT Press.
———. 1995. Bangs, Crunches, Whimpers, and Shrieks. Oxford: Oxford University Press.
Ellis, G., and B. Schmidt. 1977. “Singular Space-Times.” General Relativity and Gravitation

8:915–53.
Geroch, R. 1977. “Prediction in General Relativity.” In Foundations of Space-Time Theories, ed.

J. Earman, C. Glymour, and J. Statchel, 81–93. Minnesota Studies in the Philosophy of Sci-
ence 8. Minneapolis: University of Minnesota Press.

Geroch, R., L. Can-bin, and R. Wald. 1982. “Singular Boundaries of Space-Times.” Journal of
Mathematical Physics 23:432–35.

Geroch, R., and G. Horowitz. 1979. “Global Structure of Spacetimes.” In General Relativity: An
Einstein Centenary Survey, ed. S. Hawking and W. Isreal, 212–93. Cambridge: Cambridge
University Press.

Hawking, S., and G. Ellis. 1973. The Large Scale Structure of Space-Time. Cambridge: Cambridge
University Press.

Hawking, S., and R. Penrose. 1970. “The Singularities of Gravitational Collapse and Cosmology.”
Proceedings of the Royal Society A 314:529–48.

Figure 5. Relationships among GC, EC, I, and HF under the assumption of global
hyperbolicity.

SPACE-TIME SINGULARITIES, HOLES, AND EXTENSIONS 1075

This content downloaded from 128.95.193.207 on Tue, 2 Dec 2014 15:24:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Krasnikov, S. 2009. “Even the Minkowski Space Is Holed.” Physical Review D 79:124041.
Manchak, J. 2009. “Is Spacetime Hole-Free?” General Relativity and Gravitation 41:1639–43.
Minguzzi, E. 2012. “Causally Simple Inextendible Spacetimes Are Hole-Free.” Journal of Math-

ematical Physics 53:062501.
Penrose, R. 1979. “Singularities and Time-Asymmery.” In General Relativity: An Einstein Centenary

Survey, ed. S. Hawking and W. Isreal, 581–638. Cambridge: Cambridge University Press.
Schmidt, B. 1971. “A New Definition of Singular Points in General Relativity.” General Relativity

and Gravitation 1:269–80.
Wald, R. 1984. General Relativity. Chicago: University of Chicago Press.

1076 JOHN BYRON MANCHAK

This content downloaded from 128.95.193.207 on Tue, 2 Dec 2014 15:24:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp



