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Abstract

Famously, scientific theories are underdetermined by their evidence. This occurs in
the factor analytic model (FA), which is often used to connect concrete data (e.g.
test scores) to hypothetical notions (e.g. intelligence). After introducing FA, three
general topics are addressed. (i) Underdetermination: the precise reasons why FA is
underdetermined illuminates various claims about underdetermination, abduction,
and theoretical terms. (ii) Uncertainties: FA helps distinguish at least four kinds
of uncertainties. The prevailing practice, often encoded in statistical software, is to
ignore the most difficult kinds, which are essential to FA’s underdetermination. (iii)
What to do: some suggestions for dealing with these hardest types of uncertainty
are offered.

1. Introduction

A perennial topic in the philosophy of science concerns the underdetermination of
a theory by its evidence. The idea is familiar: for any given body of evidence, there
will always be multiple theories that capture it in some appropriately equivalent
manner. Thus, with respect to the given evidence, these theories are equivalent, and
hence it is underdetermined which (if any) of them should be favored as “correct”.
Quine, in a famous paper on the topic, offers a representative statement of the
issue:

Under-determination lurks where there are two irreconcilable formulations each of
which implies exactly the desired set of observation conditionals plus extraneous theo-
retical matter, and where no formulation affords a tighter fit. [....]

Here, evidently, is the nature of under-determination. There is some infinite lot of
observation conditionals that we want to capture in a finite formulation. Because of the
complexity of the assortment, we cannot produce a finite formulation that would be
equivalent merely to their infinite conjunction. Any finite formulation that will imply
them is going to have to imply also some trumped-up matter, or stuffing, whose only
service is to round out the formulation. There is some freedom of choice of stuffing,
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and such is the under-determination. [Quine, 1975, 324] (Cf. [Quine, 1951, 1955, v. O.
Quine, 1972] for similar sentiments; Laudan [1990] carefully examines Quine’s views on
underdetermination.)

Although underdetermination is often discussed in very general terms [Kukla
1996], this paper examines it in the specific context of the statistical technique
of common factor analysis, here after dubbed the FA model, or FA for short.
(This model is the key component of family of techniques known as exploratory
factor analysis.) FA’s roots trace back to Charles Spearman’s work on intelligence
testing [Spearman, 1904, 1922, 1927]. Suppose e.g. 3000 students take an exam with
100 questions involving mathematics, reading comprehension, spatial reasoning,
etc. The students’ answers are recorded, so that there are 3000 observations on
the 100 measured (or “manifest”) variables. One might wonder whether there are
some underlying unmeasured “latent” abilities that are responsible for the students’
performances on the exam. If so, then how many such abilities are involved? Which
test questions draw from which abilities to what degrees? How are these abilities
related to one another? In terms of individual differences, which students possess
more of a given ability than which, and by how much? And for a given question,
do similar students recruit the same abilities to the same degree? What do the data
have to say about all this?

There’s an enormous amount to be said about the particular issues of human
intelligence; cf. [Hunt, 2011, Sternberg and Kaufman, 2011]. However, intelligence
testing only illustrates FA, which attempts to bridge the gap between observable
items of limited interest (e.g. test scores), and unobserved hypothetical entities of
much greater interest (e.g. human abilities). FA might also be used if the data came
from measuring the sensitivity of 3000 retinal cone cells of monarch butterflies
to 100 different wavelengths of the electromagnetic spectrum in order to learn
about the number of kinds of retinal cones, their relations to one another and
to various light wavelengths, etc. Or the data might’ve come from measuring 3000
ocean regions in 100 different ways in order to try to develop some hypotheses about
what (unobserved) causes were operating where and to what degree. Or we might be
examining 100 chemical analyses from 3000 tissue samples from a newly discovered
rodent, to learn about their (unobserved) diets, hereditary characteristics, etc. ;
cf. e.g., [Basilevsky, 1994, Jolliffe, 2010, Brereton, 2003] for many more examples.
(“Latent” variables aren’t restricted to hypothetical unseen forces or magnitudes:
astronomers and biologists use them to assess the “shape” of complex objects like
nebulae and lobster claws.)

Over the years, FA has received virtually no attention in the philosophical lit-
erature (although cf. [Baird, 1987, Glymour, 1998]). This is a shame, because FA
possesses many philosophically interesting features centered around its underde-
termination. Moreover, this underdetermination can be precisely characterized and
analyzed. But FA is not a mere toy for philosophical rumination; instead, it is of
considerable actual practical use, present within a diverse array of broader empirical
theories. It is also a flexible and general model that can be adjusted to suit vari-
ous circumstances, both philosophical and empirical. Not only are there literally
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thousands of actual theories built upon it; but countless more can easily be imag-
ined for philosophical purposes. Furthermore, although I do not discuss this here,
the issues below also apply to various types of currently popular causal models;
e.g. [Woodward, 2003, Spirtes et al., 2000, Pearl, 2000].

So why hasn’t hasn’t FA gotten more attention? There are at least two main
reasons. First, factor analysis is a notoriously difficult technique, reducing some
expositors to profanity [Gould, 1996, 268].1 Fortunately, many of the central philo-
sophical issues can be brought to light with a relatively small investment of tech-
nical material. Second, FA has a rather mixed reputation; e.g., [Armstrong, 1967,
Fabrigar et al., 1999]. Infamously, many studies have simply misused FA and the
results produced therein. This, however, isn’t a problem with the tool but with its
misapplications. The present discussion, if anything, helps clarify how FA should
be used.

FA supports many more theses than I can argue for here. However, this paper
argues for the following: (i) FA supplies a philosophically interesting type of un-
derdetermination. In fact, it can clarify several key issues. For example, (ii) when
assessing whether a putative case of underdetermination holds for “all possible
observations”, several matters must be carefully distinguished; when they are, the
nature of underdetermination and the difference between theory and evidence be-
come much less clear. (iii) Several determinate approaches (e.g. regression analysis,
principal components) are mathematically but not conceptually similar to FA, pre-
cisely because they lack the latter’s extra “randomness”. This point is easily missed,
even by practicing scientists. (iv) The amount of underdetermination in an FA
study can be measured, in terms of the correlations between the various poten-
tial key theoretical terms. This assessment isn’t the end of the story, even for FA;
however, it does introduce to the philosophical discussion of underdetermination
several considerations which deserve more widespread attention. (v) In contrast to
the received wisdom, FA is not a “brutally empirical” technique. Instead, it is a
particularly strong and clear case of abductive inference—one where the capacity to
make he data likely is actually sacrificed in favor of explanatory desiderata, partic-
ularly Reichenbach’s Principle of the Common Cause. (vi) FA helps to distinguish
four kinds of uncertainties that may be present in a scientific theory. Underdeter-
mination is associated with the two most intractable forms, which are routinely
ignored, often as an institutionalized practice. (vii) Finally, three recommendations
are briefly scouted for more explicitly dealing with FA’s underdetermination.

This paper is organized as follows. §2 introduces FA with a simple example. §3
argues that factor indeterminacy maps nicely onto the more philosophical notion of
underdetermination. This requires a sharp distinction between FA and regression
analysis—philosophically speaking, the former’s theoretical terms must, but the
latter’s cannot, “go beyond the data” in a certain precise sense. §4 further explores
several philosophical issues concerning FA’s underdetermination. §5 considers what
types of uncertainties are present in FA, and examines the general practice of
ignoring them. §6 contains three speculative suggestions for how to better address
this underdetermination. §7 concludes the body of the paper. Several technical
appendices are included.
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2. A Simple Introduction to the FA Model and Its Underdetermination

This section introduces some of the main ideas behind the FA model by way of an
artificially small example. The key ideas, however, generalize to all standard applica-
tions within the factor analysis literature. The model is more formally characterized
below in Appendix A; cf. e.g. [Basilevsky, 1994, Mulaik, 2010, Bartholomew et al.,
2011] for further technical discussion.

Suppose that a great many subjects take a test consisting of just four items
x1, x2, x3, x4. The raw data of these subjects’ scores might look something like that
given in the table below in (1):

(1)

Table 1. Hypothetical raw test scores

Meg Sue Bob Ann Fred Ned ...

x1 94 78 69 88 92 79 ...
x2 89 76 72 88 96 78 ...
x3 91 81 78 59 91 83 ...
x4 90 78 70 91 90 93 ...

(Realistically, the number of test items would be much larger; however, this does
not affect the points to be made here.) Suppose also that the four test items are
found to be positively correlated with one another: for any two test items, subjects
who did well on one of them tended to do well on the other, and similarly for
those who did poorly on one of them. Suppose the correlations between xi and
xj , denoted ri j , are: r12 = .48, r13 = .40, r14 = .32, r23 = .30, r24 = .24, r34 = .20.
At this point, our target empirical question is whether there are a few underlying
abilities that the subjects possess to varying degrees, which are in turn indicated
to varying degrees by the various tests. The goal behind FA is to use the the raw
data in (1) to construct/identify some statistical candidates which are optimal in a
certain sense, and which might plausibly represent such abilities.

We can think of FA as being structured around two fundamental ideas. The
first is that FA realizes Hans Reichenbach’s Principle of the Common Cause;
[Reichenbach 1956]; cf. also [Sober, 1984, Uffink, 1999, Pearl, 2000, Suppes and
Zanotti, 1981]. This principle says that when two or more phenomena are probabilis-
tically dependent, this dependency should be due to some shared causal structure
affecting them both. In a slogan, there should be “no correlation without causation”
[Pearl, 2000, 61]. FA satisfies Reichenbach’s principle by treating the correlations
amongst {x1, x2, x3, x4} as the primary explananda, and constructing a small set of
variables f1, ..., fq that collectively account for them, statistically speaking.2 In par-
ticular, the primary task is to render all the xi mutually uncorrelated, conditional
on f1, ..., fq . For present purposes, Reichenbach’s Principle can be formally defined
as the conjunction of (FAii–iii) in Appendix A. (When there are multiple f s, we
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might also require either that they be uncorrelated, or that there are higher-level
common factors accounting for their correlation; this detail will not matter below.)

The second key idea is to construct these f s using some ideas familiar from
ordinary regression analysis. In particular, we would like to find a comparatively
small number of f s such that linear combinations of them predict, in some sense,
the various xi:

(2)

x1 = λ11 f1 + λ12 f2 + ... + λ1q fq + e1

x2 = λ21 f1 + λ22 f2 + ... + λ2q fq + e2

x3 = λ31 f1 + λ32 f2 + ... + λ3q fq + e3

x4 = λ41 f1 + λ42 f2 + ... + λ4q fq + e4

Here, the ei are the specific factors—those statistical parts of the xi that are not
represented by the f s, which are the common factors. Since the f are typically of
primary theoretical importance, I follow the convention of referring to them simply
as the “factors”. The λs are the factor loadings; they are the fixed numbers that
relate the latent factors to the manifest data.

In practice, q is much smaller than k, so if (2) holds at all, it does so as a
substantial empirical fact. For our example, we can suppose that, as an empirical
fact about the data in (1), the correlations in question can be captured by only one
common factor: q = 1. Thus, suppose that, leaving aside issues of sampling error,
(3) holds (with f1 = f ): 3

(3)

x1 = .8 f + e1

x2 = .6 f + e2

x3 = .5 f + e3

x4 = .4 f + e4

As part of (3) fitting the FA model, we can assume that Reichenbach’s principle
is satisfied, in the sense that all pairs of the latent variables { f, e1, e2, e3, e4} are
uncorrelated (at least up to issues of sampling error).

The intuitive idea here is that the latent factor f that FA uncovers might represent
some empirical property (or ability, etc.) of the population from which the subjects
were sampled. In practice, this task is often aided by considering the factor loadings,
i.e., the coefficients .8, .6, .5, .4 above. Is there some unobserved property of the
subjects that would naturally be seen to be quite influential on the first test item,
somewhat less so on the fourth item, etc? If so—or if the data are strong enough
to motivate adjusting background theory, etc. to better fit these results—then the
usual further study of f and what it might represent can continue. f , then, would
be our statistical characterization of the unobserved property we wish to study.
(There is, of course, no guarantee that the factor loadings will support any such
natural interpretation of f .)

For example, the four xs might’ve been four distinct problems involving the
mental rotation of objects or scenarios. Although this shared demand may not have
been obvious to the researcher, by uncovering the statistical pattern in (3), FA can
suggest such an empirical interpretation. Moreover, the factor loadings can suggest
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how much rotational ability each x requires of the subjects. (I focus on a simple
case of just one factor and a ready interpretation; in practice matters are often
much more complicated.)

Obviously, when more than 4 xs are involved, these matters become much more
reliant on methods like FA. Also, as with any other theory, the resulting character-
ization of f , the loadings, etc. are subject to further exploration and testing. E.g.,
significance tests of given sets of factor loadings is at the heart of “confirmatory
factor analysis”.

The procedure just described has been the basis of over a century of research.
Leaving aside a huge amount of detail, we can focus on what a latent variable
like f might tell us about about some (potential) unobserved empirical property of
interest. This matter would be much easier to address if there was only one such f
that fit (3) (and the other assumptions of FA; cf. Appendix A). However, f is not
unique.

Early in the history of factor analysis, the mathematician Edwin B. Wilson
noticed that the FA model does not determine f [Wilson, 1928a, 1928b, Lovie
and Lovie, 1995]. In general, even when the loading coefficients are held fixed,
there are still infinitely many possible solutions to any set of common and unique
latent factors. Over time, many authors have developed and explored this phe-
nomenon; e.g. [Piaggio, 1931, 1933, Ledermann, 1938, Kestelman, 1952, Guttman,
1955, Heermann, 1964, 1966, McDonald, 1974, Schönemann, 1971, Maraun, 1996,
Bartholomew, 1981, 1996, Mulaik and McDonald, 1978]. For useful historical
overviews of this topic; cf. [Steiger and Schönemann, 1978, Lovie and Lovie, 1995]
and [Mulaik, 2010, chap. 10].

It would be easy to get lost in the great many details concerning even the narrow
issue of the underdetermination of the single latent common factor f . However,
the following informal characterization should suffice; cf. Appendix B for details.

Following standard notation, let f̂ be the ordinary least-squares regression of
any candidate f onto the xs:

(4) f̂ = b1x1 + b2x2 + b3x3 + b4x4,

for some fixed bs. (This might seem rather odd, since regression analysis typically
requires some values of f , and that is precisely what is not available. However, it
is a mathematical fact that in this context, f̂ exists, and is unique and calculable.)
To construct a candidate f , though, it is necessary to augment f̂ with another
variable u. u is required because f̂ by itself doesn’t have enough variance to act as
a latent common factor f by itself. Suppose, as is common, that the xs and f are
stipulated/normalized to each have a variance of 1. In that case, the variance of f̂
will be less than 1, and so will need to be augmented. But (4), it turns out, also
captures the desired relationship between any candidate latent variable f and the
given manifest xs. So it will also be necessary that u be uncorrelated with the xs.
Thus, every candidate f has the form:

(5) f = f̂ + u,
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where u is any variable uncorrelated with the xs, and such that f has a variance
of 1 (cf. Appendix B). Thus, there will always be infinitely many equivalent but
different candidates for this key theoretical term.

This, then, is the underdetermination of FA: f , the latent structure that is often
of primary interest, necessarily contains an “extra” random part. Moreover, there
are infinitely many such choices—indeed, since the variance of u can always be
scaled to fit, the only serious requirement is that u must have nothing to do with
the empirical evidence!

For example, in the simple case of (3), the loadings (.8, .6, .5, .4) collectively
yield a variance of f̂ of only about .74, so an extra part u with a variance of .26
will have to be added to it to construct the latent variable f . Thus, to construct
an f , we can select any variable whatsoever independent from the xs, and scale it
to fit.4 E.g., u could have the familiar form of a normal distribution, as in (6a).
However, it could also have, say, a highly skewed distribution like that in (6b).5 And
of course, these are only two options: u could be multimodal, discrete, a mixture
of various distributions, etc.

Figure 1. Two possible underdetermined parts, ua and ub

Call the distribution in (6a) ua , and the one in (6b) ub. Similarly let f a = f̂ + ua

and f b = f̂ + ub be the resulting latent common factors; likewise with ea
i , eb

i , etc.
(The unlabeled variables ( f , u, etc.) are used below for arbitrary common factors,
underdetermined parts, etc.)

f a and f b are quite distinct, but as latent common factors, they satisfy (3) equally
well, yielding identical values for the xs. They thus are a precise, unambiguous, and
concrete case of underdetermination of a theoretical entity by the empirical evidence
of the xs, and the strong theoretical assumptions of FA. Empirically speaking, if
the common factor represents, say, a given human ability, then f a suggests that
this ability is symmetrically distributed. f b, however, suggests that there is a small
population of individuals with an exceptionally high amount of the ability, and no
similarly sized population of exceptionally impoverished individuals.6
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Often, much of the purpose of a factor analytic study ultimately rests on the nu-
meric values of the latent variables. These values correspond to empirical questions
of fundamental importance, such as “How intelligent is individual i”?7 That is, we
often care about the manifest data in the xs and their intercorrelations because of
what they reveal about the latent factors; and the latter is often of interest because
of what they say about particular individuals (persons, blood samples, oceanic
regions, etc.). These most basic quantities are the factor scores—the particular val-
ues that particular individuals have on the latent factor. They are central to what
follows.

3. Underdetermination: Philosophical Aspects

This section discusses FA’s underdetermination in more detail. Quine’s description,
quoted above, is a useful starting point. Does FA’s underdetermination fit it?

Consider the simple example just given. Quine writes of “two irreconcilable
formulations” each implying the same empirical statements.8 This is exactly what
we have with f a and f b: they (along with the eas and ebs) each imply exactly the
same values of the xs. Thus, they are equally good common factors. They only
differ in their “extra” bit, the ua , ub, which is the “trumped-up matter, or stuffing,
whose only service is to round out the formulation” of f a and f b (Ibid.). But with
these extra bits, the resulting latent factors f a , f b, etc. constitute the “alternative
hypothetical substructures” at the core of the equivalent theories [Quine, 1975, 313].

Importantly, not only are f a and f b equivalent rivals; in accordance with Quine,
“no formulation affords a tighter fit” [Quine, 1975, 324]. That is, no common
factor f better fits the empirical data. But this raises an important question. As
noted, f a and f b share f̂ , the best (least-squares) representation of the common
factor in terms of our evidence (the xs). So why isn’t f̂ alone preferable to f a or
f b? After all, f̂ differs from the latter exactly by omitting the arbitrary part, the
Quinean “stuffing” that rounded out the common factors. Doesn’t f̂ afford a tighter
fit?

Surprisingly, perhaps, the answer is unambiguously no. f̂ doesn’t suffice because
it is not “random” enough. This might seem odd, since the purpose of any factor
f is to account for the xs. But more can be said: Thus, let f # = a1x1 + · · · + a4x4

be any linear combination of xs whatsoever. Could f # be a common factor, as in
(3)? No:

(7) Proposition. FA implies that f # is not a common factor for (3).

Because of its importance, Appendix C provides an explicit algebraic proof that
uses only very minimal assumptions.

(7) answers our question. Only the various f s (= f̂ + u, for some u) provide
Quine’s desired “best fit”, because their shared “best fitting” statistical component
f̂ is not a possible candidate. That is, f̂ (but not f ) is the best fit in terms of
least-squares regression; however the f s (but not f̂ ) are the best, and only, fit in
terms of FA.
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(7) can also be understood in terms of Reichenbach’s principle. If f statisti-
cally accounts for the correlations in the xs, the remaining behavior in the es is
uncorrelated. Thus, each e requires its own dimension, or degree of freedom. But
since f is also uncorrelated with them, it too needs its own dimension/degree of
freedom. So we need at least five such dimensions, but the xs only supply four.
Thus, Reichenbach’s principle always requires at least one more dimension than the
empirical data offer, and that is precisely what produces the underdetermination
in question. Regression approaches only use the dimensions that the data supply,
and so they cannot respect Reichenbach’s principle. Thus, f̂ literally doesn’t sup-
ply enough dimensions to do the job of a common factor. It is in this sense that
a model that uses regression doesn’t contain enough randomness. (7), of course,
applies to any linear combination of the xs; thus similar conclusions can be drawn
about a variety of other approaches, including principal component analysis, FA’s
most well-known alternative; Jolliffe [2010]. In sum, we have

(8) In general, with a linear model, you can satisfy Reichenbach’s principle, or
you can have determinacy, but you can’t have both.

(The linear model takes the form of (2), where the f s are to be determined. Some
background mathematical provisos are needed in various cases, but the point here
is that (8) holds quite generally.) As (7) shows, if you accept indeterminacy, there
is no easy way out that involves accepting only those solutions that are most
favored by the data. Instead, all the solutions are equally (dis)favored. In fact, the
situation is especially dire for those wishing to avoid underdetermination. As Louis
Guttman’s theorem shows (cf. Appendix B), underdetermination only requires an
exceedingly weak form of Reichenbach’s principle. In particular, it only requires
that the f s be uncorrelated with the es; the es needn’t be uncorrelated, but merely
linearly independent. The f s can be correlated amongst themselves, and some
further correlations may remain in the e. Intuitively, the part of Reichenbach’s
principle that really matters for underdetermination here is that screening off the
common causes doesn’t affect the remaining correlational structure in the es that
hasn’t yet been accounted for.

The ideas just discussed are fundamental to FA. However, they are frequently
missed, even by practicing psychometricians. A recent instance of this occurs in
[Beauducel 2013]; the details are in a footnote.9

3.1. “All Possible Observations”
So far, we’ve seen that FA’s underdetermination fits neatly with Quine’s classic
philosophical statement. However, philosophers often require that the underdeter-
mination should persist across “all possible” observations. The idea is that the
underdetermination should run deep—it shouldn’t occur merely because, e.g., a
large enough sample hadn’t been collected, even though it could’ve been. Prima
facie, this requirement seems straightforward; in truth, matters are much more
subtle.
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To begin, note that as a general type of statistical model, FA represents lit-
erally thousands of highly varied actual examples. Some of them contain fur-
ther relevant assumptions beyond FA; many don’t. But the various features of
underdetermination will always be highly dependent on the particular details of the
case at hand. Thus, we can only ask whether particular applications of the FA model
are underdetermined for all possible data. However, the following considerations
hold in general.

In multivariate statistics, new data rarely arrive as a single number. Instead data
appear as new individuals or new variables (or both); cf. (1).10 But these are two
very different kinds of additions: one could add new individuals measured on the
original variables, or one could add new variables on which the original individuals
are measured. (This distinction is of course not unique to statistical theorizing.) I
take these two in turn.

Increasing the sample size by adding individuals can reduce the sampling error
associated with, e.g., the estimation the λ coefficients, etc. However it is irrelevant
to FA’s underdetermination, which holds at the population level. Thus, in one very
natural sense, the philosophical issue has an affirmative answer: FA’s underdetermi-
nation holds across all possible observations, simply because it is a population-level
phenomenon, not a sample-level one. Of course, as with any empirical theory, there
might be observations that undermine the whole theory; the present point, though,
is that if the theory is true, no such observations can affect the underdetermination
(between say f a , f b, etc.).

I now turn to the much more interesting matter of adding new variables to a
factor-analytic study. Importantly, these few remarks hardly scratch the surface of
this large and important issue.

Consider the general case of underdetermined theories, as in e.g. van Fraassen’s
well-known discussion of the universe’s absolute motion within a Newtonian theory;
[van Fraasen, 1980, 44ff.]. The thrust of this example is that, by itself, Newton’s
physical theory of mechanics and gravitation is consistent with any claim that the
universe has a constant absolute motion of r , for any non-negative value of r .
Now of course, such underdetermination might not hold if Newton’s theory were
augmented with, say, the claim that the universe has an absolute motion of 0,
or that St. Peter, who is always to be believed, appeared and declared as much,
etc. This is only to say that a theory’s underdetermination depends entirely on
its content: strengthen the theory appropriately, and the underdetermination is
thereby lessened. In other words, even if underdetermination must persist as new
observations are added, it needn’t persist as new bits of theory are added.

Obviously, St. Peter may not be available to alleviate Newtonian underdetermi-
nation. Likewise, there is no guarantee that new variables are available to eliminate
FA’s underdetermination. Moreover, simply assuming that there will always be such
variables to be found doesn’t reflect the realities that, e.g., psychometricians face
when trying to define and understand personality traits, cognitive abilities, and the
like. (This sentiment is not new; e.g., Lipton argues that “[w]hat counts for our
actual epistemic situation is not ideal underdetermination by all possible evidence,
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but the much greater actual underdetermination by the evidence we now have”
[Lipton, 2004, 200].)

Even more troubling is the fact that, when adding new variables, the very distinc-
tion between theory and observations mentioned above becomes much less clear.
After all, data like that in (1) also partly serve to identify f , the key theoretical term
of interest. (Of course, one may also have some background theoretical constraints
on the empirical phenomena that f itself is thought to represent; but the original
point still applies to whatever unknown aspects there are that motivated the study
in the first place.) Suppose e.g. you add a new variable x5 to (3). In such a case,
you have thereby switched to a different, albeit related, FA model that employs five
manifest variables instead of four. Let f 5 be the new latent factor thus extracted
from the five variables. Statistically speaking, f 5 is distinct from the original f (or
f s—I here set aside the fact that f is underdetermined). But the larger question
is; can f and f 5 be said to both represent the same empirical phenomenon? To
the extent that they can, x5 is a bit more evidence regarding the nature of the
phenomenon; to the extent that they cannot, f 5 is part of a new theory about
a somewhat different phenomenon, a potential rival to the theory f . However,
it commonly happens that the only thing known about these two “extents” are
that they’re both very limited: f 5 is kinda-sorta pointing at the same thing as f ,
but not exactly. At this point, the theory-evidence distinction is truly a Quinean
will-o-the-wisp.

For example, we earlier supposed that x1, ..., x4 were cognitive tasks involving
mental rotation. Suppose that x5 involves self-location in a scene (“You walk north
of the church, which is east of the school. You turn left, and walk.... Are you
facing the river?”). Assume that f is held to represent an ability for mental ro-
tation. Does f 5 as well? Or does it represent a more expansive ability for spatial
reasoning? There doesn’t seem to be much of an answer here. Moreover, if no vari-
ables or other considerations are forthcoming, there may never be; indeed, there
may be no “fact of the matter” how this aspect of our cognitive abilities is carved
up.11

In sum, the strict requirement that underdetermination hold for “all pos-
sible observations” is met in the relevant sense for many applications—actual
and philosophical—of the FA model. However, this fact is of lesser impor-
tance than the complexities relating theory and evidence encountered in actual
practice.

4. Further Issues

The issues discussed so far bear on several other topics in the philosophy of science.
This section addresses four of them.

4.1. Robustness and Invariance
FA’s underdetermination is a robust phenomenon, in at least two respects. First,
its mathematical basis is very general. FA’s underdetermination does not involve
any particular statistical machinery (involving testing procedures, estimators, etc.).
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Rather it is largely independent of all such considerations. Similarly, it makes very
little use of probability theory, as the proofs of the various results mentioned
above show. Indeed, the most important role of probability theory is to justify
the Euclidean structure of a vector space.12 At heart, FA’s underdetermination is
fundamentally algebraic (or geometric, if you prefer). In short, FA’s underdeter-
mination doesn’t depend on a wide variety of specialized high-level assumptions.
Rather, it lurks deep within the bones of the mathematical underpinnings of much
empirical research. Thus, its frequent occurrence and profound resistance to elimi-
nation is unsurprising.

Second, FA’s underdetermination is also robust in terms of parametric invari-
ance. To return to our example, suppose you switch from the FA structure that uses
f a to the one that uses f b. Then, in addition to identical reconstructions of the
manifest data, the following theoretical features will also remain invariant: (i) the
particular numbers of latent f s and es involved; (ii) the means and standard devia-
tions of every x, f , and e; (iii) every correlation between any two distinct variables;
i.e., all pairs of {x1, ..., xk, f1, ..., fq , e1, ..., ek}; and (iv) every loading coefficient
λi j . Thus, the underdetermination between f a and f b extends far beyond a mere
equivalent reconstruction of the data—it also includes a great deal of theoretical
structure, regardless of how the latter was obtained. In contrast, many other “obser-
vationally equivalent” approaches do not share these invariances. E.g., Thomson’s
bonds model radically violates all of (i)–(iv); [Thomson, 1916; Bartholomew et al.,
2009a]. Similarly, the rotational/scaling issues developed by Thurstone radically
violate at least (iii) and (iv); [Gould, 1996; Thurstone 1947]. (Notice that even in
our simple example, (iii) alone involves 30 theoretical constraints; a realistic case
would involve a great many more.)

4.2. Is Underdetermination Real?
Recently, some philosophers have suggested that we don’t really encounter the pairs
of equivalent theories that underdetermination requires. E.g., John Norton argues
that such theories differ only in their Quinean extra “stuffing”, and that we should:

treat all such superfluous structure as representing nothing physical.... For we have
two theories with a common core fully capable of returning all observations without
the additional structures in question. Moreover ... the additional structure may lack
determinate values. For example, as stressed by Einstein famously in 1905, the ether
state of rest of Lorentz’s theory could be any inertial state of motion. Because of the
perfectly symmetrical entry of all inertial states of the motion in the observational
consequences of Lorentz’s theory, no observation can give the slightest preference to
one inertial state over another. So its disposition is usually understood not to be an
unknowable truth but a fiction. [Norton, 2008, 36]

Norton’s description fits FA, but but the conclusion does not follow. After all,
all candidate f s share a “common core [ f̂ ] fully capable of returning all observa-
tions [the xs] without the additional structures [u] in question”. Moreover, there’s
an important sense in which the u “lack determinate values”, since they can be
constructed from nearly any probability distribution(s). And no xs “can give the
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slightest preference” to one such u over another. But from all this, it does not follow
that u and hence f is “but a fiction”. Instead, u is essential to FA – giving up this
extra stuffing requires denying at least one of the empirical claims of the model,
which may be a factual mistake. (Moreover, as we’ve seen above with f a vs. f b,
different f s have different theoretical consequences.) Of course, u is also irrelevant
to the point-predictions that f̂ alone can make about observations. This suggests
that mere predictive capacity cannot, as a mathematical fact, be the only desider-
atum in a use of FA. If it were, then FA might be used to obtain the estimated
regression weights, with the regression f̂ used by itself in an ordinary regression
model.13 This matter resurfaces repeatedly below.

4.3. How Different Are Equivalent Theories?
Since we can’t simply dismiss underdetermination as never occurring, it’s natural
to wonder “how” underdetermined a given theory is—is it enough to be worried
about? Norton, e.g., suggests probably not: “If we are to be able to demonstrate
observational equivalence of the two theories, the theoretical structures of the two
theories are most likely very similar. While it is possible that they are radically
different, if that were the case, we would most likely be unable to demonstrate the
observational equivalence of the two theories” [Norton, 2008, 34–35].14

Leaving aside the “most likely” proviso (although cf. §5), FA offers an oddly
specific response to the claim that its equivalent theories are “radically different”.
FA’s key theoretical components are the f s; how different might they be? In our
simple model that uses just one latent factor, a natural measure of the maximum
possible difference between equivalent candidates is the minimum possible corre-
lation between any f , f ∗ pair. Interestingly, this can be determined. If R is the
multiple correlation between any latent f and the xs, then the correlation between
f and a minimally correlated counterpart f ∗ is:

(9) 2R2 − 1

Cf. [Guttman, 1955, 73].15 That is, for any common factor f , there exists another
one f ∗ such that the correlation between them is 2R2 − 1. Thus, there is no centroid
factor f ∗∗ offering some kind of compromise, being moderately correlated with all
of them.16

Suppose, for example, that Norton’s criterion for being “radically different” is
that two factors f and f ∗ should be uncorrelated. By the above this occurs iff
R ≤ .707. But this condition is frequently met in actual research. E.g., a great many
correlations in the literature on human intelligence lie in the .3 to .6 range; if the
relevant R is too, there will be equally appropriate latent factors that are negatively
correlated with one another, to the tune of −.28 to −.82! Increasing values of f
would then predict, perhaps strongly, decreasing values of f ∗.17 In the example in
(3), the multiple correlation between f and x is .86, and so the value of (9) is .48.
Thus, only (.482 =) 23% of the variance of one such latent factor can be predicted
from the other.

In short, FA’s underdetermination offers a concrete case where there is much
more to be said than simply that the rival theories are not all that different after all.
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Obviously, this feature of does not automatically extend to other cases of under-
determination. Moreover §6 argues that (9) shouldn’t be understood as exhausting
even FA’s underdetermination. However, it does present a goal that we might aim
for even in less clear cases.

4.4. Abductive Inference
In this section, I wish to argue that the contrast between FA and regression displays
how FA encodes a strategy of abduction, or “inference to the best explanation”
(IBE). Of course, both regression and FA involve theoretical constructions that
are “best fits” of the manifest data, so they both possess some rather superficial
abductive credentials. Conversely, both regression and FA outcomes are frequently
subjected to further inferential testing, so neither represents the full inferential
story; these additional details don’t affect the present discussion, however.

The key idea behind IBE is that scientific inferences are frequently driven by
explanatory considerations, and not just the ability to render the data likely (or at
least comparatively so); e.g. [Lipton, 2004, 2008]. It’s always desirable for a theory
to render the data more likely than its rivals do, but according to IBE, a theory
should do so in a way that increases our understanding of the relevant phenomena
(to the extent the theory is true).

On the one hand, note that by including u, f has a larger variance than f̂ ;
but since u is uncorrelated with the xs, the u only adds extra “noise” in terms of
f ’s ability to predict the xs. That is, u spreads f ’s distribution out more widely,
orthogonally to the xs. Thus, the data (i.e. the xs) are less probable when f is used
instead of f̂ , and so the likelihood is decreased: p[x| f ] < p[x| f̂ ], where p is the
appropriate probability (density) function.18 On the other hand, this reduction in
likelihood comes with an increase in the explanatory capacities of the theory. As
we’ve already seen, the factors ( f ) of FA satisfy Reichenbach’s Principle of the
Common Cause, whereas their regression estimates ( f̂ ) do not. Thus, to the extent
that, as is currently popular in the philosophical literature, Reichenbach’s princi-
ple is regarded as an important explanatory desideratum, factors like f provide
something of value that their more predictive counterparts f̂ don’t.

We’ve just seen that FA doesn’t merely value certain explanatory virtues, it
pays for them in likelihood, the only fungible epistemic currency here. Thus, FA
supplies a precise instance of Peter Lipton’s comment that “[e]ven when our main
interest is in accurate prediction or effective control, it is a striking feature of our
inferential practice that we often make an ‘explanatory detour”’ [Lipton, 2004,
65].19 (Indeed, the size of this “detour” is measurable.) In this sense, the received
wisdom is exactly wrong in viewing factor analysis, in Stephen Jay Gould’s words,
as a “brutally empirical technique” [Gould, 1996, 346]. A truly brutal empiricism
would emphasize predictability at all costs; [Sober, 2008, Cartwright, 1983, Kukla
and Walmsley, 2004, Leplin, 2004].20 As we’ve seen, regression approaches do just
this, albeit at the cost of the the explanatory powers of FA—i.e., FA might be used
merely in order to estimate f̂ , and then summarily ignored in favor of f̂ and its
predictions. This moderately inconsistent brutally empirical approach has in some
ways become an institutionalized practice; cf. §5.1.
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(I suspect that Gould calls FA “brutally empirical” because its Reichenbachian
assumptions are very general and apply to an extremely broad range of types of
empirical inquiry. Thus, it’s natural to take Reichenbach’s principle for granted,
in contrast to other desiderata that apply much more narrowly; e.g., that the data
should have a lognormal distribution, or that the most significant f should account
for nearly all of the data, or that it should be twice the size of the second one, with
no other significant f s, etc.)

5. Uncertainties and FA

What sorts of uncertainty are created by FA’s underdetermination? Does it supply
anything new? Initially, it might seem that it doesn’t. After all, statistical models
are already awash in uncertainty. Does underdetermination merely supply more of
the same?

A proper understanding of FA requires us to distinguish at least four different
kinds of uncertainty, labeled (U1)–(U4) below. (By stipulation, “uncertainty” here
is a very general notion, and need not be based on a probability distribution.)
The short story is this: (U1) concerns noise that masks a signal. (U2) applies
when the signal itself contains a “known unknown”, and (U3) applies when the
signal contains an “unknown unknown”. (U4) is like (U3) except that the signal
contains unknown, possibly varying, “unknown unknowns”. Of these forms of
uncertainty, the most important distinction is the separation of (U1)–(U2) and
(U3)–(U4). Unfortunately, (U3)–(U4) are rarely even acknowledged by statisticians
and practitioners—with some reason, I suggest below. Let us turn, then, to these
uncertainties.

(U1): Uncertainty from external sources. This is probably the most common
sort of uncertainty; it includes many forms of sampling error. E.g., a simple regres-
sion model represents the theoretical relationship of interest between x and y as
E[y|x] = α + βx, but the model admits extraneous noise: y = α + βx + ε, where
ε ∼ N(0, σ 2). I mention (U1) only to set it aside, since it doesn’t bear directly on
the present issues of underdetermination.21

(U2): Uncertainty from a known constituent random variable. (U2) is the type of
uncertainty supplied by a random constituent of the statistical phenomena of inter-
est. For example, consider a signal-detection model, where the goal is to detect, on
each trial, whether only noise (ε) has occurred, or whether the signal has occurred
along with the noise (s + ε), where ε ∼ N(0, 1), say. If s is constant, e.g., s = .4,
then only (U1)-type uncertainty is present. But when s has its own distribution,
e.g., s ∼ N(.4, .7), this represents (U2)-type uncertainty. (U2) is closer to the role u
plays, since it is part of f , and not simply external noise. (U2) is the uncertainty
about f ’s value that remains in particular instances, given fixed, known xs and f .
But selecting one such f over its rivals is precisely what is at issue, so (U2) is a far
cry from the uncertainty inherent in FA’s underdetermination.

(U3): Uncertainty from an unknown constituent random variable. According to
(U3), our Quinean stuffing has a fixed but unknown distribution. It is the remain-
ing uncertainty about f ’s value, given a fixed, known x and a fixed but unknown f .



16 NOÛS

Unlike (U2), there’s little to say about (U3) (e.g., is u symmetric? Skewed? Multi-
modal? Discrete?) (U3) is much closer to the uncertainty that underdetermination
creates. However, even (U3) should be augmented.

(U4): Uncertainty from unknown multiple realizations. (U4) is like (U3) except
that it removes the epistemic stability brought by the assumption that the unknown
constituent has a single fixed distribution. To see this, imagine constructing an FA
model for groups A and B (or one group at different times, etc.). The data in x may
suggest that only one model, and thus a single f (or vector [ f1, ..., fq ]′) is involved.
However, the key theoretical term(s) f may be different for the different groups,
even though x does not suggest this. Indeed, even a project whose very purpose is
to explore whether or not two groups involve different f s might run afoul of (U4).
Such a study could result in identical estimates for the distribution of the xs, as
well as identical estimates of the λs, f , and the es, up to sampling error. But by
(U4), the core of underdetermination, a conclusion of no difference could still be
incorrect (cf. the discussion of (6) above). In such a case, switching across groups
results in an undetectable change to a different FA model. This would happen if
the kinds of evidence the researchers have access to is given by x, but the various
groups’ f s have different distributional properties that are statistically independent
of it.22 Thus, although the available evidence cannot show it, this is a form of
potential “multiple realization” of different f s [Fodor, 1974, 1975]. (Of course, this
multiple realization doesn’t occur at the physical level, though presumably physical
differences undergird the distributional differences.)

5.1. Coping Mechanisms
Unsurprisingly, over time there have been several responses to the phenomenon
of factor underdetermination; e.g., [Mulaik and McDonald, 1978, Bartholomew,
1981, Maraun, 1996]. By far, the dominant approach for decades has been complete
disregard. E.g., Steiger and Shonemann write: “If a single striking fact dominates
the history of factor indeterminacy, it is the tendency of the psychometric commu-
nity to ignore the problem and its implications” [Steiger and Schönemann, 1978,
170]. Similarly, “modern researchers routinely compute factor scores. These same
researchers appear to be completely unaware of factor score indeterminacy. Conse-
quently, factor scores are derived and left unevaluated, and their potentially adverse
effects on the results of subsequent analyses are ignored” [Grice, 2001, 432].23

This pattern of disregard raises two question: how and why does it happen? Both
questions have interesting answers; I take them in turn.

Factor scores are commonly estimated by one of two very similar methods, due
to Thomson and Bartlett respectively; e.g., Bartholomew et al. write “Only two
practically useful sets of scores have ever been proposed: those of Thomson and
Bartlett. In practice they are either identical or very close” [Bartholomew et al.,
2009b, 581]; [Bollen, 1989, 305]. Since they are linearly related (e.g., in (3) they yield
identical z scores), for our purposes, they needn’t be distinguished. Both methods
are essentially regressions of the common factors onto the xs (i.e., f̂ ), which we
saw in the previous section is incompatible with FA. Moreover, “[f]rom a practical
point of view the question of how to actually calculate factor scores has not been
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taken any further forward” [Bartholomew et al., 2009b, 570]. (This is not quite
true; e.g., [Grice, 2001, ten Berge, et al. 1999] discuss other point estimators. How-
ever, since they are linear combinations of the xs, by (7) they face corresponding
difficulties.) From this perspective, all uncertainty is mere sampling error (U1). So
to whatever extent the uncertainties of underdetermination, (U3) and (U4), are
acknowledged (typically not at all), they are treated as if they were of the most be-
nign, most familiar, sort. This curious attitude is intentional: e.g., “[Bartlett] treats
the specific factors [sc. the es] as random errors.... [which] brought the estimation
problem within the ambit of standard Fisherian inference” [Bartholomew et al.,
2009b, 577, emphasis added]. Intentionally or not, this practice completely sidesteps
underdetermination: e.g. Thomson “wanted to minimize the error he made what-
ever individual he picked, providing that their scores are determined by the same
model” [Bartholomew et al., 2009b, 577, emphasis added]. However, we’ve seen in
(U4) that this assumption of “the same model” is precisely what we cannot assume.
E.g., for the concrete example(s) above with four manifest variables, which model
should we assume: one that uses the symmetric f a , or one that used the skewed
f b? Or a different one altogether? Of course, there may be theoretical reasons for
eliminating some distributions in certain empirical applications; but nothing sug-
gests all the relevant alternatives can always be eliminated in the various empirical
applications of interest. Similarly, the issue is not with the point estimates them-
selves; e.g, f̂ is an unbiased estimator, but so is the constant estimate 0, for that
matter.

Nothing promotes disregard like automation. Bartlett and Thomson estimations
are the ones used by the popular statistical software R with the factanal command
[R Core Team 2013]; cf. also the options in the sophisticated psych package [Revelle
2013]. Moreover, there are no standard methods for accounting for the uncertainty
of these point-estimates wrought by the uncertainty of the nature of f , in the sense
of (U3)–(U4). Indeed, the best advice seems to be based largely on hope and faith:
“Thus researchers should refrain from too fine comparisons of standings on factor
scores, for they may be asking more from the factor score estimates than they can
provide” [Bollen, 1989, 305–6, emphasis added].

Thomson, Bartlett et al. had good practical reasons for their proposals; but such
strategies are still highly imperfect. This of course raises our second question of
why there would be such disregard, to which I now turn.

The principal reason why (U3)–(U4) have received virtually no attention by
statisticians and practitioners, I suspect, is that they are extremely hard to manage.
This is especially clear in relation to the much more tractable difficulties presented
by (U1)–(U2), which may thereby attract more attention; cf. the discussion of
Bartlett above. After all, an explicit quantitative grip on either (U3) or (U4) requires
some theoretically principled way to countenance essentially every possible random
variable with a finite second moment, and there’s no obvious way to do this. Indeed,
this seems to be the core of the difficulties that (U3)–(U4) present: their uncertainties
concern an uncountable infinitude of distributions which collectively lack the kind
of structure that might support a theoretically satisfying organization, by a higher-
level probability distribution or some other means. Thus, the problem is not merely
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that there are empirically equivalent rival theories, it’s also that the total set of them
is largely unstructured. Of course, one can always impose some organization on this
set, but this isn’t the problem. The problem isn’t that there isn’t any way to organize
all the underdetermined distributions, it’s that there are far too many such ways,
and no good means for favoring some over others. Thus, the challenge is to find
a way to do so that is not question-begging, but is more empirically useful than
simply assigning random numeric labels to the distributions.

Could a Bayesian perspective help, whereby a prior probability distribution is
placed on the various distributions that the us might realize? If so, then the uncer-
tainty of (U3) could be brought into the general fold of probability theory, using
the ordinary tools of Bayesian statistics. However, this move doesn’t seem very
promising, primarily because of the extreme lack of constraints on the possible dis-
tributions u (and hence f ) can take. Any such prior distribution on the us would be
a distribution over almost all possible probability distributions, and it is not clear
how this could be done in a non-question-begging way. One pragmatic move that
is common in Bayesian statistics is to use an “improper” distribution, whereby e.g.
some constant value, say 1, is assigned to every possible prior value (each possible
distribution of u in the present case). Such a prior measure assigns an infinite value
to the total prior set, and hence is not a probability distribution. However, such a
prior assignment can nonetheless often combine with the rest of the statistical ma-
chinery to produce satisfactory posterior distributions; e.g. [O’Hagan and Forster,
2004, 74–77]. However, this tactic doesn’t characterize the uncertainty that under-
determination presents; it simply avoids it, in the hopes that doing so won’t affect
later results. (Corresponding remarks hold for various other mathematical tricks,
like compressing unbounded continua into finite intervals and inducing uniform
distributions on the latter.) Additionally, by representing the total uncertainty in
(U3) as infinitely large, it is thereby incomparable with other forms of uncertainty
that are measured with standard probability distributions.

6. What to Do About Underdetermination?

This final section briefly offers three speculations for dealing with FA’s underdeter-
mination. In general, it seems that when underdetermination is robustly present in
theories that matter, the former should constitute an object of study, not a reason
for hopelessness, as some have suggested; e.g. Maraun [1996].

Minimum correlation is only part of the story. Unless the minimum correlation
between candidate factors (cf. (9)) is very high, the available f s will differ in terms of
many of their various properties. E.g., two individual variables might be moderately
correlated but have importantly different shapes—one might be multimodal with
various peaks and valleys, while the other could be discontinuous, perhaps possess-
ing discrete point masses at particular locations. When fortune smiles, background
theory may eliminate some of these possibilities, but there’s no guarantee. In general,
there are lots of ways for moderately correlated variables to differ. Moreover, some
of these differences may matter empirically. E.g., if a latent factor is supposed
to measure some human ability, it could be very important to know whether its
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distribution is bimodal, with a substantial valley separating the “haves” from the
“have-nots”, or unimodal with a fat right tail, indicating a higher proportion of
exceptionally able persons. But attending only to how well correlated the various
f s are can easily obscure these possibilities.

Chebyshev’s Inequality. Many of the usual measures of uncertainty for a given
value of a particular f require knowing the latter’s distribution. Consider, e.g. a
confidence interval for the mean of a normally distributed x with a known variance
of σ 2. The fact that P[|x − μ| ≤ 1.96σ ] = .95 is then used to produce the familiar
endpoints x ± 1.96σ . This strategy, which might help with (U1)–(U2), suggests a
way to deal with the very different case of (U3). Chebyshev’s inequality states that
P[|x − μ| ≥ cσ ] ≤ 1/c2. This inequality only requires that x has a finite variance,
which is the one thing that is known about the us. Thus, even when the distribution
is unknown, it can still be said that there is at least a 95 % chance that a value of
u will be within 4.47σ of μ. Such boundaries provide a range of values where the
true value plausibly lies, assuming no “error” of the familiar (U1) sort. If sampling
error is also present, as it surely is, these boundaries do not reflect it, and should
be widened accordingly.

In some ways, Chebyshev’s inequality is a reasonable compromise. On the one
hand, it provides a sharp boundary that prevents an “anything goes” attitude
toward the uncertainty in question. Interestingly, since all candidate latent factors
have the same variance, this boundary remains invariant across them all. Thus,
the boundary applies even with regard to (U4), which does not assume a single
fixed unknown u (or f ). I.e., even if the distribution of f is constantly changing in
ways we’re unaware of, the variance doesn’t change, so neither will any information
derived from Chebyshev’s inequality. On the other hand, the uncertainty of point
estimates is considerably increased over, say, what would be provided by an ordinary
confidence interval alone.24) It’s no criticism of a practice to say that it incorporates
some uncertainties that others ignore. Nevertheless, it does amount to accepting
that genuinely compelling results from a factor analysis may be harder to obtain
than is typically acknowledged.

Underdetermination as an additive component. Finally, we will often want to
aggregate multiple kinds of uncertainty into a global assessment of the total un-
certainty present in a given estimate or collection of estimates. Suppose for the
moment that we have figured out how to do this for various individual kinds, in-
cluding (U3) and (U4), say. The remaining challenge is how to combine them in
some informative manner. In the absence of a mathematical model that character-
izes how to do this, it seems reasonable to to simply add them together. The idea is
to extend, by analogy, the fact that the variance of a sum of uncorrelated random
variables is simply the sum of the variances. Thus, the variance of any particular f
is: Var [f] = Var [ f̂ ] + Var [u], but if one wants to also take account of the fact that
u is not determined, which is characteristic of (U4), it seems reasonable to simply
add this further uncertainty to whatever else is being tallied up. Intuitively, this
treats “u” as a kind of higher-order random variable, since one is accommodating
the variation in its various possible distributions—each of which have their own
variance (the same in each case). In any case, without a probability distribution on
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the entire class of probability distributions that u can take, treating higher-order
variation this way does not, unlike the lower-order summing of variances, follow
from probability theory alone.

7. Conclusion

In many ways, FA raises more questions than it addresses, but in a good way. In
particular, it exchanges (parts of) a few vague and general queries with a bevy
of much more precise statements, whose answers are sometimes mathematically
tractable. E.g., we saw above that for FA, the general issue of whether theories are
(very) underdetermined can be partly addressed exactly by (9), but that some very
real issues remain, not about theories in general, but about probability distribu-
tions. Moreover, these latter issues lie at the heart of the really hard problem with
FA’s underdetermination: the quantification over the infinitude of highly varied
probability distributions. Similarly, issues of empiricism vs. rationalism are trans-
formed, via considerations of predictiveness, likelihood, and the criteria for “best”
explanations, into considerations of regression, FA, and the order vs. rank of a
matrix or random vector. Some of these more specific issues, I’ve argued at length,
have no obvious solutions. But their intractability doesn’t lessen their precision; the
former difficulties remain whether we are exact or vague about what’s at issue. At
the very least, turning a general issue into several precise but difficult ones clarifies
where matters stand.

Appendix A: Formal Definitions and Properties of the FA Model

This section presents some key formal features of FA; cf. e.g. [Basilevsky, 1994,
Mulaik, 2010, Bartholomew et al., 2011] for more discussion. Throughout, indi-
vidual random variables are denoted by lowercase letters, (x, u, f , e,...); random
vectors are finite sequences of random variables, given in boldface (x, u, f, e, ...);
matrices of real numbers are denoted by uppercase letters (B, �, �, 	,...); transpose
is denoted with a hash (x′,�′, ...). A background assumption is that:

(10) Every individual variable (x, f , e, u, etc.) has a mean of 0 and a positive
finite variance: i.e, for all such variables y: E[y] = 0, and 0 < E[y2] < ∞.

The basic form of FA is:

(i) x = �f + e
(FA) (ii) E[fe′] = 0

(iii) E[ee′] = diag[e2
1, ....e

2
k] = 
2.

x is a k × 1 vector of manifest (aka observed, measured) variables, � is a k × q
matrix of fixed constants (the factor loadings), f is a q × 1 vector of unobserved
latent variables (the (common) factors), and e is a k × 1 vector of latent variables
(the specific factors of the manifest x).
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The “Fundamental Theorem of Factor Analysis”, which illustrates Reichen-
bach’s principle, follows immediately from FA. The theorem observes that the
covariance matrix � of the manifest variables x can decomposed into two parts:

(11) � = �	�′ + 
2,

where 	 = E[ff ′] is the covariance matrix of the common factors f. The proof
of (11) is immediate: � = E[xx′] = E[(�f + e)(�f + e)′] = �E[ff ′]�′ + �E[fe′] +
�′E[ef ′] + E[ee′] = �	�′ + �0 + �′0 + 
2 = �	�′ + 
2. QED. Only (FAi) and
(FAii) were used to derive (11) But by (FAiii), 
2 is diagonal, and so all the
correlational structure between distinct manifest variables is completely determined
by �	�′.

Although unnecessary, a few additional simplifying assumptions are often made:

(12) E[ fi f j ] = 0, for every fi , f j in f (i 	= j ).

(13) E[x2
i ] = 1, for every xi in x .

(14) E[ f 2
i ] = 1, for every fi in f .

With these extra assumptions, 	 = I, and � = R, the correlation matrix for x.
Thus, (11) reduces to R = ��′ + 
2, and all correlational structure is given by
the factor loadings: ri j = λiλ

′
j , where λi is the i th row of � (and similarly for j ).

So if there is only one latent variable (q = 1), � is simply a k × 1 column, and
so ri j will simply be the product of the loadings of the single factor on xi and
xj . Thus, for all a, b, c, and d in x , rabrcd = λaλbλcλd = λaλdλbλc = radrbc. Thus,
rabrcd − radrbc = 0, which is Spearman’s “tetrad differences”.

Appendix B: The Underdetermination of FA

Below is a simplified characterization (in updated notation) of Louis Guttman’s
Theorem 2. Let f̂ = Bx and ê = Cx be the (ordinary least squares) regressions of f
and e onto x. Then:

(15) Underdetermination Theorem [Guttman, 1955, 70–72]: x = �f + e, and
E[fe′] = 0

if and only if there exists a random vector u such that:

(i) f = f̂ + u, e = ê − �u
(ii) E[uu′] = 	 − E[f̂ f̂ ′]
(iii) E[xu′] = 0

As above, it is assumed that there are k variables in each of x and e and q >

0 variables in f. All other vectors, matrices, etc. will be assumed to be of the
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appropriate sizes. In short, (15) establishes that if there exists one latent random
vector f that satisfies FA, then there are infinitely many. Moreover, if the correlation
matrix for x can be factored as in (11), then by Guttman’s Theorem 1 [Guttman,
1955, 69], there does exist an f.

Appendix C: Proof of (7)

This section proves a generalization of (7), where there are k manifest variables,
and q latent common factors.

(16) Lemma 1. If (FAi) holds, and f = Bx for some B, then the set of latent
variables has a rank of at most k, and so is not linearly independent.

Proof. If x = �f + e, and f = Bx, then e = (I − �B)x. Setting h = [f ′e′]′ and
C = [B′(I − �B)′]′, we have h = Cx. Thus, each of the q + k latent variables
{ f1, ..., fq , u1, ...., uk} is a linear combination of the k manifest variables, and so
they all lie within the span of the k manifest variables. Thus the span of h has
dimension k or less, and so the the set of latent variables is linearly dependent. �

(17) Lemma 2. If (FAi, ii, iii) hold, and h is of rank less than k + q,
then the linear dependencies lie exclusively within f.

Proof. Suppose the span of { f1, ..., fq , e1, ..., ek} is less than k + q. Then at
least one of these variables, h, is a linear combination of some of the remaining
ones:

(18) h = a1h1 + · · · + a j h j ,

where every a is nonzero.
First, suppose that h is one of the specific factors, e. Suppose that some hi ′ that

composes e is also a specific factor, ei . Then by (FAiii), E[eei ] = 0. But by (FAii)
and (FAiii), ei is also uncorrelated with all the other factors composing e: E[hi ′′ei ] =
0, for all hi ′′ except when hi ′′ = ei . Thus, E[eei ] = E[(a1h1 + · · · + a j h j )ei ] =
a1 E[h1ei ] + · · · ai ′ E[ei ei ] + a j E[h j ei ] = ai ′ E[ei ei ] By (10), E[ei ei ] = σ 2 > 0. Thus,
E[eei ] = ai ′σ 2 	= 0, a contradiction. Suppose instead that some hi ′ that composes e
is a common factor, fi . By similar reasoning, we have again both that E[e fi ] = 0
and that E[e fi ] 	= 0. Thus, h in (18) cannot be a specific factor.

Suppose that h is a common factor f , and that some hi ′ that composes e is a
specific factor, ei . Again using similar reasoning: E[ f ei ] = 0 and E[ f ei ] = ai ′σ 2 	=
0. Thus, h in (18) is a linear combination of only common factors. (In such a case,
some of the common factors are correlated, and 	 is of less than full rank.) �

(7) Proposition. FA implies f 	= Bx, for all B.

Proof. Suppose not. By lemma 1, h is linearly dependent, and has rank at most
k. But by the argument of lemma 2, e has rank k. so the q > 1 variables in f are
dependent on e, which contradicts lemma 2. �



Realism and Uncertainty of Unobservable Common Causes in Factor Analysis 23

Notes
1 Indeed, Gould focuses on a much simpler technique, principal component analysis, which does

not produce the underdetermination in question.
2 If the xs are not multivariate normal, Reichenbach’s Principle might be realized only for corre-

lations, without achieving the stronger notion of statistical independence. I do not address this detail
here.

3 In practice, the estimation of factor loadings is a significant part of factor analysis. However, in the
imagined case involving plenty of subjects, this is not too difficult. E.g., a sample of 3000 observations
(with data generated randomly from the model in (3)) yielded the estimate [.79, .59, .52, .41]′.

4 I.e., pick any variable u0 with finite, nonzero variance σ 2, and set u =
√

.26
σ

× u0.
5 In (6a), u˜N(0, .26) , and in (6b), (u + .36)˜�(.5, 1.39). In the latter distribution, .5 provides a

substantial skew, and along with 1.39 yields a variance of .26. Translation by .36 ensures a mean of 0.
6 Notice also that f a and f b are univariate, and are not linearly related. Thus, this form of

indeterminacy is very different from, and much stronger than, the rotational issues popularized by
Gould [1996]; cf. [Thurstone, 1934, 1938, 1947]. These two phenomena are often conflated; e.g. [Kasper
and Ünlü, 2013, 3, 4, 18]. For a careful treatment, cf. [Heermann, 1964, 1966]. In particular, the rotational
issues only concern the choice of axes for a given subspace. The present issue renders underdetermined
which subspace to base the empirical data in. That is, f a and f b are axes for two distinct 1-dimensional
subspaces (of the underlying infinite-dimensional subspace of random variables).

7 Or, how intelligent is i along some given dimension of interest, if a multi-faceted view of intelligence
is adopted.

8 Quine’s actual statement is made in terms of “observation conditionals” which are fully contex-
tualized “standing” statements, whose antecedents are the standing background conditions that enable
the entire conditional to be mathematically derivable from the theory in question.

9 Beauducel writes that “[f̂ is] compatible with the defining equation of the common factor model”
[Beauducel, 2013, 291], which directly contradicts (7). Beauducel’s argument is based on his Lemma 1,
which states that

(∗) If x = �f̂ + e and f̂ = B′x, then B = �−1�	,

where �, �, and 	 are as defined in Appendix A; cf. also [Beauducel, 2013, 290]. B is of course the
correct regression matrix for the FA model. However, it doesn’t follow that (*) is a sound derivation of
it. It is easy to construct counterexamples where, e.g. � 	= 0, and 	 	= 0, and e = x . With little effort,
it can be shown that B = 0 	= �−1�	. Obviously, further assumptions beyond those stated are needed.

Beauducel’s proof starts by postmultiplying the first equation in (*) by x′. This yields: � = �B� +
E[ex′]. However, pace Beauducel, we cannot assume that E[ex′] = 
2, since the argument assumes only
(FAi) and not (FAii, iii) (which is what Beauducel uses on p. 290). Leaving this aside, the purported
derivation of B′ continues:

B = (�′�)−1�′(� − 
2)�−1 = (�′�)−1�′(�	�′)�−1 = 	�′�−1.

This argument requires the identity � − 
2 = �	�′, which is immediate in FA; cf. (11). But at present,
we can only derive: � = �E[f̂ f̂′]�′ + �E[f̂e′] + E[ef̂′]�′ + E[ee′]. By the underdetermination theorem
(15), it follows that in general, E[f̂ f̂′] 	= 	; e.g., in the simple example used above, E[f̂ f̂′] = .74 	= 1 = 	.
Also, for the reduction of E[ee′] to 
2 amounts to (FAiii). Similarly, if the middle two terms vanish
because f̂ is the orthogonal projection of f onto x, then the lemma appears to assume the very thing it
purports to show. The argument also assumes (�′�)−1 exists, which is not guaranteed.

10 I leave aside the important but separate issue of missing data, which in the present case would
supply only part of a new row or column.

11 As usual, in some cases, various specific considerations can be of help. E.g., for f 5 not to differ
in any important way from f , it is presumably necessary but not sufficient that they have sufficiently
similar λs for the four xs that they share; Widaman [2007]. Here confirmatory factor analysis can help
test whether there are statistically significant differences. More abstractly, there are some asymptotic
results to the effect that roughly speaking, if you can add more variables that both correlate well with
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f but are not too correlated with themselves or the existing xs, you can more tightly constrain the
underdetermination—all the way to zero in the limit [Guttman, 1953, Mulaik and McDonald 1978].

12 That is, the general situation can be characterized within an infinite dimensional vector space
consisting of all random variables (Borel-measurable functions) with finite second moments—i.e., the
only probabilistic properties that matters are those that they have qua abstract vectors in this space.
The inner product in this space can be defined as the covariance between variables; cf [Guttman, 1955,
Eaton, 1983].

13 Norton is appropriately guarded in his language, and I don’t mean to play gotcha with a coun-
terexample, but only to investigate where FA stands with respect to this characterization of underdeter-
mination.

14 Such talk of degrees of underdetermination should not be confused with the very different logical
taxonomy developed in Laudan [1990].

15 At points, Guttman erroneously describes the variance of the error of a regression estimate as
R2σ 2; but this of course is the variance of the estimate itself, not the error, which has variance (1 − R2)σ 2.
However, the final result, given in Guttman’s (44) of that page, is correct.

16 The minimum correlation in (9) applies only to pairs of individual latent variables. More generally,
Guttman’s Theorem 3 [Guttman, 1955, 73] establishes the existence of a f∗ (for a given f) such that the
norm of f∗ − f is maximized.

17 If r is the minimum correlation between a factor f and some equivalent factor, then for all
values s ∈ [1, r ], there exists another equivalent factor whose correlation with f is s. So these negative
minimum correlations also imply the existence of factors that are uncorrelated with f .

18 It might be possible to cook up particular examples where u is a nonlinear transformation of
some of the xs, so that in certain specific cases, although u remains uncorrelated, it nevertheless aids in
f ’s overall predictive capacity. While unusual, they don’t affect the point made above. In actual practice,
it would be most natural to include such a nonlinear transformation in the manifest data as another x
(or to use something other than FA).

19 Similarly, “If all we wanted was to maximize probability, we should never venture beyond our
data” [Lipton, 2004, 110]. It is nearly impossible to find a sharper example of this than the contrasts
between f̂ and f .

20 Sober writes: “the empiricist’s preoccupation with sense experience takes the form of a thesis
about the role of observation in science and the rationalist’s emphasis on reason is transformed into a
claim about the indispensable role of the super-empirical virtues” [Sober, 2008, 129; cf. 135]. Similarly,
for Cartwright: “I have sometimes summarized my view about explanation this way: no inference to
best explanation; only inference to most likely cause” [Cartwright, 1983, 6].

21 (U1) most directly attaches to the estimation of the factor loadings. E.g., a typical run with n
= 10, � for (3) was estimated as [−.27, .49,−.40, .99]′; such deviations from [.8, .6, .5., .4]′ effectively
never occur when n = 10, 000.

22 This scenario can be contrasted with the case of measurement bias across groups; e.g. Millsap
[2011].

23 Likewise, “Although the factor analysis model is defined at the structural level, it is undefined
at the data level. This is a well known but little discussed problem with factor analysis.” [Revelle, 2013,
documentation, p. 110].

24 Since the distribution of f̂ might be estimable from that of the xs, some economy can be had if
f is first decomposed into its two parts, and Chebyshev’s inequality is applied only to the unknown u.
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