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1. Introduction

To model a lawwith algebra we need to clarify many meanings
of the word law. Wemay say that a law is a sort of a restriction. But
obviously not any restriction is a law. We can also say that a law is a
stable type of relation. But what does this mean mathematically? Is
it possible to develop a rule thatwill indicatewhat type of relations
can be laws and what cannot?

To begin answering these questions, Kulakov (1968, 1971)
proposed a mathematical theory for the concept of a law. In
subsequent years this theory was developed for the case when
the relationswere continuously differentiable functions on smooth
manifolds (Mikhailichenko, 1972). Here, these ideas are developed
using an algebraic approach.

Geometry

To introduce the problem, let us consider some examples from
geometry. Consider the finite set M = {i1, i2, . . . , in}, consisting
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of n arbitrarily located points on a Euclidean plane. Can we say
that with the arbitrary location of points there exists a particular
law that relates all points of the set M? We have to look at all
possible pairs of points of M to answer this question. The number
of unordered pairs is 1

2n(n−1). For each pair we use the numerical
distance between themmeasuredwith a ruler to characterize their
relative positions. It is assumed that measurement of the distances
is exact.

Assigning the distance ℓik to each pair of points (ik), we have a
set of data obtained from the experiment which fully describes the
properties of the setM.We can present this data set as a symmetric
matrix:

i1 i2 i3 . . . in
i1 0 ℓ12 ℓ13 . . . ℓ1n
i2 ℓ12 0 ℓ23 . . . ℓ2n
i3 ℓ13 ℓ23 0 . . . ℓ3n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
in ℓ1n ℓ2n ℓ3n . . . 0

It is clear that the distances ℓik, ℓim, ℓkm between any three points
i, k,m ∈ M cannot satisfy any functional dependence, because if
the distances ℓik and ℓim are fixed, the third distance ℓkm can take
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the values from |ℓik − ℓim| to ℓik + ℓim.
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But if we take any four points i, k,m, n ∈ M, then one of the six rel-
ative distances ℓik, ℓim, ℓin, ℓkm, ℓkn, ℓmn is a two-valued function of
the other five.

❩
❩

❩

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

�
�

�
�

�
�

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦
❇
❇
❇
❇
❇
❇
❇
❇
❇

❩
❩

❩
❩

❩
❩

❩
❩❩

i

k

m n

So, for every four points of the Euclidean plane there exists a func-
tional dependence between their relative distances, which does
not depend on the choice of points:

0 1 1 1 1

1 0 ℓ2ik ℓ2im ℓ2in

1 ℓ2ik 0 ℓ2km ℓ2kn

1 ℓ2im ℓ2km 0 ℓ2mn

1 ℓ2in ℓ2kn ℓ2mn 0


= 0.

If the four points were allowed to lie in the three-dimensional
space, this determinant would be proportional to the volume of
the simplex they would form. If we have zero three-dimensional
volume, than all four points lie on the same plane.

Generalizing the previous example, we can take two sets of
points i, k,m, n ∈ M and α, β, γ , δ ∈ M of the Euclidean plane
M and consider the relative distances between the sets of points
with Greek and Latin indexes. For any sets of points there exists
a functional dependence between their relative distances, which is
expressed by the Cayley–Menger determinant being zero (Kulakov,
1995).

0 1 1 1 1

1 ℓ2iα ℓ2iβ ℓ2iγ ℓ2iδ

1 ℓ2kα ℓ2kβ ℓ2kγ ℓ2kδ

1 ℓ2mα ℓ2mβ ℓ2mγ ℓ2mδ

1 ℓ2nα ℓ2nβ ℓ2nγ ℓ2nδ


= 0.

Ohm’s law

In the geometry example just described, all points belong to the
single setM. Ohm’s law provides a different examplewhere points
from twodifferent sets arematched by the result of ameasurement
procedure, an analog to the distance. (The measured values do not
satisfy the triangle inequality. It is just an analogy.)
Consider the set of resistors M and the set of voltage sources N.
For any i ∈ M and α ∈ N let us measure the electrical current in
the following circuit with an ammeter.

✒✑✓✏
�

�
�✒
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In this case the ammeter indication Jiα is an analog of the dis-
tance between the resistor i and the voltage source α. Consider
three independent resistors i, k,m ∈ M and two optional volt-
age sources α, β ∈ N. Let us measure the six ammeter outputs
Jiα,Jiβ ,Jkα,Jkβ , Jmα,Jmβ . Assuming exact measurements, we
have (Kulakov, 1968):
1 J−1

iα J−1
iβ

1 J−1
kα J−1

kβ
1 J−1

mα J−1
mβ

 = 0. (1)

Using the reference points k,m ∈ M, β ∈ N, we can obtain the
well-known Ohm’s law for the whole circuit (Kulakov, 1968)

Jiα =
Eα

Ri + rα
,

where Eα is an electromotive force, rα is the inner resistance of the
voltage source α and Ri is the resistance of the resistor i.

Newton’s second law

Consider Newton’s second law f = ma, where m is the mass
of the body, a is the body’s acceleration and f is the driving force
applied to the body. Difficulties arise when we try to understand
and define the concepts of mass and force which this law contains.
Mass is a measure of inertia, but this definition is implicit in the
law itself. What is a force? Force – according to Lagrange – is
a reason for the body’s movement or a reason which intends to
move. Consider the traditional statement of Newton’s second law:
‘‘The driving force on a particle is equal in value and direction
to the product of the material point acceleration and its mass in
an inertial reference frame’’. Here the non-trivial concept of an
inertial reference frame is introduced and three physical values
are linked, two of which have not been defined. Is it possible to
formulateNewton’s second law in such away, that does not require
a definition for mass and force?

Consider two sets: the set of bodies M and the set of force
sources (or accelerators) N. One body and one force source can
be paired to change the speed. We can measure such a change as
acceleration aiα of a body i ∈ M under the applied force α ∈ M.

In this case, acceleration aiα is an analog of the distance between
the body i and the force source α. Consider any two bodies i, j ∈ M

and any two force sources α, β ∈ N and measure four accelera-
tions aiα , aiβ , ajα , ajβ . Assuming exact measurements, we have:aiα aiβ
ajα ajβ

 = 0, (2)

by which, using the gauge points j ∈ M, β ∈ N, we have Newton’s
second law (Kulakov, 1968):
Fα = miaiα.

2. Formalization

We set up the following definitions. An algebraic system or alge-
bra ⟨G; σ ⟩ is a setG (basic set)with the operations setσ (signature),
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which satisfy some axioms. n-ary operation f on G is f : Gn
→ G. 0-

ary operation is a selected element of G. If the algebra is defined on
several sets G1, . . . ,Gn, then the algebra ⟨G1, . . . ,Gn; σ ⟩ is a many-
sorted one. A function f : Gn

→ G is a partial operation if it is de-
fined on a subset of Gn. If partial operations fi ∈ σ are defined on
the algebra ⟨G; σ ⟩, then the algebra is a partial one.

Consider the partial many-sorted algebra ⟨M,N, B; f , g⟩. Func-
tions (operations) f , g are partial ones

f : M × N → B, g : Bn+nm+m
→ B.

Function f is a measurement procedure (like distance), which as-
signs to elements i ∈ M and α ∈ N a value f (i, α) from B. Function
g characterizes the relation between these values.

We say, that a given algebra defines a law of rank (n+1,m+1)
on subsets Mn ⊆ Mn, Bn ⊆ Bn, Nm ⊆ Nm, Bm ⊆ Bm if the following
axioms are satisfied:

A1. For any tuples (i1, . . . , in) ∈ Mn, (b1, . . . , bn) ∈ Bn there
exists a unique element α ∈ N, such that: f (ik, α) = bk, where
k ∈ {1, . . . , n}.

A2. For any tuples (α1, . . . , αm) ∈ Nm, (b1, . . . , bm) ∈ Bm there
exists a unique element i ∈ M, such that: f (i, αk) = bk, where
k ∈ {1, . . . ,m}.

A3. For any tuples (i0, . . . , in) ∈ M × Mn, (α0, . . . , αm) ∈

N × Nm the following is true:

f (i0, α0) = g (f (i0, α1), . . . , f (i1, α0), . . . ,

f (i1, α1), . . . , f (in, αm)) .

The function g depends on all elements f (ij, αk) ∈ B excluding
f (i0, α0).

Definition 1. The twomany-sortedpartial algebras ⟨M,N, B; f , g⟩
and


M′,N′, B′

; f ′, g ′

are homomorphic if three mappings λ : M →

M′, χ : N → N′, ψ : B → B′ exist such that the following
diagrams commutative

M × N
f

→ B
(λ× χ) ↓ ↓ ψ

M′
× N′ f ′

→ B′

,

Bmn+m+n g
→ B

ψmn+m+n
↓ ↓ ψ

(B′)mn+m+n g ′

→ B′

.

Definition 2. If the homomorphisms λ, χ,ψ are bijective, then
the algebras ⟨M,N, B; f , g⟩ ,


M′,N′, B′

; f ′, g ′

are isomorphic or

equivalent.

Definition 3. A group is an algebra

B; · ,−1, e


with one binary

operation (·) : B × B → B, one unary operation (−1) : B → B
and one nullary operation e, for which the following axioms are
fulfilled:

1. (x · y) · z = x · (y · z), for all x, y, z ∈ B;
2. x · e = e · x = x, for every x ∈ B;
3. x−1

· x = x · x−1
= e, for every x ∈ B.

The nullary operation selects an element e ∈ B, which is called
a neutral element of the group


B; ·, −1, e


. The unary operation

(−1) : B × B → B assigns to every element x ∈ B an inverse one
x−1

∈ B.
If associativity is not required, but the requirement for the

unique solvability of the equation x · y = z such that x = z/y
and y = x \ z is made, then the algebra ⟨B; ·, /, \⟩ is called a
quasigroup. In this case the binary operations (/) : B× B → B and
(\) : B × B → B are called right and left divisions, respectively.
They satisfy the following equations:

1. (x · y)/y = (x/y) · y = x, for all x, y ∈ B;
2. x \ (x · y) = x · (x \ y) = y, for all x, y ∈ B.
If there is a two-sided neutral element e in the quasigroup

⟨B; ·, /, \⟩:
3. (e · x) = (x · e) = x, for all x ∈ B, then such an algebra
⟨B; ·, /, \, e⟩ is called a loop.

Numerical representations of laws in measurement theory are
constructed using the cancellation conditions (Krantz, Luce, Sup-
pes, & Tversky, 1971, p. 354) defined on empirical systems. The
cancellation conditions are considered a basic and fundamental
feature of laws and are used to construct homomorphisms of
empirical systems into numerical systems. In our approach, the
functions f , g give the possibility of producing algebraic and nu-
merical representations of laws without the preliminary construc-
tion of empirical systems. This approach is based on a fundamental
feature of laws, the existence of functional dependence between
the results of an experiment (axiom A3), which directly produces
algebraic and numerical representations of laws.

3. A connection between the algebraic representation of laws
of rank (2, 2) and representational measurement theory

We establish a connection between representational measure-
ment theory and an algebraic representation of laws of rank (2, 2)
by inferring the Reidemeister cancellation condition from the ax-
ioms A1–A3 for the laws of rank (2, 2).

Consider amany-sorted algebra ⟨M,N, B; f , g⟩ for a law of rank
(2, 2) in the framework of measurement theory in the case whenM = M , N = N ,B = B. For the laws of rank (2, 2) the axioms
A1–A3 read as follows.

Definition 4. A many-sorted algebra ⟨M,N, B; f , g⟩ defines a law
of rank (2, 2), if the following axioms are true:

A1. ∀i ∈ M, ∀b ∈ B ∃!α ∈ N such that f (i, α) = b;
A2. ∀α ∈ N, ∀b ∈ B ∃!i ∈ M such that f (i, α) = b;
A3. ∀i0, i1 ∈ M,∀α0, α1 ∈ N we have f (i0, α0) = g (f (i0,

α1), f (i1, α0), f (i1, α1)) ,

where ∃! means unique existence.

Given a many-sorted algebra ⟨M,N, B; f , g⟩, satisfying Defini-
tion 4, we can derive (following Vityaev, 1985) a model ℑ = ⟨M ×

N; ∼⟩, where the equivalence relation is defined as follows:

(i, α) ∼ (j, β) ⇔ f (i, α) = f (j, β).

In the model ℑ = ⟨M ×N; ∼⟩ the unrestricted solvability axiom
is true if – for every three of four elements i, j ∈ M , α, β ∈ N –
there exists a fourth element such that (i, α) ∼ (j, β) in Krantz
et al. (1971, p. 256).

Lemma 1. The following conditionM1 for themodelℑ = ⟨M×N; ∼

⟩, that is stronger than the axiom of unrestricted solvability, is implied
by A1, A2:

M1: for every three of four elements i, j ∈ M, α, β ∈ N there
exists a unique fourth element, such that (i, α) ∼ (j, β).

Proof. Given three elements, we choose a pair in which both
elements are present, for instance (i, α). By the value b = f (i, α)
and the third element j or β we obtain the fourth uniquely by
drawing on one of the axioms A1 or A2. �

Lemma 2. The model ℑ = ⟨M × N; ∼⟩ satisfies the following
condition M2 of independence (see independence relation on p. 249
in Krantz et al., 1971).

M2: For all i, j ∈ M, α ∈ N, if (i, α) ∼ (j, α), then (i, β) ∼ (j, β)
for every β ∈ N.

Proof. By the condition M1 we have, that if (i, α) ∼ (j, α), then
i = j and (i, β) ∼ (j, β) for every β ∈ N . �
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Lemma 3. The model ℑ = ⟨M × N; ∼⟩ satisfies the following
Reidemeister condition (Krantz et al., 1971, p. 252):

M3: (i0, α2) ∼ (i2, α0) & (i0, α3) ∼ (i2, α1) & (i1, α2) ∼

(i3, α0) ⇒ (i1, α3) ∼ (i3, α1), i0, i1, i2, i3 ∈ M; α0, α1, α2, α3
∈ N.

Proof. By replacements in A3, i0 ↔ i1, α0 → α3, α1 → α2, we
have

f (i1, α3) = g (f (i1, α2), f (i0, α3), f (i0, α2)) .

Next, by the following replacements in A3, α1 ↔ α0, i0 → i3,
i1 → i2, we have f (i3, α1) = g (f (i3, α0), f (i2, α1), f (i2, α0)).
Notice that the function g in both equations depends on equivalent
values, according to the premise of condition M3. So, the function
values must coincide f (i1, α3) = f (i3, α1). �

Lemma 4. From the Reidemeister condition follows the hexagon
condition (Karni, 1998)

M4: (i0, α2) ∼ (i2, α0) & (i0, α3) ∼ (i2, α2) ∼ (i3, α0) ⇒

(i2, α3) ∼ (i3, α2).

Proof. Let usmake the following substitutions in the Reidemeister
condition: i1 → i2, α1 → α2. Then we have:

(i0, α2) ∼ (i2, α0) & (i0, α3) ∼ (i2, α2) & (i2, α2) ∼ (i3, α0)

⇒ (i2, α3) ∼ (i3, α2).

By joining two equivalences (i0, α3) ∼ (i2, α2) and (i2, α2) ∼

(i3, α0) into one (i0, α3) ∼ (i2, α2) ∼ (i3, α0), the hexagon
condition results. �

In measurement theory conditions M1–M4 produce numeric
representations. For instance, in Karni (1998) it has been proved
that if instead of relation∼wehave a relation% onM×N which is a
weak Archimedean order, satisfying the axioms of independence,
unrestricted solvability, and hexagon condition, then there exist
functions ϕ : M → Re φ : N → Re such that:

(i, α) % (j, β) ⇔ ϕ(i)+ φ(α) ≥ ϕ(j)+ φ(β).

We are going to use M1–M4 not for obtaining numeric repre-
sentations, but rather for obtaining an algebraic representation of
the laws of rank (2, 2).

Definition 5. We define an algebraic model of a law of rank (2, 2)
as a model ℑ = ⟨M × N; ∼⟩,M ≠ ∅, N ≠ ∅, that satisfies M1 and
M3.

In Taylor (1972) it was proved using net theory that if we have
the Reidemeister condition (condition M3) and two axioms whose
conjunction is weaker than M1, then the model ℑ = ⟨M × N; ∼⟩

may be a mapping into a group.
We give another proof (which is connected with further sec-

tions and results) that a group can be defined on the model ℑ =

⟨M × N; ∼⟩.
We are going to analyze thismodel. Let [i, α] stand for classes of

equivalent elements fromM ×N/ ∼, the set of equivalence classes
we denote as [M × N].

Fix the elements i0 ∈ M, α0 ∈ N .

Lemma 5. The following mappings are bijections.

fi0 : N → [M × N], fi0(α) = [i0, α], i0 ∈ M, α ∈ N,
fα0 : M → [M × N], fα0(i) = [i, α0], i ∈ M, α0 ∈ N.

Proof. Consider function fi0 . It is a one-valued correspondence
because by M1, if (i0, α) ∼ (i0, β), then α = β . It is a bijection
and maps the set N onto the whole set [M × N], since by M1, for
all (j, β) ∈ [j, β] ∈ [M × N], i0 ∈ M there exists a unique α ∈ N
such that (i0, α) ∼ (j, β). Bijectivity of the function fα0 is proved
similarly. �
Define the inverse mappings

f −1
α0

: [M × N] → M, f −1
i0

: [M × N] → N.

On the set [M × N] we define operation

[i, α0] • [i0, α] = [f −1
α0
([i, α0]), f −1

i0
([i0, α])] = [i, α].

Lemma 6. Operation • is left- and right-uniquely solvable and de-
fines a quasigroup on [M × N].

Proof. We need to prove that for any two elements [j, β], [i, α] ∈

[M × N] there exist unique elements x, y ∈ [M × N] such that
x • [j, β] = [i, α], [j, β] • y = [i, α]. Consider the first equality. By
M1, for (j, β) and i0 there exists an element α′ such that (j, β) ∼

(i0, α′), and for (i, α) and α′ there exists an element i′ such that
(i, α) ∼ (i′, α′). Then x = (i′, α0) and [i′, α0] • [i0, α′

] = [i′, α′
].

The second statement can be proved in the same way. �

The obtained quasigroup ℑ = ⟨M × N; ∼, •⟩ is a loop, if it
contains an identity element.

Lemma 7. The element e = [i0, α0] is the identity element for the
quasigroup ℑ = ⟨M × N; ∼, •⟩.

Proof. By M1 for element [q] ∈ [M × N] and for elements i0 ∈ M ,
α0 ∈ N there exist elements i ∈ M, α ∈ N such that (i, α0) ∼

(i0, α) ∼ q. Then q • e = [i, α0] • [i0, α0] = [i, α0] = q,
e • q = [i0, α0] • [i0, α] = [i0, α] = q. �

A loop is a group if it is associative.

Theorem 1. If quasigroup ℑ = ⟨M ×N; ∼, •⟩ satisfies conditionM3,
then it is associative and hence a group.

Proof. Replace all elements in conditionM3 by incrementing their
indices by 1.

(i1, α3) ∼ (i3, α1) & (i1, α4) ∼ (i3, α2) & (i2, α3) ∼ (i4, α1)

⇒ (i2, α4) ∼ (i4, α2).

Let us introduce notations p1 = [i1, α0], p2 = [i2, α0], p3 =

[i3, α0], p4 = [i4, α0], q1 = [i0, α1], q2 = [i0, α2], q3 = [i0, α3],
q4 = [i0, α4]. Then condition M3 turns into

p1 • q3 = p3 • q1 & p1 • q4 = p3 • q2 & p2 • q3 = p4 • q1
⇒ p2 • q4 = p4 • q2.

For all x, y, z perform the following substitutions p1 = e,
p2 = x, p3 = y, p4 = x • y, q1 = e, q2 = z, q3 = y, q4 = y • z

y = y & y • z = y • z & x • y = x • y ⇒ x • (y • z) = (x • y) • z.

Since the premise of the implication is obviously true, the
conclusion is also true, which is associativity. �

Consequence 1. An algebraic model of a rank (2, 2) laws is a group
ℑ = ⟨M × N; ∼, •⟩.

4. Basic results

We have introduced the concept of a law by a many-sorted
algebra ⟨M,N, B; f , g⟩. Consider solutions that can be obtained on
the sets M,N, B and special subsets Mn, Bn,Nm, Bm.

Consider the simplest case of an algebraic system ⟨M,N, B; f , g⟩
by slightly modifying a theorem (Ionin, 1990). The basic meaning
of the theorem is that the algebra ⟨M,N, B; f , g⟩ is isomorphic to
the algebra ⟨B, B, B; ·, g⟩ with the same set. The proof itself is built
in a sequential construction of such an isomorphic algebra.
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Theorem 2 (Ionin). The algebra ⟨M,N, B; f , g⟩ with M = M,B =

B,N = N,B = B is isomorphic to the algebra ⟨B, B, B; ·, g⟩, where
B; · ,−1, e


is a group and the mappings are

f (x, u) = x · u,
f (x, u) = g(f (x, v), f (y, u), f (y, v))

= f (x, v) · (f (y, v))−1
· f (y, u).

Proof. Indeed, by axioms A1 and A2 for any k ∈ M, γ ∈ N we
construct the mapping

fk : N → B, fγ : M → B

in the following way

fk(α) = f (k, α) fγ (i) = f (i, γ ).

Then the triple of mappings (fγ , fk, id)will define the transition to
the equivalent algebra


B, B, B; f ′, g


, where

f ′(x, y) = f (f −1
γ (x), f −1

k (y)).

Using any e ∈ B and mappings f1(x) = f ′(x, e), we proceed to the
equivalent algebra

(f −1
1 , id, id) :


B, B, B; f ′, g


→

B, B, B; f ′′, g


with the mapping f ′′(x, y) = f ′(f −1

1 (x), y), for which the following
is true:

f ′′(x, e) = f ′(f −1
1 (x), e) = f1(f −1

1 (x)) = x.

In the same way, using the function f2(x) = f ′′(e, x)we proceed to
the equivalent algebra with the mapping

f ′′′(x, y) = f ′′(x, f −1
2 (y)).

On set B we define the operation by x · y = f ′′′(x, y). Then the
following is true:

x · e = e · x = x.

So, by A1 and A2, algebra ⟨B; ·, e⟩ will be a loop.
For any x, y, u, v ∈ Bwe have x · u = g(x · v, y · u, y · v). Hence

for the pairs (x, e) and (y · z, y) there is

x · (y · z) = g(x · y, e · (y · z), e · y) = g(x · y, y · z, y),

and on the other hand, for the pairs (x · y, y) and (z, e):

(x · y) · z = g((x · y) · e, y · z, y · e) = g(x · y, y · z, y),

then the operation, defined above, is associative, and hence,
B; · ,−1, e


is a group.

For a group we have the identity x · u = (x · v) · (y · v)−1
· (y · u)

such that

g(x, z, y) = x · z−1
· y. � (3)

Consequence 2. If instead of the set B, we consider a field F , then
the number of non-isomorphic algebras ⟨F , F , F; ·, g⟩ over F will be
the same as the number of non-isomorphic groups, constructed over
F . If |F | < ∞, then the number of such groups depends only on the
cardinality of the set F . If |F | = p, where p is a prime number, then it
will be the only cyclic group (which is unique). If F = R and function
f is continuously differentiable in all of its arguments, then, up to local
isomorphism (as in the local Lie groups), it will be the only additive
group (Kulakov, 1971).

Let us check the result obtained. Ifwewrite the function (3) over
the set R in an isomorphic multiplicative way, then we receive Eq.
(2) from Newton’s law.

For the consideration of rank (n, 2) laws let us define the
following subsets.
Definition 6. For any set B let us define a set △Bn as follows:

△Bn = {(x1, . . . , xn) ∈ Bn
|x1 = x2 and/or x1 = x3 . . .

and/or xn−1 = xn}.

In other words, the tuple (x1, . . . , xn) belongs to the set △Bn , when
at least two elements, belonging to this tuple, xi and xj for i ≠ j are
the same: xi = xj.

Definition 7. A group Tn(B) of set B transformations is called n-
transitive, if for every two different tuples (x1, x2, . . . , xn) ≠

(y1, y2, . . . , yn) ∈ Bn
\ △Bn , there is g ∈ Tn(B), for which g(xi) =

yi for i ∈ {1, . . . , n}. Group Tn(B) of set B transformations is
called sharply n-transitive, if for every two different tuples (x1, x2,
. . . , xn) ≠ (y1, y2, . . . , yn) ∈ Bn

\ △Bn , there is only one element
g ∈ Tn(B), for which g(xi) = yi for i ∈ {1, . . . , n}.

Definition 8. An algebraic system ⟨B, ·,+ ,−1,−, 1, 0⟩ is called a
neardomain, if

1. ⟨B,+,−, 0⟩ is a loop;
2. ⟨B \ {0}, · ,−1, 1⟩ is a group;
3. x + y = 0 ⇔ y + x = 0;
4. (x + y)+ z = x · r(y, z)+ (y + z), where r(y, z) ∈ B \ {0};
5. (x + y) · z = x · z + y · z.

Let us consider the rank (3, 2) laws with some conditions on
sets M2, F 2,N,F , where F is a field or neardomain.

Theorem 3. The algebra ⟨M,N, F; f , g⟩ with M2 = M2
\ △M2 ,F 2 = F 2

\ △F2 , N = N, F = F , is isomorphic to the algebra
F , F 2, F; f ′′′, g ′


and the mappings are

f ′′′
: F × F 2 → F , (4)

g ′(x, y1, y2, z1, z2) = f ′′′


x,

z1
z2

−1

⊙


y1
y2


. (5)

Such mappings define a multiplication of columns:
x1
x2


⊙


y1
y2


=


f ′′′(x1, y1, y2)
f ′′′(x2, y1, y2)


. (6)

A multiplication of columns forms a group ⟨F 2; ⊙ ,−1,

1
0


⟩ which is

a sharply 2-transitive group.

Proof. 10. For any k1 ≠ k2 ∈ M, γ ∈ N by A1 and A2, using the
bijective mappings

f1 : M → F , F1 : N → F 2,

we define:

f1(i) = f (i, γ ), F1(α) = (f (k1, α), f (k2, α)),

and we get the isomorphic algebra ⟨F , F 2, F; f ′, g⟩ with the
function

f ′(x, y, z) = f (f −1
1 (x), F−1

1 (y, z)).

Using the function

f2(x) = f ′(x, 1, 0),

where 1, 0 ∈ F and triples of mappings (f −1
2 , id, id)we proceed to

the isomorphic algebra with the function

f ′′(x, y, z) = f ′(f −1
2 (x), y, z).

Now, using another mapping

F2(y, z) = (f ′′(1, y, z), f ′′(0, y, z)),
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we get the isomorphic algebra ⟨F , F 2, F; f ′′′, g ′
⟩ with the function

f ′′′(x, y, z) = f ′′(x, F−1
2 (y, z)).

Notice that by the construction of this function we have:

f ′′′(1, y, z) = y, f ′′′(0, y, z) = z, f ′′′(x, 1, 0) = x. (7)

20. On the set F 2 let us define an operation by (6). Then, because
of A1 and A2, algebra ⟨F 2; ⊙⟩ will be a quasigroup, and by (7),
the algebra will be a loop. To check associativity of the defined
operation, we construct a new mapping G : F 23 → F 2 in the
following way:

G


x1
x2


,


y1
y2


,


z1
z2


=


g ′(x1, y1, y2, z1, z2)
g ′(x2, y1, y2, z1, z2)


.

As in Theorem 2, we compare the mapping G, constructed, on the
one hand over two tuples

x1
x2


,


1
0

 
y1
y2


·


z1
z2


,


y1
y2


,

and on the other hand, over tuples
x1
x2


·


y1
y2


,


y1
y2

 
z1
z2


,


1
0


,

we have associativity of the operation (6). Hence ⟨F 2; ⊙ ,−1,

1
0


⟩

is a group.
30. The constructed group of transformations of the setF 2 is sharply transitive, while the same group as a group of

transformations of the set F is sharply 2-transitive. It is known
that a neardomain (as, in particular, near-field, skew-field, field)
is linked, up to the isomorphism, to the only sharply 2-transitive
group of transformations of a neardomain (Karzel, 1965, 1968).

The function G is an identity on the group ⟨F 2; ⊙ ,−1,

1
0


⟩

and it is the same as the identity (3) in Theorem 2. Hence the
function g ′ can be written in accordance with (5).

The function f ′′′ with conditions (7) can be written (Simonov,
2006) in the following way

f ′′′(x, y, z) = x(y − z)+ z,

which is true for neardomain F . �

Consequence 3. Over F the equation g(x2, y1, y2, z1, z2) = x1 can
be written in an implicit form (Mikhailichenko, 1972) by setting the
determinant to zero:x1 x2 1
y1 y2 1
z1 z2 1

 = 0.

If we compare the determinant from Consequence 3 with the
determinant from Ohm’s law, we see that Ohm’s law is a law of
rank (3, 2).

Let us consider an algebra

M,N, F; f , g


connected with the

laws of the rank (4, 2), where F = F ∪ {e∞} and e∞ ∉ F .

Theorem 4. The algebra

M,N, F; f , g


with M3 = M3

\ △M3 ,
F
3

= F
3

\ △
F3
, N = N, F = F is isomorphic to the algebra

⟨F ,

F
3
, F; f ′′′, g ′

⟩ and the mappings are

f ′′′
: F × F 3 → F , (8)

g ′(x, y1, y2, y3, z1, z2, z3) = f ′′′

x,

z1
z2
z3

−1

⊙

y1
y2
y3

 . (9)
These mappings define a multiplication of columns:x1
x2
x3


⊙

y1
y2
y3


=

f ′′′(x1, y1, y2, y3)
f ′′′(x2, y1, y2, y3)
f ′′′(x3, y1, y2, y3)

 . (10)

Thismultiplication of columns form a group ⟨F 3; ⊙ ,−1,


1
0
e∞


⟩which

is sharply 3-transitive.

Proof. Let k1, k2, k3 ∈ M be pairwise distinct elements, and γ ∈

N. By axioms A1 and A2 and the bijective mappings

f1 : M → F , F1 : N →

F
3
,

defined by:

f1(i) = f (i, γ ); F1(α) = (f (k1, α), f (k2, α), f (k3, α)),

we obtain an isomorphic algebra ⟨F ,

F
3
, F; f ′, g⟩, where function f ′

is given by

f ′(x, y, z, t) = f (f −1
1 (x), F−1

1 (y, z, t)).

Now, using the function

f2(x) = f ′(x, 1, 0, e∞),

where 1, 0, e∞ ∈ F and the triple of mappings (f −1
2 , id, id), we

proceed to the isomorphic algebra with function

f ′′(x, y, z, t) = f ′(f −1
2 (x), y, z, t).

Then, using the mapping,

F2(y, z, t) = (f ′′(1, y, z, t), f ′′(0, y, z, t), f ′′(e∞, y, z, t)),

we get the isomorphic algebra ⟨F ,

F
3
, F; f ′′′, g⟩ with function

f ′′′(x, y, z, t) = f ′′(x, F−1
2 (y, z, t)).

Notice that by the construction of this function the following is
true:

f ′′′(1, y, z, t) = x, f ′′′(0, y, z, t) = z,

f ′′′(e∞, y, z, t) = t, f ′′′(x, 1, 0, e∞) = x.
(11)

On the set

F
3
we define an operation by (10). Then the algebra

⟨

F
3
; ⊙⟩, by axioms A1 and A2, is a quasigroup, and due to (11), this

algebra is a loop. To check the associativity of the operation (10),

as in 20 of Theorem 3, we construct a new mapping G :

F
33

→
F
3
, by which we obtain the associativity of the operation. Hence,

⟨

F
3
; ⊙ ,−1,


1
0
e∞


⟩ is a group. This group of transformations of set

F is sharply 3-transitive. �

In order to construct sharply 3-transitive groups, Kerby and
Wefelscheid (1972) defined KT-fields.

Definition 9. An algebraic system ⟨B ∪ {∞}; ·,+ ,−1, ε,−, 1,
0,∞⟩ is a KT-field, if:

1. ⟨B; ·,+ ,−1,−, 1, 0⟩ is a neardomain;
2. ε(1 − ε(x)) = 1 − ε(1 − x) for all x ∈ B \ {1, 0};
3. ε(x) · ε(y) = ε(x · y) for all x ∈ B ∪ {∞}, y ∈ B \ {0}.

KT-fields are linkedwith sharply (up to isomorphisms) 3-transitive
group of transformations of the KT-field.
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In particular, if the KT-field is an expanded field F , then ε(x) =

x−1 is an automorphism. The corresponding sharply 3-transitive
group of transformations is the group of projective transformations
of the expanded field F .

Consequence 4. Any element of the group

F
3
, for x3 ≠ e∞, 0 satis-

fying (11), can be written in the following way:x1
x2
x3


=

ϕ3

x1x−1

3


ϕ3

x2x−1

3


e∞

e∞

0
1

 x1
0
e∞


.

If x3 = 0, thenx1
x2
0


=


ε (x1)
ε (x2)
e∞

 1
e∞

0


,

where mappings

ϕ2, ϕ3, ε : F → F

are defined as follows:

ϕ2(x) = f ′′′(x, 0, 1, e∞), ε(x) = f ′′′(x, 1, e∞, 0),
ϕ3(x) = f ′′′(x, e∞, 0, 1),

where f ′′′ is from the proof of Theorem 4. Then the following is true:

ϕ2εϕ2(x) = εϕ2ε(x) = ϕ3(x); ε2(x) = x.

The automorphism ε of the multiplicative group extends to the whole
set F by setting ε(0) = e∞ and ε(e∞) = 0. In this case, function f ′′′

from the proof of Theorem 4 can be written in the following way:

f ′′′(x, y1, y2, y3)

=


x · (y1 − y2)+ y2, y3 = e∞

ε (x · (ε (y1)− ε (y2))+ ε (y2)) , y3 = 0
ϕ3

x ·

ϕ3

y1y−1

3


− ϕ3


y2y−1

3


+ ϕ3 (y2)


· y3,

y3 ≠ e∞, 0.

(12)

Function g can be written in the following way:

g(x, y1, y2, y3, z1, z2, z3) = f ′′′

x,

z1
z2
z3

−1

⊙

y1
y2
y3

 .
Consequence 5. An equation g(x2, y1, y2, y3, z1, z2, z3) = x1 can
be written in an implicit way (Mikhailichenko, 1972), by setting the
following determinant zero:
x1 x2 x1x2 1
y1 z1 y1z1 1
y2 z2 y2z2 1
y3 z3 y3z3 1

 = 0.

Consequence 6. Definition (12) of the function f ′′′ depends on y3. Let
us define a new multiplicative operation, based on the standard one
as follows: for two singular points the following must be true:

0 · x = 0, e∞ · x = e∞,

for the multiplication from the right we have

x · 0 = ϕ2(x) = f ′′′(x, 0, 1,∞),

x · e∞ = ϕ3(x) = f ′′′(x, e∞, 0, 1)

and

e∞ · 0 = e∞, 0 · e∞ = 0

and

0 · 0 = e∞ · e∞ = 1.
Thus, the operation of taking the inverse, denoted by E : F → F ,
extends to the whole set, i.e., E(x) · x = 1.

If we use this multiplicative operation, then the function f ′′′ can be
written for any y3:

f ′′′(x, y1, y2, y3) = ϕ3

ϕ2

x · ϕ2


ϕ3

y1 · y−1

3


× ϕ2Eϕ3


y2 · y−1

3


· y3.

At the same time the operations of the algebraic system

F; ·, E,

ϕ2, ϕ3, 1, 0, e∞


, will be defined on the whole set F . This is in

marked contrast to the partial algebraic field

F; ·,+ ,−1,−, 1,

0, e∞


, where operations


· ,−1,−


are defined partially. It is easier

for us to work with algebras with no such restrictions.

5. Conclusion

According to the Jordan theorem (Jordan, 1872), among the
finite groups there are no sharply transitive groups with order
exceeding three, except the symmetric, alternating and Mathieu
groups. Among topological groups there are no sharply transitive
groups with order exceeding three (Tits, 1952, 1956). For this
reason, further research should consider the solutions over other
sets B, Mn and should investigate the casesm > 1.

The other interconnection between the algebraic representa-
tion of laws and the measurement theory appears in the results
on M-point homogeneous and N-point unique groups of Alper,
Narens, and Luce (see chapter 20 of Luce, Krantz, Suppes, & Tver-
sky, 1990). In particular, Theorem 5 of Luce (2001), deals with a
sharply 2-transitive group endowed with an order relation (im-
ported from an ordered relational structure). Many-sorted alge-
braic systems with conditions similar to n-point uniqueness, but
without an order relation, are considered for the algebraic rep-
resentation of laws. Three sets of these many-sorted algebraic
systems are powers of one set. Using these many-sorted algebraic
systems we can construct sharply n-transitive groups for n ≤ 3.
Thus, sharply n-transitive groups appear in both approaches.

For the casewhen the set B is a field of real numbersR and func-
tions f and g are continuously differentiable, all possible solutions
were found (Mikhailichenko, 1972). These solutions (up to the lo-
cally invertible change of coordinates λ, χ (see Definition 1) in
manifolds M = Rm,N = Rn and scale transformation ψ(f ) → f )
are:

for m = n ≥ 1:
f (i, α) = x1i ξ

1
α + · · · + xm−1

i ξm−1
α + xmi ξ

m
α ,

f (i1, α1) · · · f (i1, αm+1)
...

. . .
...

f (im+1, α1) · · · f (im+1, αm+1)

 = 0,
(13)



f (i, α) = x1i ξ
1
α + · · · + xm−1

i ξm−1
α + xmi + ξmα ,

0 1 · · · 1
1 f (i1, α1) · · · f (i1, αm+1)
...

...
. . .

...
1 f (im+1, α1) · · · f (im+1, αm+1)

 = 0,
(14)

for m = n − 1 ≥ 2:
f (i, α) = x1i ξ

1
α + · · · + xmi ξ

m
α + ξm+1

α ,
1 f (i1, α1) · · · f (i1, αm+1)
...

...
. . .

...
1 f (im+2, α1) · · · f (im+2, αm+1)

 = 0,
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where ψ is any continuously differentiable function of one vari-
able, with a non-zero derivative (it is also the condition of every-
where nonzero Jacobian in the case of transformations ofmanifolds
M, N).

So, in the case of m = n > 1 there are two and only two non-
equivalent solutions: (13) and (14). In the case ofm = n−1 > 1 the
last solution is the only one. For all other pairs of natural numbers
m and n, with m ≤ n + 2, no solutions exist, except the only one
case (m, n) = (2, 4) (Theorem 4).

References

Ionin, V. K. (1990). Groups as physical structures. In Systemology andmethodological
problems of information-logical systems: vol. 135 (pp. 40–43). Novosibirsk (in
Russian).

Jordan, C. (1872). Recherches sur les substitutions. Journal de Mathématiques Pures
et Appliquées, 17(2), 351–363.

Karni, Edi (1998). The hexagon condition and additive representation for two
dimensions: an algebraic approach. Journal of Mathematical Psychology, 42,
393–399.

Karzel, H. (1965). Inzidenzgruppen I. In Lecture notes by Pieper, I. and Sörensen, K.
(pp. 123–135). University of Hamburg.

Karzel, H. (1968). Zusammenhänge zwischen Fastbereichen, scharf zweifach
transitiven Permutationsgruppen und 2-Strukturen mit Rechtecksaxiom.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg , 32,
191–206.
Kerby, W., & Wefelscheid, H. (1972). Über eine scharf 3-fach transitiven Gruppen
zugeordnete algebraische Struktur. Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg , 37, 225–235.

Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of
measurement (Vol. 1). NY, London: Acad. Press.

Kulakov, Yu. I. (1968). Elements of physical structures theory (additions by
Mikhailichenko G.G.). NSU: Novosibirsk (in Russian).

Kulakov, Yu. I. (1971). A mathematical formulation of the theory of physical
structures. Siberian Mathematical Journal, 125, 822–824.

Kulakov, Yu. I. (1995). Physical foundations of linear algebra and Euclidean
geometry. Gravitation and Cosmology, 1(3), 177–183.

Luce, R. D. (2001). Conditions equivalent to unit representations of ordered
relational structures. Journal of Mathematical Psychology, 45, 81–98.

Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1990). Foundations of
measurement: vol. 3. San Diego: Academic Press.

Mikhailichenko, G. G. (1972). The solution of functional equations in the theory of
physical structures. Soviet Mathematics Doklady, 13(5), 1377–1380.

Simonov, A. A. (2006). Correspondence between near-domains and groups. Algebra
and Logic , 45(2), 139–146.

Taylor, M. A. (1972). Relational Systems with a Thomsen or Reidemeister
cancellation condition. Journal of Mathematical Psychology, 9, 456–458.

Tits, J. (1952). Sur les groupes doublement transitifs continus.Mathematici Helvetici,
26, 203–224.

Tits, J. (1956). Sur les groupes doublement transitifs continus: correction et
complements: correction et compléments.Mathematici Helvetici, 30, 234–240.

Vityaev, E. E. (1985). Numerical, algebraic and constructive representations of
one physical structure. In Computational systems: vol. 107. Logico-mathematical
foundations of problem MOZ (Method of Regularities Determination) (pp. 40–51).
Novosibirsk (in Russian).

http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref1
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref2
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref3
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref4
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref5
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref6
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref7
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref8
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref9
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref10
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref11
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref12
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref13
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref14
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref15
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref16
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref17
http://refhub.elsevier.com/S0022-2496(13)00119-3/sbref18

	On an algebraic definition of laws
	Introduction
	Formalization
	A connection between the algebraic representation of laws of rank (2, 2) and representational measurement theory
	Basic results
	Conclusion
	References


