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a b s t r a c t

In this paper, I examine William Whewell’s (1794–1866) ‘Discoverer’s Induction’, and argue that it sup-
plies a strikingly accurate characterization of the logic behind many statistical methods, exploratory data
analysis (EDA) in particular. Such methods are additionally well-suited as a point of evaluation of Whe-
well’s philosophy since the central techniques of EDA were not invented until after Whewell’s death, and
so couldn’t have influenced his views. The fact that the quantitative details of some very general methods
designed to suggest hypotheses would so closely resemble Whewell’s views of how theories are formed
is, I suggest, a strongly positive comment on his views.
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1. Introduction

A distinctive feature of the empirical sciences is that their meth-
ods are typically quantitative. As a given discipline matures and
develops, this quantification of methods tends to increase. At the
same time, many methodological theories within the philosophy
of science are presented largely or entirely verbally. It is common-
place, for instance, to describe what the scientist does at a high level
of generality, so that the low-level quantitative issues are ab-
stracted away from. Given the very broad aims of such projects, this
abstraction is often appropriate. Still, when all is said and done,
expansive philosophical theories about the methodology of science
should jibe with the quantitative methods that actually drive scien-
tific research, at least to the extent that the former imply quantita-
tive details. The purpose of this paper is to consider a very general
view of how science works, due to William Whewell, in the light of
the quantitative details of some common statistical methods.

This paper is organized as follows. §1 presents a brief overview
of Whewell’s views. In §2, we consider how these views relate to
contemporary statistical methods. As I argue below, statistics is
an excellent vantage point from which to evaluate Whewell’s
views. Unsurprisingly, the fit between Whewell’s views and statis-
tics is not perfect. Nonetheless, I shall argue, the correspondence is

remarkably good. Moreover, we will see that Whewell’s work pro-
vides an important corrective to certain contemporary scientific
attitudes.

Before beginning, a couple caveats are in order. First, there is a
certain ahistorical aspect to this project. I do not suggest that Whe-
well had statistics in mind when he was writing—importantly, I ar-
gue, quite the opposite. Nor do I suggest that statisticians and users
of statistical methods learned to ply their trade by reading Whewell.
Rather my aim is to offer a partial evaluation of the accuracy of Whe-
well’s characterization of the workings of science. Second, I do not
claim that Whewell’s philosophy is the unique best representation
of contemporary science. Some of what I will discuss admits of
non-Whewellian interpretations; I claim only that Whewell’s work
describes it quite well. Although I do not argue for it here, I do not
believe the same claim can be made for the views of many others,
e.g. John Stuart Mill (Whewell’s rival) or W.v.O. Quine.

2. Decomposition, colligation, explication: an overview of
Whewell’s views of theory formation

For much of the nineteenth century, William Whewell (1794–
1866) engaged in an extraordinarily prolific academic career at
Trinity College, Cambridge. He conducted scientific research in
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mineralogy, the study of the tides, and political economy; he also
wrote textbooks on mechanics, mathematics, and astronomy and
physics (e.g., Whewell, 1825, 1836, 1856, 1819, 1838, 1833). Addi-
tionally, he wrote a large three-volume History of the Inductive Sci-
ences, in which he investigated the development of various
sciences (astronomy, optics, mechanics, electricity, zoology, physi-
ology, etc.) from their ancient origin to their then current status
(Whewell, 1858). Along with these many and varied interests,
Whewell also developed and defended a sweeping view of the
methodology of science in his two-volume Philosophy of the Induc-
tive Sciences (Whewell, 1847. Unannotated citations will be to this
work; e.g., II, 26 refers to page 26, of volume II of Whewell, 1847.).

Although Whewell’s philosophy of science is complex, its core
concerns his views about induction, which itself is centered around
four main processes. Using his neologisms, they are: (i) the decom-
position of facts, (ii) the explication of conceptions, (iii) the colliga-
tion of facts, and (iv) the verification of the resulting proposition
(which includes his well-known consilience of inductions).1 The
first three processes concern the formation of a theory, and the last
involves the confirmation of the theory. This paper concerns the first
three processes; I reserve discussion of his views on the theory con-
firmation for another time.

The most central theme in Whewell’s philosophy of science is
his insistence upon the importance of the contribution of the scien-
tist’s mind in the process whereby ‘Science is built up by the com-
bination of Facts’ (II, p. 26). Whewell held that there were a small
number of fundamental ideas—e.g., space, time, number, force, mo-
tion, position, etc.—in terms of which the raw data of science
invariably must be understood. For Whewell, ideas are ‘general
relations among our sensations, apprehended by an act of the
mind, not by the senses simply’ (II, p. 25). (Whewell’s ideas should
not be confused with Kant’s pure concepts; below, we will consider
several differences between them.) These ideas are so fundamental
to science that particular subsets of them were taken to be nearly
definitive of various scientific fields (e.g., II, pp. 116–117). To trans-
form our brute perceptual sensations into perceptions of objects or
other external phenomena, we must use our ideas to organize the
sensations. For example,

[w]hen any one has seen an oak-tree blown down by a strong
gust of wind, he does not think of the occurrence any otherwise
than as a Fact of which he is assured by his senses. Yet by what
sense does he perceive the Force which he thus supposes the
wind to exert? . . .. It is clear upon reflection that in such a case,
his own mind supplies the conception of extraneous impulse
and pressure, by which he thus interprets the motions observed
(II, p. 28; cf. p. 25).

Very often, the fundamental ideas will be too general and amor-
phous to be of direct use in actual scientific practice. What we must
then do, Whewell argues, is refine and fine-tune these ideas so that
they fit the particular scientific endeavor at hand. Whewell refers to
the resulting refinements as ‘conceptions’:

[B]y the word Idea (or Fundamental Idea,) used in a peculiar
sense, I mean certain wide and general fields of intelligible rela-
tion, such as Space, Number, Cause, Likeness; while by Conception
I denote more special modifications of these ideas, as a circle, a
square number, a uniform force, a like form of flower. (II, p. 380)

As we will see, finding the right conception is a centerpiece of Whe-
well’s philosophy of science (e.g., II, pp. 5–26).

The psychological component of science is so important that a
‘certain activity of the mind is involved, not only in seeing objects

erroneously, but in seeing them at all’ (II, p. 29). Regarding the re-
lated question of whether we can separate our ideas (or concep-
tions) from the external facts, Whewell is firm: we cannot (e.g., I,
p. 36; II, pp. 26–33; 47). The idea of force is too fundamental to see-
ing the oak tree blown down by the wind; the idea of space is too
fundamental to seeing a physical object (II, p. 29); the ideas of
resemblance and difference are too fundamental to classificatory
endeavors such as botany (II, p. 367); and so on. Indeed, attempting
to view facts without the interpretive guidance of ideas ‘leaves the
mind overwhelmed, bewildered, and stupefied by particular sensa-
tions, with no means of connecting the past with the future, the ab-
sent with the present, the example with the rule; open to the
impression of all appearances, but capable of appropriating none’
(II, p. 47).

If there were nothing more to say about the relationship be-
tween the facts in the world and the ideas in the mind, there would
be little reason to have much faith in the results of science. We
may have organized the data using the wrong ideas, the wrong
refinements of ideas, non-intellectual notions based on fear, admi-
ration, etc. Fortunately, this is not the case.

We are not able, nor need we endeavor, to exclude Ideas from
our Facts; but we may be able to discern, with perfect distinct-
ness, the Ideas which we include. We cannot observe any phe-
nomena without applying to them such Ideas as Space and
Number, Cause and Resemblance, and usually, several others;
but we may avoid applying these Ideas in a wavering or obscure
manner, and confounding Ideas with one another (II, p. 31).

Although ideas and facts are inextricably intertwined, we can still
make a study of which ideas we have used, and how we have used
them. The ongoing process of refining and studying our conceptions
is for Whewell the major component of scientific progress.

For Whewell, conceptions (and fundamental ideas—following
Whewell, I will frequently not distinguish the two) play two
important roles. First, they provide us with ‘the most universal, ex-
act, and simple’ conceptions which we use to ‘decompose’ the raw
facts we encounter into the more tractable data upon which sci-
ence is built (cf. the second and third Rules; II pp. 32–33). This pro-
cess is the decomposition of facts:

Thus the Facts which we assume as the basis of Science are to be
freed from all the mists which imagination and passion throw
round them; and to be separated into those elementary Facts
which exhibit simple and evident relations of Time, or Space,
or Cause, or some other Ideas equally clear. We resolve the com-
plex appearances which nature offers to us, and the mixed and
manifold modes of looking at these appearances which rise into
our thoughts, into limited, definite, and clearly-understood por-
tions. (II, p. 33)

Once the facts have been decomposed with the aid of the appropri-
ate conceptions, we can then record the actual measurements. E.g.,
after we decide to study the stars with reference to their number,
relative positions and distances, rather than, say their participation
in various astrological configurations, we can engage in the practi-
cal task of determining the former magnitudes (e.g., II pp. 337–338).
For our purposes, we may take this aspect of his philosophy of sci-
ence as relatively straightforward.

Thus far, we’ve seen the importance for Whewell of carefully
analyzing which ideas we are using, and how we are using
them—i.e., what particular conceptions we have refined these ideas
into. In fact, Whewell argues that discovering and understanding
the fundamental ideas and their subsequent conceptions is ‘the
most important step’ in induction (II, p. 383; cf. II, pp. 51, 91). Whe-

1 Whewell himself lists six processes that enter into the ‘formation of science’ (Whewell, 1847, II, p. 336), but the four listed above receive by far the most emphasis.
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well thinks that this ‘psychological’ component of science—the
explication of conceptions—is often underestimated. He complains
that the ideas and conceptions of science often seem so obvious
that they appear paltry next to the deductive work that utilizes
them: ‘men often admire the deductive part of the proposition,
the geometrical or algebraical demonstration, far more than that
part in which the philosophical merit really resides’ (II, p. 91). Sim-
ilarly, he rails against those who disparage earlier failed attempts
to find a precise, useful idea/conception: ‘It is as if a child, when
its teacher had with many trials and much trouble prepared a tele-
scope so that the vision through it was distinct, should wonder at
his stupidity in pushing the tube of the eye-glass out and in so of-
ten’ (II, p. 378; cf. pp. 60 ff.). More generally, Whewell frequently
comments on the great difficulty of discovering a suitable idea/
conception: ‘The process of obtaining new conceptions is, to most
minds, far more unwelcome than any labour in employing old
ideas. The effort is indeed painful and oppressive; it is feeling in
the dark for an object which we cannot find’ (II, p. 101; cf. also II,
pp. 7, 8, 15, 46, 55–57, 376–379).

The second role that properly explicated conceptions plays is far
more difficult and crucial to Whewell’s philosophy of science. As he
himself immediately notes, it ‘by no means follows that when we
have thus decomposed Facts into Elementary Truths of observa-
tion, we shall soon be able to combine these, so as to obtain Truths
of a higher and more speculative kind’ (II, p. 34). Instead, after we
have decomposed the facts, we must find the right conceptions to
bind them back together. In Whewell’s terminology, we must col-
ligate the facts:

Facts are bound together by the aid of suitable Conceptions.
This part of the formation of our knowledge I have called the
Colligation of Facts: and we may apply this term to every case
in which, by an act of the intellect, we establish a precise con-
nexion among the phenomena which are presented to our
senses (II, p. 36).

A colligation ‘binds together’ the various diverse facts (I, p. 43; II, pp.
27, 36, 50, 60), creating a ‘bond of unity’ (II, 35, 46). Colligating the
facts with an appropriate conception is like stringing a collection of
pearls together to form a necklace (II, pp. 48, 52). Thus, colligation
involves a ‘step of a higher order’ (II, 34). As Whewell often empha-
sizes (II pp. 11–16, 379), the explication of conceptions and the col-
ligation of facts are intimately related. The former ‘must be carried
on with a perpetual reference to’ the latter (II, p. 379; cf. p. 12). This
makes sense: In order to find a properly explicated conception, we
need to keep an eye on how we might pull the basic facts together
into the kind of unity that can be had only by a true scientific the-
ory. But in order to pull the facts together in this way, we must keep
an eye out for the kind of conception(s) that can do the job. In other
words, a conception that does not bear on the facts is empirically
vacuous, and a collection of facts that are not organized in any
way is too overwhelming, misleading, and complicated to be of
any real use. Moreover, this ‘feedback loop’ between explication
and colligation constitutes much of how science progresses. A rea-
sonably good explication of a conception can be the basis of a colli-
gation of facts, which in turn can point the way to an even more
precise explication, which leads to a better colligation, and so on.
(And of course, we may even be led to decompose the facts in some
more accurate way.)

Not only are explication and colligation tightly connected, they
are ‘the two processes by which we arrive at science’ (II, p. 5), and
collectively ‘they constitute the mental process of Induction; which
is usually and justly spoken of as the genuine source of all our real
general knowledge respecting the external world’ (II p. 46). Unlike
many other philosophers, induction for Whewell is not a mere
summary and generalization of the facts. Instead, as he frequently

stresses, by using ‘superinducing’ conceptions upon the facts to-
gether, induction always imports something further into the data:
‘the particular facts are not merely brought together, but there is a
New Element added to the combination by the very act of thought
by which they are combined’ (II, p. 48; cf. pp. 53, 77, 85, 88, I 25).
When this ‘new element’ that is added to the combination is part of
a true theory, the propriety of colligating the facts with the given
conception(s) becomes retrospectively obvious. Indeed, as time
goes by, it is hard to imagine the particular facts in any fashion
than the one supplied by the conception(s) used (II pp. 8, 48, 52).

Conceptions, we have just seen, play a crucial role in both the
decomposition and subsequent colligation of facts. Thus, it is puz-
zling that Whewell would associate their explication so much
more strongly with colligation than with decomposition (e.g., II,
pp. 12, 46, 379, 50, 53, 54, 379, 383). Why is the difficulty and
importance of properly explicating the conceptions used in the col-
ligation of facts emphasized so much more than the explications
used to decompose them? A reasonable answer might be that,
although the decomposition of facts into elementary truths is of
fundamental importance to science, it is generally not nearly as
difficult or frequent as the cycling between explications and colli-
gations. Although it may be difficult for the botanist to arrive at a
suitable definition (or even a conception) of a rose (II, pp. 424–
425), she nonetheless can make various sorts of relative and abso-
lute measurements of various candidate plants. E.g., she can mea-
sure number of petals, length of stamen, etc., building of course
upon a prior theory of seeds, stamen and the like (which them-
selves depend on prior decompositions, explications, and colliga-
tions). All this is not to say that the decomposition of facts is
intrinsically easy, but that Whewell may have arranged things so
that the hard part could be located in the colligation of previously
decomposed facts.

The part of Whewell’s philosophy of science that we have just
reviewed concerns the ‘discovery’ or formation of a theory. As
we’ve seen, theory formation for Whewell is a rational, inferential
process. It is, however, quite distinct from the confirmation of the-
ories: ‘The Invention of the Conception was the great step in the
discovery; the Verification of the Proposition was the great step
in the proof of the discovery’ (II, p. 51). In this sense, it is quite dis-
tinct from the various forms of hypothetico-deductivism which be-
gin by generating definitions and axioms, and deriving empirical
consequences from them, which can be checked against the world.
For Whewell, determining the exact conceptions to be used, and
coming to understand their exact nature constitutes an enormous
amount of the scientific enterprise. Indeed, Whewell held that the
right conceptions are determined towards the end of the discovery
of the theory, not at the beginning. Moreover, the conception may
not be statable as a precise definition. Similarly, the proper colliga-
tion of facts is at the end of the discovery, and it too may not be
statable as a formal axiom. For further discussion of Whewell’s
views of theory formation, cf. e.g., Buchdahl (1991), Fisch (1985,
1991), Ruse (1991), Snyder (1997a,b), Snyder (2006, 2008), Yeo
(1993). Those familiar with this literature will notice that my read-
ing of Whewell is considerably closer to the view developed by
Snyder than to that of others, e.g., Fisch. While I stand by my inter-
pretation (e.g., I do not consider it plausible to read Whewell in a
non-realist, conventionalist fashion), rational minds can neverthe-
less disagree.

Finally, despite the crucial and irremovable contribution of the
mind, Whewell’s scientific realism is firm. The scientist ‘may under-
stand the natural world, but he cannot invent it’ (II, p. 379; cf. II, pp.
7–8). Similarly, ‘Man is the Interpreter of Nature, and Science is the
right Interpretation’ (I, p. 37). Indeed, Whewell’s realism is one half
of his ‘fundamental antithesis of philosophy’ between our ideas and
the external world: ‘[w]ithout Thoughts there could be no connex-
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ion; without Things, there could be no reality’ (I, pp. 17–18). Whe-
well’s realism is grounded in his theology. The fundamental ideas
are God’s ideas, and they reflect how He chose to structure the uni-
verse. In His infinite beneficence, He gave humans these ideas too,
so that they could understand and appreciate His creation.

(The reader may have noticed some similarities between Kant’s
transcendental philosophy and Whewell’s philosophy of science.
While Whewell freely admitted Kant’s influence on his thinking,
these similarities should not be overstated. For our purposes, we
can observe three crucial differences between Whewell’s funda-
mental ideas and Kant’s pure concepts. First, unlike Kant, Whewell
thought that there were more Fundamental Ideas yet to be discov-
ered. Second, Whewell’s Fundamental Ideas correctly represent
objective features of the external world (cf. Snyder, 2006, pp. 42–
47).). Third, Whewell’s ideas lack any Kantian aprioricity regarding
their application. Although they are necessary for experience and
knowledge about the world, they can be incorrectly applied, result-
ing in a flawed theory, or misperception. E.g., ‘A vague and loose
mode of looking at facts very easily observable, left men for a long
time under the belief that a body, ten times as heavy as another,
falls ten times as fast (II, pp. 37–38). Indeed, we’ve seen that a cen-
tral aspect of Whewell’s philosophy involves the difficult and
ongoing process of understanding, via properly explicated concep-
tions, just how the ideas relate to the world.)

While there is much more to Whewell’s philosophy of science,
we have seen his views on how theories are ‘discovered’. An obvi-
ous question is how accurately he characterized this process,
which is the topic of the next section.

3. Whewell’s views as realized in contemporary statistics

3.1. Justification of using statistics to evaluate Whewell

In this section, I consider how well Whewell’s general picture of
science is realized in the quantitative details of contemporary statis-
tical methods. Statistics is a good field to evaluate Whewell’s views
from. Among academic disciplines, statistics plays a unique role as
both a freestanding academic discipline and also a clearinghouse
for a great deal of the methodologies used in the other sciences,
including the hard sciences like physics and chemistry. Indeed, sta-
tistics encompasses an enormous amount of scientific methodology
quite generally, and to a far greater extent than any other field. (E.g.,
Volume I of the widely respected ‘Kendall and Stuart’s’ Advanced
Theory of Statistics series begins by defining: ‘Statistics is the branch
of scientific method that deals with the data obtained by counting or
measuring the properties of populations of natural phenomena’
(Stuart & Ord, 1994, p. 2).) Thus, a general theory of how science
works, such as Whewell’s, should make close contact with statistics.

There is a second, historical, reason for examining Whewell’s
views from this standpoint, which concerns that fact that he had
little to say about statistics. Whewell formed his views by examin-
ing an enormous amount of other scientific work (cf. Snyder, 2008,
pp. 217–221 for an interesting discussion of this last point). Since
statistics did not directly influence his philosophy in the way that,
e.g., Newton’s physics did, the former can act as a largely indepen-
dent source of data against which Whewell’s claims may be
checked. As Whewell would put it, his philosophy makes novel
predictions about a field different in kind from those he used to
form the theory. Thus, predictive accuracy in this case approaches
the strongest form of confirmation of the theory (beyond, of course,
a consilience from multiple such different fields) (II pp. 62–65).

Initially, it might seem overstated to say that statistics had little
influence on Whewell’s thinking. He does discuss some roughly
statistical ideas such as the ‘method of means’, the ‘method of least
squares’ and the like (II pp. 395–412). Moreover, by Whewell’s
time, Jakob Bernoulli, DeMoivre, Laplace, Gauss and others had
established certain basic elements of probability theory (e.g., Sti-
gler, 1986, 1990). In fact, Whewell also helped to form the Statisti-
cal Section of the British Association for the Advancement of
Science, as well as the Statistical Society of London (Snyder,
2008, p. 166). Perhaps, then, statistical methods had more of an im-
pact on Whewell’s thinking than I just suggested?

A bit of thought removes this worry, for three reasons. In the
first place, the statistical methods of Whewell’s time, such as they
were, had not made their way from Continental Europe. As the his-
torian of statistics Anders Hald notes:

When [Galton] began his statistical work in the 1860s, the
methods of Laplace and Gauss and their followers were not gen-
erally known in Britain. Galton therefore developed his own
crude methods, numerical and graphical, for analyzing normally
distributed observations in one and two dimensions. Although
his methods were primitive, his ideas were clearly expressed
and had a profound effect on the development of the British
Biometric School. (Hald, 2007, p. 135).

Since the last edition of Whewell’s Philosophy of the Inductive Sci-
ences was in 1860 (Whewell died in 1866), it wouldn’t have been
possible for him to take advantage of the ‘crude’ methods available
in Britain. Similarly, the prominent statistician Bradley Efron has
noted that ‘[t]he current era is the first century in which statistics
has been widely used for scientific reporting’ (Efron, 1986, p. 1). Gi-
ven the particular approach we will adopt below, this latter com-
ment is perhaps even more relevant.

Secondly, the last century has seen a massive development of
the field of statistics. In terms of the sheer quantity of statistical
methods, as well as their relative mathematical and computational
sophistication and intensity, contemporary statistics bears little
resemblance to the ‘statistics’ of Whewell’s day. Lacking the enor-
mous contributions of R. A. Fisher, Jerzy Neyman, Karl Pearson,
Egon Pearson, Charles Spearman, L. J. Savage, and many others, sta-
tistics for Whewell was largely devoted to recording large tables of
data, sometimes also including some of the most rudimentary
descriptive statistics of the sample, such as its average on each
measurement. To take just two examples, as late as the first half
of the twentieth century, there were several huge shifts in the sci-
entific community regarding what should be counted as a sample,
perhaps the most fundamental notion of statistical theory. (Desros-
ières, 1998, pp. 210–211). Similarly, the mathematical foundations
of probability, given in the Kolmogorov Axioms, appeared over 65
years after Whewell’s death. Whewell’s time lacked such basic ele-
ments as coefficients of reliability or correlation, confidence inter-
vals, goodness-of-fit tests, etc.

Finally, the techniques discussed below are all part of an area
known as Exploratory Data Analysis (EDA). EDA is designed not
for the purposes of the statistical testing of hypotheses or making
statistical inferences, but for suggesting hypotheses which later on
might be subject to various sorts of confirmatory tests. EDA is a
fairly recent area of research in statistics, partly because these
computationally intensive techniques are difficult to perform with-
out a relatively powerful computer. All of the techniques discussed
below were not part of statistical methodology until well after
Whewell’s death.2 In short, Whewell’s statistics bears about as much
resemblance to the contemporary field—and to EDA in particular—as

2 Principal component analysis was introduced to statistics by Pearson (1901); the singular value decomposition of a complex rectangular matrix was proven to exist and to
have its statistically most desirable properties by Eckart & Young (1939) (cited in Horn & Johnson, 1985, p. 426; cf. Stewart, 1993 for earlier proofs of the decomposition of certain
special subclasses of matrices). Finally, independent component analysis was largely given its initial development by Comon (1994).
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Newton’s mechanics does to contemporary quantum mechanics. To
the extent that these methods differ from anything Whewell was
familiar with, and yet his characterization of how science works
nonetheless still applies, Whewell’s views are confirmed. One might
also evaluate Whewell’s views in an opposing direction, and focus on
methodological details that have been incorporated into our current,
vastly more complex, techniques. Here one might credit Whewell to
the extent that he saw that they reflect an important and central as-
pect of science, as opposed to a more ‘local’ technique that really
only applied to the methodological tools of the day. For example,
minimizing the ordinary least squared deviation between a model
and the data is still a common optimization criterion (cf. Forster,
1988); it is, however, by no means the only one (e.g., for non-Gauss-
ian distributions, it differs from the maximum likelihood estimate,
and the latter is often to be preferred). A more critical evaluation,
of course, would come from those aspects that Whewell incorrectly
deemed unimportant or central to scientific activity.

The dual role of statistics—independent academic discipline, and
repository of scientific methods—means that there are two ways we
might use it. On the one hand, we might use it just as another sci-
entific field. In such a case, we should look into the minds and find-
ings of great statisticians, checking whether they engaged in the
decompositions, explications and colligations that Whewell claims
they do. On the other hand, if we take statistics, broadly construed,
to encompass (a large portion of) scientific methodology, we might
take a more general approach. Rather than checking whether Whe-
well’s views are realized in statisticians’ research—i.e., developers of
statistical methods—we could examine whether they are found in
the practices of ordinary scientists—i.e., users of statistical methods.
Because of the very broad applicability of statistics in the sciences, if
it turns out that it is standard statistical practice to engage in the
processes Whewell described, we will have gone very far towards
confirming Whewell’s views about the nature of science.

3.2. Uncertainty as the fundamental idea of statistics

If we hope to find Whewellian thinking in statistical methods,
we need to consider what fundamental ideas should be associated
with the latter. Whewell was, as we’ve seen, adamant that each sci-
ence have its own (not necessarily proprietary) ideas, which are
then explicated into various more useful conceptions. But the ideas
of space, time, and cause seem more appropriate to those empirical
disciplines that use statistics, and less so to statistics itself. The
idea of number is perhaps a somewhat better candidate, although
it too, is often rather far removed from the actual study of statis-
tics. E.g., in the theoretical populations often studied by statisti-
cians, the number of elements within any given subpopulation is
commonly either zero or infinite. A better choice of a fundamental
idea of statistics, I suggest, is uncertainty3. At its heart, statistics in-
volves the identification, presentation, analysis, management, and
control of various types of uncertainty present in data and theories.
Dealing with uncertainty is the central theme of statistics, whether it
takes the form of determining the distribution(s) from whence the
data came, the right kind of statistical test to perform and concom-
itant inference to draw, identifying the number of unobserved fac-
tors, components, dimensions, etc. underlying a data set and their
relations to one another and the observed variables, or any of the
other tasks commonly assigned to statistics. Moreover, although
Whewell never considered uncertainty as a fundamental idea, it is
still Whewellian in spirit. As he often noted, as various fields come
into being, there will be new ideas and conceptions distinct from
those already in use (II, pp. 18, 33, 39, 43, 88, 100).

Taking uncertainty as the primary fundamental idea of statistics
also points the way towards the kinds of conceptions that it is re-
fined into. The various ways of dealing with uncertainty (e.g.,
determining distributions, drawing statistical inferences, confi-
dence intervals etc.) may be seen as conceptions drawn from the
fundamental idea. We will see detailed examples of this below.

3.3. Statistical decomposition of facts

Let us now consider how well Whewell’s views of theory forma-
tion are represented in statistics. In contemporary terms, the
decomposition of facts is found in the theory of measurement,
which can be usefully viewed from (the somewhat artificially dis-
tinguished) practical and theoretical perspectives.

From the practical perspective, the decomposition of facts is
straightforward. When a scientist sets out to study some particular
phenomenon, she must decide what kinds of data to gather. E.g., a
geologist who is studying the geological composition of a region
might begin by collecting samples from various locations in the re-
gion. But once she is back in her lab with a few hundred rock sam-
ples, the real data collection begins. The actual samples are
enormously complex, and contain a great many features, only
some of which are relevant to what the scientist is studying.
Should she measure the amount of magnesium in calcite and/or
the amount of sodium in muscovite? How about the sulfide con-
tent of the samples, the crystal size of the carbonates, the spacing
of the cleavage, the elongation of the ooliths, tightness of the folds,
and the number of veins and fractures per square meter in the
sample? (This example is borrowed from Basilevsky, 1994, pp.
255–257.) Which of these features, along with many, many others,
is relevant depends on the nature of the scientist’s particular inves-
tigation. That is, the ‘beginning of exact knowledge’ involves the
scientist’s determination of the relevant properties of the samples
to measure (II, pp. 33–34). This decomposition of the facts ‘resolves
the complex appearances’ in the rock samples ‘which nature offers
to us’, and exchanges the ‘mixed and manifold modes of looking at
these appearances which rise into our thoughts’ for ‘limited, defi-
nite, and clearly-understood portions’ which can then be repre-
sented quantitatively (Ibid.) Indeed, the contribution of the
scientist’s conceptions to the data is so important that virtually
every introductory statistics textbook emphasizes the importance
of carefully planning the experiment before collecting any empiri-
cal samples. Preplanning is important because which conceptions
will be needed to decompose the empirical samples crucially de-
pends on the precise details of what the researcher is attempting
to explore, and which conceptions are used can greatly affect
which samples are obtained, how many are needed, and how they
are obtained. (E.g., if fractures are relevant, those measurements
may need to be obtained directly at the sites, before the rock sam-
ples are extracted from their natural location.) All this is just to say
that statistical methodology requires a great deal of input from the
scientist in the extraction of the raw scientific data (often a matrix
of quantitative data, of n observations each measured along k many
dimensions) from the bare empirical facts (e.g., a collection of
rocks).

Whewell is also correct to stress the importance of carefully
analyzing the conceptions employed at this stage. E.g., if the geol-
ogist also wants to know the hardness of the rock samples, she will
have to determine which of several radically distinct conceptions
of hardness are relevant to her study (cf. Wilson, 2006, pp. 335–
355 for an interesting discussion of various different scientific
measures of ‘hardness’).

3 I use the rather general term uncertainty, rather than, say, randomness, so as to avoid any metaphysical commitments regarding the nature of stochastic phenomena. Talking of
uncertainty also makes it easy to include such phenomena as measurement error, and the statistical study of deterministic systems under conditions of incomplete knowledge.
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From the theoretical perspective, one also sees that the decom-
position of facts requires ideas when we consider the scales of
measurement associated with different kinds of data. To see this,
consider the five most common scales.

An absolute scale is used when the number given by the mea-
surement cannot be transformed into any other number. An exam-
ple of this is count data; e.g., if the number of eggs a chicken laid in
a month is 25, this number cannot be changed. Thus, an absolute
scale is unique, and all numerical properties are preserved.

A rational scale is used when all measurements agree on what
counts as zero units, but where the measurements can differ as
to the size of the units. E.g., it is clear that something has zero
length in feet if it also does in meters, but something’s length in
feet is 3.28 times its length in meters. A new rational scale S2

can be created from a rational scale S1 by the transformation
S2 = bS1 (b > 0). Switching rational scales preserves ratios of pairs
of measurements: bx/by = x/y.

An interval scale is used when measurements have distinct zero
points, but agree on the ratios of given intervals between pairs of
points (and order). E.g., the Fahrenheit and Celsius scales locate 0
degrees at different temperatures, but agree on how large the
range is of the high and low temperatures on Tuesday compared
to Wednesday. A new interval scale S2 can be created from an
interval scale S1 by the affine transformation S2 = a + bS1 (b > 0).
Switching rational scales preserves interval ratios:

ðaþ bxÞ � ðaþ byÞ
ðaþ bzÞ � ðaþ bwÞ ¼

x� y
z�w

:

An ordinal scale is used when measurements agree only on the
ordering of the data. E.g., a grade of an A in a class is better than a B,
but it cannot be inferred that the difference in quality of perfor-
mance is the same as that between a B and a C. A new ordinal scale
S2 can be created from an ordinal scale S1 by the transformation
S2 = f(S1), where f is any monotonically strictly increasing func-
tion—i.e., if a < b, then f(a) < f(b). Switching ordinal scales preserves
order: a < b iff f(a) < f(b).

A categorical scale is used when the measurements agree only
on whether the data fall into the same or different categories.
E.g., coding males with 1 and females with 2 only indicates that
the two categories differ. A new categorical scale S2 can be created
from a categorical scale S1 by the transformation S2 = f(S1), where f
is any injection—i.e., if a – b, then f(a) – f(b). Thus, switching cate-
gorical scales preserves only the identities of the categories.

The fact that there are different scales shows that we must de-
cide what the numbers in our data set mean. Just as we do not see
the force that blows the oak tree, but must impute it to the scene
we witness, so too, we must impute the nature of the scale onto
our numerical measurements. E.g., we do not ‘see’ that our data
are (merely) ordinally scaled. Instead, treating them as such is an
inference from our theoretical understanding of the relations be-
tween the magnitudes we have measured. We import the idea that
our quantitative measurements contain certain kinds of informa-
tion and not others, and ‘superinduce’ it upon the facts. We see this
particularly clearly when we theorize overtly about the nature of
the scale imposed upon the data. For example, if hardness is taken
to be (operationally) defined by location on the Mohs hardness
scale, then this scale is absolute. However, if hardness is identified
with the measurement from a sclerometer, then the Mohs scale is
merely ordinal in nature.

Finally, in line with my interpretation of Whewell, decomposing
the facts—whether it takes the form of deciding what types of
things to measure or what types of scales the measurements fall

on—is, in actual scientific practice, often easier than the colligation
of facts. Although conceptions are used in statistical decomposi-
tions, as we’ll see below, this is typically nowhere near as demand-
ing a process as the subsequent colligation. (All this is not to say
that there is not a rich mathematical theory behind measurement
(e.g., Krantz, Duncan Luce, Suppes, & Tversky, 1971), only normally
the measurement issues just discussed are less difficult.)

3.4. Statistical explication of conceptions and colligation of facts

We now turn to the most central aspects of the ‘discovery’ com-
ponent of Whewell’s philosophy of science: the explication of con-
ceptions and the colligation of facts. Do statistical methods
‘superinduce’ a conception, a ‘new element’ upon the decomposed
facts in a ‘step of a higher order’, which ‘binds the facts together’
like ‘pearls on a string’, thus creating a ‘bond of unity’? In fact, this
is an elegant description of what occurs throughout statistics. In
general, successful statistical models work by reorganizing the
data so as to reveal important aspects of the true, unobserved
structure of the data and their source. (In contrast to Mill’s prohi-
bition against unobservables, Whewell’s acceptance of the latter is
crucial: even in the simplest ‘location’ model that treats each da-
tum as merely the mean deviated by some ‘error’, i.e., xi = l + ei,
the model posits an unobserved bipartite structure of xi.) This is
especially clear for those statistical methods that are routinely
used to formulate and suggest—or ‘discover’, in Whewell’s
words—new hypotheses, which is the heart of EDA. As an example
of this, let’s examine one common such technique, principal com-
ponents analysis (PCA).4 (The following two paragraphs lean heavily
on Johnson, 2007.)

The nature of PCA can be brought out with a simple example.
Suppose we are examining the concentrations of three chemicals
X, Y, and Z in a given region. One hundred groundwater samples
are taken from the region, and the amounts of each of X, Y, and Z
are recorded. When the data are plotted as points on three axes,
they are distributed as in Fig. 1a below. Rather than being ran-
domly dispersed, the data appear to be structured around a two-
dimensional plane. This structure is in one sense a real surprise,
as it is extraordinarily improbable that a random sample of unre-
lated measurements would ever yield such a pattern. (The boxes
are scaled to a 1-1-1 ratio to visually present the correlations, as
opposed to the covariances, of the three variables.)

It’s the essence of the sciences not to ignore such patterns. A
natural first step is to try to understand ‘how much’ of a pattern
is there, and what its nature is. Obviously, the relative concentra-
tions of X, Y, and Z appear related. From the geometric perspective
of the cube, the fit of the data on the angled plane (cf. Fig. 1b) is
fairly close. The planar surface lies at a skewed angle, so all three
axes of the cube are involved. But if we used a different set of axes,
we could view the data as organized primarily along just two axes.
That is, suppose we replaced axes X, Y, and Z with three new axes,
A, B, and C. (If we keep A, B, and C perpendicular to one another, we
can think of ourselves as holding the data fixed in space, but rotat-
ing the cube.) Moreover, suppose that we choose the axes so that A
is that single axis on which we find as much of the variation in the
data as possible. If we wanted to represent as much of the variation
in the data as possible with just one axis, A would be our best
choice. It wouldn’t perfectly reproduce all the information about
X, Y, and Z, but it would capture a lot of it. Now suppose we fix
the second axis B so that it captures as much of the remaining var-
iation in the data as possible, after we factor out the variation that
A captures. Together, A and B would determine a plane lurking in

4 PCA is actually a very good example, because some researchers consider it inferior to factor analysis, in that only the latter, they claim, produces a ‘model’ with parameters to
be estimated. However, as the discussion below shows, this attitude is too narrow, at least from the present philosophical perspective.
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the three-dimensional space. (The two lines in Fig. 1c correspond
to Axes A and B.) By projecting all the data onto this plane, we
could recover much, although not all, of the information in the
data. (We’ll miss exactly that information regarding how far away
from the plane the actual data points lie.) If we set axis C to best
capture the remaining information, we will then be able to recover
all the information in the original space. If, however, we decide to
use only one or two axes, we can represent the data reasonably
well in a less complex, lower dimensional, fashion.

The real scientific import of PCA comes when we find that just a
few PCs can account for much of the variation in a lot of various
measurements. For example, a number of studies of color and color
perception have used PCA and related techniques to estimate the
number of basis functions needed to replicate various data sets to
a high degree of accuracy. E.g., Romney and Indow (2003) measured
the amount of light reflected by each of 1269 color chips at 231
evenly spaced points in the visible spectrum. In short, they located
these 1269 chips in a 231 dimensional space. They then estimated
these chips’ reflectance profiles using only the three ‘best’ dimen-
sions. Despite this omission of 228 dimensions (i.e., 98.7% of them),
the correlation between the estimates and the actual values was a
striking .988. In other words, they obtained a resolution of 98.8%
when 1269 � 231 = 293,139 data points were represented using
only (1269 � 3) + (3 � 231) = 4500 numbers. Such patterns are far
too extreme to be random, and they cry out for explanation. PCA
and related techniques can help expose and quantify such patterns
in useful ways. (Actually, this particular result of Romney and In-
dow’s was obtained via some techniques closely related to PCA.
However, I checked their data set using PCA, and got similar results.
Using the best 3, 4, or 5 principal components captures 98.7%,
99.5%, and 99.8% of the (standardized) variation respectively.)

When the data are independently drawn from a multinormal
distribution, it is even possible to conduct statistical tests to deter-
mine which PCs are statistically significant (e.g., Basilevsky, 1994,
chapter 4). In short, a successful PCA can organize and re-present
the data in such a way that allows us to derive an explanandum.
Why should the 231 measurements of each of 1269 color chips be-
have (almost) as though they came from only 3 to 5 sources, in-
stead of 231? At this point, a metaphysical/empirical hypothesis
suggests itself: maybe they behave this way because there are only
a few influences responsible for the reflectance profiles of the color
chips. Typically, further research is performed to confirm or under-
mine such hypotheses.

The relationship between statistical techniques like PCA and
Whewell’s philosophy of science is straightforward. Quite simply,
the former techniques, when used correctly, are quantitatively real-
ized colligations of facts. By re-expressing the data in terms of PCs,
we can, when successful, come closer to discovering the true struc-

ture underlying the original observations. For example, in the study
of color mentioned above, the ‘bond of unity’ that ‘binds together’
the 1269 observations is the fact that nearly all of their variation
in 231 dimensions can be captured with the smallest handful of
carefully selected dimensions. More specifically, the bond of unity
can be thought of as the three or so dimensions that capture virtu-
ally all of the statistical ‘behavior’ of the 1269 observations. More-
over, these newly discovered dimensions present us with ‘Truths of
a higher and more speculative kind’ than we could ever hope to
glean from the 293,139 original data points. (In fact, by performing
an independently motivated rotation of the three axes, Romney and
Indow discovered that they correspond to the physical properties of
brightness, hue, and saturation.) Although Mill would not approve
of the use of these PCs, because these latent variables are by their
very nature unobservables, Whewell was right to suggest that the-
ory formation, often with good reason, will posit them.

The statistical colligation just described makes crucial use of a
conception derived from the fundamental idea of uncertainty.
The conception employed is the much more specific criterion of a
vector’s best least squares fit of the data. That is, each successive
PC removes as much of the remaining uncertainty, in the sense
of unaccounted variance, as possible (subject to the orthogonality
condition mentioned above). In a very straightforward sense, the
‘particular facts’ of the data set ‘are not merely brought together,
but there is a New Element’, in the form of the new basis vectors
‘added to the combination by the very act of thought’ (i.e., statisti-
cal methods) ‘by which they are combined’ (II, p. 48; cf. also pp.77,
85, I 25). In a successful PCA, only a few vectors are retained (e.g., 5
of 231); thus, this ‘New Element’ can correspondingly also be
thought of as a removal of something—irrelevant extra dimension-
ality—from the facts. By taking away these irrelevant dimensions,
‘new truths are brought into view’ (II, p. 43).

As Whewell predicts, determining the right conception to
superinduce upon the facts is a difficult and ongoing process. In
our PCA example, the first two PCs determine a plane that captures
most of the information in the data. However, any two indepen-
dent vectors on that plane can determine that plane. This means
that the same amount of information can be recovered by any
two independent linear combinations of the original manifest vari-
ables that lie on that plane. (Analogous remarks apply to any k-
dimensional subspace of an n-dimensional vector space.) Thus, if
we aim to find the ‘true’ axes that represent the two statistical fac-
tors that actually produce the behavior in the manifest variables
we typically cannot accept the two extracted from the initial
PCA. Although our conceptions from the PCA allowed us to locate
the variation and uncertainty in the data in a plane, they must be
further refined if we wish to discover a theory about the correct
axes for the data.

a b c

Fig. 1. (a) Some data measured in three distinct ways, corresponding to the three original axes. (b) The two-dimensional plane on which the data largely lie. (c) A new pair of
(orthogonal) axes, which are linear combinations of the original ones, and which capture as much of the variance as any two axes can.
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The issue described above is one of a ‘rotation’ of the initial axes
from the PCA to theoretically more satisfactory positions. What
counts as ‘theoretically more satisfactory’ here depends a great
deal on the researcher’s background assumptions about the organi-
zation of the data. Sometimes a detailed background theory may
dictate where the axes should be located, and the researcher will
place them there ‘by hand’ with no further statistical guidance.
Other times, considerably weaker background assumptions may
motivate a statistically guided rotation. One may wish, for exam-
ple, to reduce the complexity of the PCs by a ‘varimax’ rotation,
and seek that position that most nearly approximates the case
where each PC loads at nearly 1 or 0 for each variable—i.e. to each
manifest variable, each PC contributes fully or not at all. Alterna-
tively, one may seek to reduce the complexity of the manifest vari-
ables by a ‘quartimax’ rotation, and seek that position that most
nearly approximates the case where each variable has a nonzero
loading on only one PC. These two rotations preserve the orthogo-
nality of the PCs, which amounts to the assumption that they are
all uncorrelated with one another. If, however, one’s background
assumptions allows that the PCs might or should be correlated,
then other (nonrigid) rotations of the axes are possible. Fig. 2, for
instance shows an ‘oblimin’ rotation.

Over the years, there have been a great deal of different kinds of
rotations proposed in the literature (cf. Harman, 1976, chaps. 12–
15 for an interesting discussion of the early history of this topic).

These rotational matters present only one issue that must be
addressed. There are a great many more things to be settled before
an empirically interpretable solution can be sought. E.g., a straight-
forward interpretation of a PCA assumes that the underlying influ-
ences are linearly related to the manifest data, and are not
themselves internally structured in some important fashion. The
latter would occur if a given axis was actually the result of some
combination of disparate influences, which collectively had no rel-
evant empirical interpretation. Similarly, attention to a PCA may
reveal that seeking the ‘best’ axes, defined by the minimizing of
the total squared deviations, is itself the wrong criterion to opti-
mize. Some other type of optimization, such as an estimate of max-
imum likelihood, may be preferable. These kinds of follow-up
analyses and methodological refinements illustrate how the expli-
cation-colligation loop is frequently quantitatively realized.

The explication of appropriate statistical conceptions is further
made more difficult and important by the fact that PCA is only one
of a growing body of techniques for reducing dimensionality and
identifying latent variables. Indeed, it is not uncommon for
researchers to analyze their data using multiple such methods, to
see if different methods yield any interesting differences. For
example, in factor analysis, the role of the variance of individual
variables is effectively supplanted by an attempt to capture only
the covariances of pairs of variables. Alternatively, some research-
ers want to strengthen the unassociated nature of the latent vari-
ables, so that they are not merely uncorrelated, but are
statistically independent, i.e., Pr(X|Y) = Pr(X). Recently, indepen-
dent components analysis, a technique for attempting this, has
been developed (Comon, 1994). The final technique I’ll mention
is the singular value decomposition (SVD), which can be viewed
as follows. Suppose the original data set A is an m � n array, and
suppose you wanted to find one m-dimensional vector x and one
n-dimensional vector y such that the m � n matrix A1 = xy⁄ pro-
vided the best approximation (in the sense of least squares) to A
of any rank 1 matrix. SVD identifies those vectors. More generally,
if you want to find the k (6 min{m, n}) pairs of vectors such that
Ak ¼

Pk
i¼1xiy�i provided the best least-squares approximation to A

of any rank k matrix, SVD would identify them.

Whewell’s insistence upon the importance and difficulty of the
ongoing process of explicating conceptions provides a lesson that
some present day practitioners would do well to consider. To give
an example, although SVD and PCA look rather different, mathe-
matically speaking, they are quite similar, to the point that some
researchers use the two terms interchangeably (e.g., Malinowski,
2002, p. 17).5 But this can be unwise from a scientific perspective,
and even more so from the vantage of the philosophy of science.
Even in the brief characterizations given above, we can see that these
techniques optimize different criteria, and thus extract different
information from a data set. While they do often yield very similar
results (i.e., these conceptions are quite similar from many practical
perspectives), it is not uncommon for them to behave quite differ-
ently (e.g., Oblefias, Soriano, & Saloma, 2004; Conroy, Kolda, O’Leary,
& O’Leary, 2000; Bell & Sejnowski, 1995, 1997; Phillips, Watson,
Wynne, & Blinn, 2009). Failing to attend to these differences is tan-
tamount to ignoring a unique kind of information that may reveal
something important about the phenomena under study.

This last point can be generalized. As Whewell stressed, the
explication of these various statistical conceptions of optimizing
criteria, forms of optimal rotations, decompositions, etc. is very dif-
ficult and time-consuming. Moreover, contemporary statistical
software allows for data to be thusly analyzed with just the press
of a few buttons. Consequently, it is all too easy to misuse these
techniques, by applying them to inappropriate data sets, misinter-
preting the results, etc. As many methodologists have noted, this
frequently occurs (e.g., Mauran, 1996; Armstrong, 1967, Fabrigar
et al., 1999). Such overhasty practices occurred before the age of
the computer as well. As Whewell notes, ‘men often admire the
deductive part of the proposition, the geometrical or algebraical
demonstration, far more than that part in which the philosophical
merit really resides’ (II, p. 91). But, as he also noted, (II, p. 20), there
is no logic of induction, no mechanical means by which the appro-
priate sort of analysis for a given data set can be calculated. The
only thing that can be done is to engage in the difficult, excruciat-
ing, ongoing process of studying the various properties of these
techniques, and continually refining them by explicating newer,
better conceptions. When this is finally done well, we will have ar-
rived at the proper conceptions, or even formal definitions of the
latter. Thus, it seems that these statistical methods disagree with
J.S. Mill, and side with Whewell, who insisted that definitions, if
they are found at all, appear at the end of induction, not at the
beginning. (cf. Snyder, 2006, pp. 108–110 for discussion). We don’t
engage in these ‘hasty anticipations’ because we can’t. It is simply
not possible to stare at 1269 vectors (each in R231) and intuit with
any credibility how many dimensions there really are, and where
they lie.

It is worth observing that finding the right conceptions to bind
together the facts is a central concern of many philosophically rel-

Fig. 2. An oblimin rotation, which obliquely rotates the axes, maximizing the
extent to which individual data points are dependent upon exactly one axis.

5 Malinowski writes that since PCA and SVD ‘produce essentially the same results, we use these terms interchangeably’ (Malinowski, 2002, p. 17).
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evant areas of contemporary cognitive science. E.g., many of the de-
bates about the nature of concepts, mental representations, cogni-
tive architecture, etc., ultimately concern the best way to organize
the facts (e.g., Stich, 1992) A similar phenomena occurs in linguis-
tics, where, as Whewell noted, the definitions of the technical terms
come at the end, not the beginning, of inquiry (Johnson, 2007, §2).

As the discussion so far makes clear, statistical methods are
generally restricted to discoveries of what Whewell called ‘laws
of phenomena’, which concern ‘the Order which the phenomena
follow, Rules which they obey’ (II, p. 95). They do not address the
‘Powers by which these rules are determined, the Causes of which
this order is the effect’ (Ibid.) For Whewell, this would hold even
for those theories that attempt to explicitly model causal structure
in systems of equations (e.g., Pearl, 2000). Thus, talk of finding the
‘true’ axes should be understood in terms of finding the true statis-
tical factors, which may suggest, but certainly do not determine,
the true physical causes. In this sense of ‘suggesting’ causal factors,
methods such as PCA partially resemble some principles in the phi-
losophy of science, particularly Reichenbach’s Common Cause
principle (Reichenbach, 1956; cf. Artzenius, 2010). Roughly speak-
ing, an (atemporal) version of this principle says that correlated
phenomena share underlying common causes. A PCA does not un-
earth causes, but it does extract quantitative information about
underlying correlational structure that can be relevant to the for-
mation of quantitative causal hypotheses.

Although we often seek the right conceptions, as is well-known
by users of these statistical methods,

hypotheses may often be of service to science, when they involve a
certain portion of incompleteness, and even of errour. The object of
such inventions is to bind together facts which without them
are loose and detached; and if they do this, they may lead the
way to a perception of the true rule by which the phenomena
are associated together, even if they themselves somewhat mis-
state the matter. The imagined arrangement enables us to con-
template, as a whole, a collection of special cases which perplex
and overload our minds when they are considered in succes-
sion; and if our scheme has so much of truth in it as to conjoin
what is really connected, we may afterwards duly correct or
limit the mechanism of this connexion (II, p. 60; cf. the compar-
ison with bookkeeping II, p. 81).

Indeed, the methods described above are often used simply to re-
duce the dimensionality of the data set, so as to be able to work
with a more manageable number of variables. It is not uncommon
to use a PCA or SVD with no intention of isolating the true latent
structure, but only as an intermediary step in the search for other
truths. For example, if the Xi variables in a regression equation
Y = b0 + b1X1 + b2X2 + . . . + bnXn are highly correlated, the confi-
dence intervals for the estimations of bis can become so large as
to make any estimated values useless.6 A common way of dealing
with this problem is to perform the regression on the PCs, which
are uncorrelated: Y ¼ b00 þ b01PC1 þ b02PC2 þ . . .þ b0kPCk. Doing this
can generate more reliable estimates, which can sometimes then
help the researcher to better understand the relation between the
Xs and Y (cf. e.g., Schott, 2005, pp. 97–99, 144–146 for discussion
of the mathematical aspects of this).

Finally, we saw above that Whewell held that a successful expli-
cation-cum-colligation resulted in (merely) the discovery of a the-
ory, which would later need to be confirmed (e.g., II, p. 51). This
aspect of Whewell’s philosophy is curious, and not always easy

to understand (cf. Snyder, 1997, 2008). On the one hand, he claims
that a good deal of work must go into the ‘discovery’ of a theory,
and that this theory is the result of an inference. But on the other
hand, he also claims that this inferential discovery is not the same
as a confirmation. But it would seem that Whewell’s form of dis-
covery amounts to the formulation and adoption of a theory; that
is, the discovery amounts to inferring that the theory is true. What
more of confirmation is needed?

To understand Whewell’s view, it is helpful to look at the same
situation in statistics. We’ve seen that, although they are difficult
and capable of yielding surprising conclusions, techniques like
PCA and the like are not inferential methods. While a scientist
may choose (as Romney and Indow did) to retain only a few dimen-
sions from their analysis, this is not a statistical inference. The test-
ing of dimensions for statistical significance, as mentioned above,
is a matter for another set of techniques. Moreover, this latter stage
can be important to the theory. E.g., as striking as Romney and In-
dow’s findings are, by anyone’s estimation, much more work needs
to be done before their particular findings would be considered
‘confirmed’ E.g., it may be that, upon closer scrutiny, it will be
found that, perhaps by the use of confirmatory methods—statistical
significance tests for PCs, confirmatory factor analysis, etc—that an
extra dimension needs to be retained above and beyond the three
that Romney and Indow studied. And of course, there is nothing
special about Romney and Indow’s study; the careful scrutiny,
and often adjustment, of a striking finding is a standard part of sci-
entific inquiry. At the same time, in a Whewellian spirit, Roberts
and Pashler (2000) criticize some of the scientific community for
being overly lax. They cite a number of projects where parameter
values for complex quantitative models were discovered, and the
resulting model is given some degree of credence based on the
resulting goodness of fit to the data assessed. But, as they note,
and as Whewell would’ve noted, discovering, via inductive means,
a good model (one that fits the facts well), is not the same as con-
firming it. After all, some models are so flexible that they can fit
virtually any set of data, so the fact they do fit the data provides
little reason to believe it is correct.

3.5. The Mill-Whewell debate

Interestingly, Whewell’s verbal description of the mathematics
of statistical reasoning is so accurate that it is even possible to
reconstruct a famous objection to him, as well as (what I think
is) a correct response on Whewell’s behalf (found in e.g., Snyder,
2008, pp. 101–106).

In A System of Logic (Mill, 1949), Mill contends that Whewell’s
view of induction is not really induction at all. One of Mill’s reasons
for this criticism is that Mill believed that induction must be a form
of ampliative inference. That is, the resulting theory cannot be a
mere redescription of the facts; the theory must contain something
new that was inferred from them. (E.g., inferring that ‘All swans are
white’ goes beyond the comparatively small sample of observed
swans, and extends the predicate ‘white’ to all swans, observed
and otherwise.) Whewell, Mill held, included both genuine induc-
tive inferences and mere redescriptions within the scope of (what
Whewell called) induction. For example, Whewell considered Kep-
ler’s discovery of the elliptical nature of the orbit of Mars to be a
paradigmatic case of induction. In contrast, Mill thought that, in
using the equation for an ellipse, Kepler had merely found a conve-
nient mathematical representation of the observed data.

6 That is, suppose we want to predict the numerical value of Y from a number of variables Xs; e.g., we may want to predict GRE scores on the basis of GPA, SAT scores, parents’
education level, and frequency of drug use. A natural first step would be to find a collection of weights for each of the Xs such that the resulting equation
Y = b0 + b1X1 + b2X2 + . . . + bnXn optimizes some criterion (such as least squares fit for the (n+1)-dimensional data set), and thus constitute a best estimate of the true values bi.
However, although the bis might be optimal, they are only estimates of the bis. If the Xs are highly correlated, the amount by which the bis may plausibly deviate from these
estimates can become so large as to render the estimates useless.
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Replying on behalf of Whewell (and Kepler), Snyder (2008, p.
212) notes that from the point of view of the Earth, the observa-
tions would not appear elliptical. Thus, Kepler needed a theory of
the Earth’s motions to yield an elliptical interpretation of the data.
Moreover, this particular ellipse appeared nearly circular, so Kepler
needed to lean heavily on the theory’s mathematical details in or-
der to predict the proper ellipticality. Moreover, Kepler’s theory
goes beyond the data in two further ways that Whewell appreci-
ated, but Mill apparently did not. First, Kepler applied the idea of
an ellipse to the data. But since this idea was not one of the data
points, the resulting theory does go beyond the data. Second, Kep-
ler’s theory was not limited to the observed data points, but went
beyond them in predicting that all observations of Mars would fall
on a certain curve. (cf. Snyder, 2008, pp. 211–214 for a detailed
treatment of this topic, from which this discussion borrows
heavily).

While Mill’s argument is puzzling for many reasons, a present-
day Millian might have an even easier time foisting the charge of
mere redescription onto the methods discussed above. After all,
redescription is exactly what these methods do. The decomposi-
tions we have examined are quite literally ‘mere’ redescriptions
of the original data. A PCA, for example, is simply an orthogonal
rotation (in Euclidean space) of the original coordinate axes deter-
mined by the measured variables. Viewed in the small, a PCA is the
same kind of change as when the coordinates of a point in the
plane change from [2, 3] to [3.536, .707] as we switch from the
standard basis to the two (unit length) diagonals in the upper
half-plane. (From the perspective of logic, this ‘change’ is analo-
gous to switch the claims {P, Q, �R} for the logically equivalent
set {P M Q, �P ? R, (Q ^ �P) _ �R}.)

In a certain abstract sense, this charge is appropriate: A PCA is
nothing more than a reorganization of the data along new bases.
A PCA whose eigenvalues were nearly all equal in size would sug-
gest that all the original dimensions should be retained, in which
case the PCA would in fact be a mere redescription of the data.
However, a crucial element of a PCA is the dimensionality reduc-
tion. When a PCA is performed, and, say only 3 of the 231 dimen-
sions are retained, as in the Romney and Indow study, the scientist
is inferring the theory that the remaining 228 dimensions capture
only irrelevant noise in the data, and can therefore be safely disre-
garded. Similarly, this theory identifies a very specific 3-dimen-
sional space where the data are located. Moreover, a PCA goes
beyond the data in two further ways. First, as we’ve seen above,
by using PCA, the scientist is implicitly claiming that certain extre-
mal properties such as variance resolution and differential entropy
are relevant (for some projects, they wouldn’t be). So by using it,
the scientist ‘superinduces’ some strong theoretical assumptions
onto the data. Second, the results of a successful PCA are typically
not limited to just the observations, but extend more broadly to
the theoretical population. E.g., Romney and Indow’s findings do
not extend to just the 231 points in the visible spectrum (from
430 nm to 660 nm at 1 nm intervals), but apply to all the points
in between the sampled points.

3.6. A final correct prediction

I briefly mention one more point of contact between Whewell’s
philosophy of science and contemporary statistics. Whewell
admitted that the typical person will find the details of the work-
ings of the sciences ‘less pleasing’ and ‘neither so familiar nor so
interesting’ as many other topics (I, p. 13). For the typical person,
these details ‘will have in them nothing to engage his fancy, or to
warm his heart’ (I, p. 14). Moreover, Whewell’s own meta-scientific
study is ‘abstruse and uninviting’, filled with ‘the most dark and
entangled questions’, so that the ordinary reader will find the pro-
ject ‘obscure or repulsive’ (I, p. 13). Having taught introductory sta-

tistics for several years, I regret to say that these sentiments have
been non-quantitatively realized in contemporary times.

4. Conclusion

In this paper, we have seen a genuinely impressive level of de-
tail at which Whewell’s Discoverer’s Induction quite simply gets it
right about statistics. Moreover, we saw that success in the statis-
tical case is strong evidence for general correctness of the view. To
this end, I can only mention that there are an enormous number of
details in Whewell’s work, above and beyond what I have dis-
cussed, that map neatly onto contemporary statistical-cum-empir-
ical practice. The most glaring exception is perhaps Whewell’s
theologically based belief that our fundamental ideas are the right
ones.

Finally, we can note that one of Whewell’s leading contempo-
rary interpreters writes that ‘[Whewell’s] philosophy of sci-
ence . . . is . . . a view worthy of our attention today’ (Snyder,
1997, p. 601). In this paper, we’ve seen ample reason to enthusias-
tically endorse this claim.
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