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In this article we review some generalizations of classical theories of measurement for concatenation 
(e.g., mass or length) and conjoint structures (e.g., momentum of mass-velocity pairs or loudness of 
intensity-frequency pairs). The earlier results on additive representations are briefly surveyed. Gen­
eralizations to nonadditive structures are outlined, and their more complex uniqueness results are 
described. The latter leads to a definition of scale type in terms of the symmetries (automorphisms) 
of the underlying qualitative structure. The major result is that for any measurement onto the real 
numbers, only three possible scale types exist that are both rich in symmetries but not too redundant: 
ratio, interval, and another lying between them. The possible numerical representations for conca­
tenation structures corresponding to these scale types are completely described. The interval scale 
case leads to a generalization of SUbjective expected-utility theory that copes with some empirical 
violations of the classical theory. Partial attempts to axiomatize concatenation structures of these 
three scale types are described. Such structures are of interest because they make clear that there is 
a rich class of nonadditive concatenation and conjoint structures with representations of the same 
scale types as those used in ph)~ics. 

Many scientists and philosophers are well aware of what the 
physicist E. P.· Wigner in 1960 called "the unreasonable effec­
tiveness of mathematics in the natural sciences." Some, like Wig-· 
ner, have remarked on it; a few, like the ancient philosopher 
Pythagoras (c. 582-500 B.c.) have tried to explain it. Today as 
throughout much of history, it is still considered a mystery. There 
is, however, a part of applied mathematical science that is slowly 
chipping away at a portion of the mystery. This subfie1d, usually 
called "measurement theory," focuses on how numbers enter 
into science. Part of the field searches for rules-axioms-that 
allow one to assign numbers to entities in such a way as to capture 
their empirical relations numerically. Another part attempts to 
use such qualitative axioms to understand, to some degree, the 
nature and form of a variety of empirical relations among various 
dimensions. Such relations, when stated numerically, are com­
monly called "laws." In recent times, a few leading mathema­
ticians, philosophers, physicists, statisticians, economists, and 
psychologists have developed new processes for measurement. 
This work has resulted in the detailed mathematical development 
of new structures, has provided scientists with a greater under­
standing of the range of mathematical structures they are likely 
to encounter and .use in their science, and has generated some 
long-lasting controversies that are only now beginning to be re­
solved. For surveys that go into far more technical detail than 
this article, see Krantz, Luce, Suppes, and Tversky (1971, in 
press), Narens (1985), Pfanzagi (1968, 1971), and Roberts (1979). 
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Origins of Measurement Theory 

Empirical Structures for Concatenations 
The origin of modern measurement theory can be traced back 

at least to the investigations in the late 19th century by H. v. 
Helmholtz, the eclectic physician-physicist, into the formal nature 
of certain basic physical attributes, such as mass and length, 
which he recognized as having the same intrinsic mathematical 
structure as the positive real numbers together with addition and 
their natural order <':. We denote tliis system by (Re+, <':, +). 
I n such cases, one can observe a natural empirical ordering re­
lation, ;::, over a set of objects, where the order reflects qualita­
tively the degree or amount of the to-be-measured attribute that 
is exhibited by the objects. One can also find a natural empirical 
operation, 0, that combines any two objects exhibiting the at­
tribute into a composite object that also exhibits the attribute. 
For example, for mass one can use an equal-arm pan balance in 
a vacuum to establish the order. (To he sure, it is rare now to 
order masses in this way, but conceptually such a procedure un­
derlies mass measurement.) When two objects, x andy, are placed 
in separate pans and the balance fails to tilt, they are said to 
exhibit mass to the same degree, that is to be equivalent in mass, 
which is written x - y. Otherwise, the object in the pan that 
drops, say x, is said to have the greater mass, which is written 
x >- y. Placing two objects x and y in the same pan constitutes 
the operation of combining, and the result is denoted x • y. In 
the abstract model, the combining operation goes under the ge­
neric name of concatenation. If we let X denote the set of all 
objects under consideration, including all the combinations that 
can he formed using ., then the potential observations from the 
pan balance yield the mathematical structure % = (X, ;::, 0). We 
call this a qtullitative structure, whereas a possible representing 
structure such as (Re+, :>:, + > is called a numerical (representing) 
structure. 
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One reason for studyjng the abstract nature of such measure­
ment is that the same mathematical system can apply to a wide 
variety of attributes. We have already mentioned that the struc­
tures under consideration serve as a basis for measuring a number 
of the basic physical quantities: mass, length, duration, and 
charge. Less obvious (see below) is that much the same structure 
underlies the measurement of probability. 

Additive Representations 

Helmholtz (1887) stated physically plausible assumptions 
about the structure-assumptions about :::, about ., and about 
their interplay-and showed that when the assumptions are true, 
measurement can be carried out in the following sense: There 
exists a mathematical mapping, 'P, called a homomorphism, from 
X into positive real numbers such that for each x and y in X, (a) 
x ::: y if and only if 'P(x) 2: 'P(Y), and (b) 'P(x • y) = 'P(x) + <p{y). 
We usually say that "under the mapping 'P, the ordering relation 
maps::: into 2: and the qualitative operation. into +." Such 
homomorphisms of % into <Re+, 2:, + > are called additive rep­
resentations. (For a formal statement of the concept of homo­
morphism, see Appendix I.) Equally important, he showed that 
such structure-preserving measures are relatively unique: Any 
two differ only by a numerical mUltiplicative factor, and multi­
plying anyone measure by a positive numerical factor yjelds 
another measure. These facts are often summarized by saying 
the measurement is uniquc once a unit has been selected. The 
more contemporary summary statement is that the set of all 
such homomorphisms forms a ratio scale. I Such a complete de­
scription of the uniqueness of the representation is called a 
uniqueness theorem. 

Axioms for Extensive Quantities 

In 1901 HOlder, a mathematician, published an improved ver­
sion of the theory in which, among other things, he introduced 
the highly important concept of an Archimedean ordered group. 
In this work he made significant use of an axiom, dating back 
to the Greek mathematician Archimedes (d. 212 BC), which 
captures the idea of commensurability within a physical attribute 
by asserting that no object is infinitely larger than another for 
any physical attribute. Archimedes had introduced it, in part, 
to provide a more rigorous basis for the notion of a continuum 
and, in part, to avoid some of the paradoxes described by the 
philosopher Zeno. In our notation this property may be for­
mulated as follows. For the sake of concreteness, consider the 
measurement oflength for a set X of rods for which the ordering 
::: is determined by placing two rods side by side and observing 
which spans the other, and concatenation is determined by plac-

I The term scale is used loosely in the literature and with much am­
biguity and imprecision. Many authors, for example, refer to the usual 
set of representations for length as "a ratio scale for length" and speak 
of "the scale type of length measurement as being ratio" while simulta­
neously referring to individual representations as "scales," as in "the 
meter scale for length." We have chosen to disambiguflte by calling the 
entire set of representations a "scale" and by using the term representation 
for the other use of "scale." Within this usage, concepts like "a ratio scale 
for. . ," and "the scale type of. . ." are sensible and retain their usual 
meanings. 

ing two rods end to end to form another rod. For each rod x, 
find another rod, say x" equivalent (in length) to x. Then find 
a rod~x2 equivalent to XI " x, and another X3 equivalent to X2 • 

x, and so on. The sequence XI, X2, ••. , x. is called a standard 
sequence based on x. The Archimedean axiom asserts that for 
any two rods x and y, there is some member x. of the standard 
sequence based on x that is larger than y. Or put another way, 
every bounded subsequence of a standard sequence is finite. 

In addition to the Archimedean axiom, HOlder assumed 
% = <X, :::, "> satisfies five other properties closely resembling 
the following. 

I. Weak ordering. The relation ::: is transitive (x ::: y and 
y ::: z imply x ::: z for all x, y, z in X) and connected (either 
x ::: y or y ::: x holds for all x, y in X). 

2. Monotonicity. The ordering and operation interlock ln 
such a way that the concatenation of objects preserves the or­
dering; that is, for all x, y, w, z in X, if x ::: y and z ::: w, then 
x. z::: y" w. 

3. Restricted solvability. For each x, y in X, if x >- y, there 
exists some z in X such that x >- y • z. (This together with the 
other axioms implies the existence of arbitrarily small objects.) 

4. Positivity. All objects combine to form something larger 
than either of them alone; that is, for all x, y in X, both 

x • y >- x and x • y >- y. 

5. Associativity If one is combining three or more objects, 
it matters not at all how the grouping by pairs occurs so long as 
their order is maintained; that is, for all x, y, z in X, 

x " (y • z) ~ (x • y) • z, 

An Archimedean structure satisfyjng Properties 1-5 is referred 
to as extensive, and using Holder's method each such structure 
can be shown to have a representation, exactly like Helmholtz's, 
into the ordered set of positive real numbers with addition. 

It should be noted that the axioms are of two quite distinct 
types. Axioms I, 2, 4, 5, and the Archimedean property must 
hold if an additive representation exists, that is, they are necessary 
conditions given the representation. Axiom 3 is said to be struc­
tural because it limits our attention to a subset of structures 
possessing additive representations. 

Refinements: Difference Sequences and 
Partial Operations 

Throughout this century, Holder's axiomatization has been 
refined and generalized. For example, by recasting the Archi­
medean axiom in terms of difference sequences satisfying the 
recursive relation Xi + I • U - Xi • v for some v >- u, Roberts and 
Luce (1968) formulated necessary and sufficient conditions for 
an additive representation, and Narens (1974) showed that the 
Archimedean axiom can be dropped if one is willing to permit 
additive representations into a generalization of the real number 
system called the nonstandard real numbers. A particularly im­
portant modification for measurement was the generalization to 
concatenations that are not necessarily defined for every pair of 
objects (Luce & Marley, 1969). There are at least two good rea­
sons for modifying the theory to deal with such partially defined 
operations. One is that it is usually impractical to concatenate 
arbitrarily large objects-pan balances collapse, and rods con-
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catenate properly only on flat platforms which necessarily are 
bounded. Another is that some important systems are inherently 
bounded from above and do not-even in theory-permit un­
limited concatenation. Qualitative probability is one example. 
Here uncertain events are ordered by a relation of "more likely 
than," and the union of disjoint events is taken to be concaten­
ation, that is, if A and B are events with A n B = 0, then 0 is 
defined to be A 0 B = A U B. Measurement in this situation 
consists in finding a function P from uncertain events into the 
closed unit interval such tltat P preserves the "more likely than" 
relation, and for disjoint A and E, 

peA 0 B) = peA U B) = peA) + PCB). 

In the literature, the term extensive is often applied to the gen­
eralization where not all concatenations are defined as well as 
to closed operations, as in HOlder's original system. 

Nature of Fundamental Measurement 

1940 Commission Report: Only Extensive Measures 

Witlt the successful axiomatization of extensive structures and 
the recognition oftlteir importance for the foundations of physics, 
a curious debate ensued during the 1920s and 30s about what 
else is measurable. Some philosophers of physics--especially 
Campbell (1920, 1928) but also Bridgman (1922, 1931) and later 
Ellis (1966)-expounded the position that measurement from 
first principles is necessarily extensive in character. Campbell 
referred to scales resulting from such measurements as "fun­
damental," all else being "derived." Thus, momentum, density, 
and all other physical measures whose units can be expressed as 
products of powers of the fundamental units of mass, length, 
time, temperature, and charge were treated as derived. Altltough 
these derived measures were clearly a crucial part of tlte total 
measurement structure of physics, especially as formulated in 
dimensional analysis, no very careful analysis was provided of 
tltem. They together with a basis of extensive measures form the 
finite dimensional vector space of physical measures that is rou­
tinely invoked in dimensional analysis. However, this vector space 
was not developed from entirely qualitative observations; rather 
it was postulated as descriptive of the way numerical physical 
measures interlock. Ellis, in particular, clearly understood that 
something more was needed, and altltough he hinted at the so­
lution, he failed to work it out. 

At the same time, psychologists and economists were pursuing 
other approaches to measurement that more or less explicitly 
ran afoul of the dictum that fundamental measurement rests on 
associative, monotonic operations of comhination. The debate 
reached its intellectual nadir with the 1940 Final Report of a 
Commission of the British Association for Advancement of Sci­
ence (Ferguson et a\., 1940) in which a majority declared fun­
damental measurement in psychology to be impossible because 
no such empirical operations could be found. Campbell, a mem­
ber of the Commission and probably a major force in its creation 
8 years earlier, wrote, "Why do not psychologists accept the nat­
ural and obvious conclusion that subjective measurements of 
loudness in numerical terms. . . are mutually inconsistent and 
cannot be the basis of measurement?" 

Stevens's Reply: Scale Type, Not Addition 

Stevens, whose work on loudness measurement witlt Davis in 
1938 was, in part, at issue, was independently considering the 
same question in a series of discussions in the late 1930s with a 
distinguished group of scientists and philosophers: G. D. Birkhoff, 
R. Camap, H. Feigl, C. G. Hempel, and G. Bergmann. Out of 
this arose his now widely accepted position tltat a key feature of 
measurement is not only the empirical structure and its repre­
sentation, but the degree of uniqueness of the representation as 
is reflected in the group of transformations that take one rep­
resentation into another. In contrast to Campbell, Stevens 
claimed tltat the nature of the transformations taking one rep­
resentation into anotlter was the important feature of the rep­
resentation, not the particular details of any axiomatization 
of it. 

In his 1946 and 1951 pUblications Stevens singled out four 
groups of transformations on the real or positive real numbers 
as relevant to measurement: one-to-one, strictly monotonic in­
creasing, affine, and similarity (see Table I). And he introduced 
the corresponding terms of nominal, ordinal. interval, and ratio 
to refer to the families of homomorphisms, or scales, related by 
these groups. Later he added a fifth group, the power group 

Table I 
Measurement Scales 

Transformations of R 

x- /(' 
(k fixed and positive. n 

ranges over integers) 

X---'I rx 
(r ranges over positive reals) 

x -> /('X + s 
(k fixed and positive, n 

ranges over integers, s 
ranges over reals) 

x-> s:x!" 
(k fixed and positive, n 

ranges over integers, s 
ranges over reals) 

X-I'X+S 
(r ranges over positive feals, 

S ranges over reals) 

x -> s);' 
(r and s range over positive 

reals) 

x -> I\x) 
(f ranges over strictly 

increasing functions from 
RontoR 

x -> I\x) 
(f ranges over one-to-one 

functions from R onto R) 

Scale 

Absolute 

Discrete 
ratio 

Ratio 

Discrete 
interval 

Log discrete 
interval 

Interval 

Log interval 

Ordinal 

Nominal 

R 

Re or Re+ 

Re orRe+ 

Re or Re+ 

Re 

Re 

Re or Re+ 

Re or Re+ 

Note. Suppose % = (X, ~, S" ... ,S.) and .'1i = (R, 0>0, R" . .. , 
R.) are relational structures, R = Re or R = Re+, and S is the set of 
representations of % into 'fl.. (8 is called the scale from % into 'fl..) 
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(x -> sx', S > 0, r > 0), applicable only to measurement in the 
positive reals, and he referred to the corresponding scale as log­
interval. As late as 1959 he remarked about this latter scale that 
"apparently it has never been put to use," which as we shall see 
reflects a common misunderstanding of classical physics, which 
in fact is full oflog-interval scales that are conventionally treated 
as ratio scales by making specific choices for the exponents. 

Although these groups of transformations played an important 
role in geometry and physics and seemed to encompass much 
of what was then known about measurement structures, Stevens 
offered no argument as to why these and not others should arise, 
and thus his analysis was more descriptive than analytical. By 
the 1950s it began to be clear that there are measurement struc­
tures that do not fit the scheme. As we shall see below, consid­
erable progress toward understanding this question has been made 
in the past 4 years. 

Having characterized scales by the type of transformation in­
volved, Stevens went on to emphasize that scientific propositions 
(he was especially concerned about statistical ones) formulated 
in terms of measured values must exhibit invariance of meaning 
under the admissible transformations characterizing the scale 
type. As Luce (1978) showed, this concept ofa meaningful prop­
osition was a generalization of the familiar assumption in di­
mensional analysis that physical laws must be dimensionally in­
variant under changes of units. A full understanding of the con­
cept of meaningful scientific proposition still remains a challenge. 
It is by no means clear what the circumstances are for which 
invariance under admissible transformations is an adequate cri­
terion for meaningfulness, nor is it known what other criteria 
should be used when it is not. However, these involved issues are 
a matter for another article (Narens & Luce, in press). 

Stevens's second thrust was to devise an empirical procedure 
for the measurement of subjective scales in psychophysics that 
does not presuppose an associative operation. The method, which 
he dubbed "magnitude estimation," has been moderately widely 
used because it produces quite systematic results. Nevertheless, 
it has proved extremely difficult to defend his assumption that 
the method of magnitude estimation actually results in ratio 
scales. Although he recognized more than anyone else at the 
time the significance of scale type in contrast to the particular 
structures exhibiting it, he seemed not to appreciate that, in fact, 
the concept of scale type is a theoretical one that can only be 
formulated precisely in terms of an explicit axiomatic model of 
an empirical process. He failed to acknowledge that it takes more 
than one's intuitions to establish that a measurement process, 
such as magnitude estimation, leads to a ratio scale. 

Early Alternatives to Extensive Measurement 

At about the same time and continuing through the next two 
decades, others were working on alternative measurement ax­
iomatizations that accorded better with Stevens's view of the 
scope of measurement than with those of the British philosophers 
and physicists. Four of these developments are worth mentioning. 
Beginning as early as HOlder (190 I), difference measurement 
has been axiomatized. Here one has an ordering of pairs of ele­
ments and the representation is as numerical differences or ab­
solute values of differences (e.g., see Krantz et aI., 1971, Chap. 
4). Because these structures are typified by line intervals identified 

by their end points, it is clear that they can readily be reduced 
to extensive measurement, and so they were not really considered 
an important departure from the dictum that fundamental mea­
surement is equivalent to extensive measurement. 

The second was the investigation into structures having an 
operation that is monotonic with respect to the ordering but that 
is neither positive nor associative. In particular, Pfanzagi (1959) 
axiomatized structures that satisfied the condition ofbisymmetry 
[(x 0 y) • (u • v) - (x. u) • (y. v)], which is a generalization of 
associativity. He showed that such structures have a linear rep­
resentation of the form ",,(x. y) = a",,(x) + h<p(y) + C, where a 
and b are positive. When. is also idempotent (x • x - x, for all 
x), then c = 0 and b = I - a and the model is one for any process 
of forming weighted means. An important physical example is 
the temperature that results when two gases of different tem­
peratures are mixed in fixed proportions. In addition, of course, 
averaging is important throughout the social sciences. 

The third development, which was oonceptually closely related 
to this although technically quite different in detail, was the earlier 
axiomatization by Von Neumann and Morgenstern (1947) of 
expected utility. Here the operation was, in essence, a weighting 
with respect to probabilities of a chance event and its oomple­
ment. Strictly speaking, this is a form of derived measurement 
because numbers (probabilities) are involved in the underlying 
structure; however, by the mid-I 950s purely qualitative theories 
were developed, of which the most famous is that of Savage 
(1954). The resulting large literature on this topic has, almost 
without exception, led to interval scale representations of some 
form of averaged utilities. 

Conjoint Measurement 
Perhaps the clearest demonstration of nonextensive structures 

for which interval-scalable, fundamental measurement is possible 
was the creation in the 19608 of the theory of additive conjoint 
measurement. Although the earlier examples had convinced 
many specialists that the scope of fundamental measurement is 
broader than Campbell had alleged, it was only with the intro­
duction of conjoint measurement-with its simple techniques 
and its possible applicability throughout the social sciences as 
well as physics-that this view became widely accepted. A con­
joint structure simply consists of an ordered structure that can 
be factored in a natural way into two (or more) ordered sub­
structures. Typical examples of such structures are: the ordering 
by mass of objects characterized by their volume and density; 
the loudness ordering provided by a person for pairs of sounds, 
one to each ear; and the preference ordering provided by an 
animal for amounts of food at certain delays. 

Observe two things about the above examples. First, the fae­
torizable orderings are very closely related to the concepts of 
trade-offs and indifference curves that are widely used throughout 
science: in each case, the equivalence part of the ordering de­
scribes the trade-off between the factors that maintains at a con­
stant value the amount of the attribute in question, be it mass, 
loudness, or preference. Second, no empirical concatenation op­
eration is involved in a conjoint structure. Yet, as Debreu (1960) 
showed by using a mix of algebraic and topological assumptions 
and as Luce and Tukey (1964) showed using weaker and entirely 
algebraic assumptions, such structures can sometimes be rep­
resented multiplicatively on the positive real numbers. 
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More formally, assume that there are two factors, and let A 
denote the set of elements forming the first one and P those 
forming the second one. Thus, the set A X P, which is composed 
of all ordered pairs (a, p) with a any element in A and p any 
element in P and is called the Cartesian product of A and P, is 
the set of objects under consideration. The set A X P is assumed 
to be ordered by the attribute in question. Let "I'::" denote this 
ordering. For example, if A consists of various possible amounts 
of a food and P consists of the various possible delays in receiving 
the food, then an attribute of interest is the preference of some 
animal (or breed) for various (amount, duration) pairs. Thus 
(a, p) I':: (b, q) in this case means that the amount a at duration 
P is preferred or indifferent to the amount b at duration q. The 
interesting scientific questions are: What properties do we find 
(or expect) ~ to satisfy, and are these such that they lead 
to a nice numerical representation of the data? 

The two most basic assumptions often made about ~ are that 
it is a weak order (see Axioms jor Extensive Quantities and Ap­
pendix 2) and that it exhibits a form of monotonicity that, in 
this context, is called independence. One important consequence 
of independence is that the order ~ induces a unique order on 
each of the factors. What independence says is that if the value 
of one factor is held fixed, then the ordering induced by I':: on 
the other factor does not depend on the value selected for the 
fixed one, or put more formally, for all a and b in A and p and 
q in P, 

(a, p) ~ (b, p) if and only if (a, q) ~ (b, q), 

and 
(a, p) ~ (a, q) if and only if (b, p) ~ (b, q). 

Note that in the first statement, the value from the second factor, 
P, is the same on both sides of an inequality, whereas in the 
second statement the fixed value is from the first factor, A. The 
orderings induced in this fashion on A and P are denoted, re­
spectively, ;:::A and ;:::p and are defined by 

and 

a ~A b if and only if for some (and so for all) p, 

(a, p) ;::: (b, p), 

p ;:::p q if and only if for some (and so for all) a, 

(a, p) t (a, q). 

It is easy to verify that they are weak orders if I':: is. 
On the assumption of weak ordering and independence, the 

next question is under what additional conditions do there exist 
real-valued mappings '/IA on A and '/Ip on P and a function F of 
two real variables that is strictly monotonic in each such that 
for all a and b in A and p and q in P, 

(a, p) ~ (b, q) if and only if 

F[I/IA(a), I/Ip(q)] ;;,; F[I/IA(b), I/Ip(q)]. 

The two '/I functions are, in some sense, measures of the two 
components of the attribute, and F is the rule that describes how 
these measures trade off in measuring the attribute. 

The first case to be studied in detail was the one of interest in 
classical physics, namely, the one for which the '/Is map onto the 

positive real numbers and F displays a multiplicative trade-off 
so that 

(a, p) ~ (b, q) if and only if 

I/IA(a)I/Ip(p) ;;,; I/IA(b)I/IP(q). 

Moreover, the representations form a log-interval scale (see Table 
I), which means that for each positive a and fl, a(>/tApt is an 
equally good representation and any two multiplicative repre­
sentations are so related. 

In psychology and economics a different, but equivalent, rep­
resentation is more usual; it is additive rather than mUltiplicative 
and is defined on all of the real numbers. This representation is 
obtained simply by taking the logarithm of '/IA'/IP in the above 
multiplicative representation. Because of this, in the social sci­
ences the qualitative theory is usually referred to as "additive 
conjoint measurement" (even when a multiplicative represen­
tation is being used), and we follow this practice in the remainder 
of this article. 

Recoding COrUoint Structures as Concatenation Ones 

The proofs of the original conjoint measurement theorems, 
although correct, were not especially informative and, in partic­
ular, failed to make clear that the problem could be reduced 
mathematically (although not empirically) to extensive mea­
surement. This was established first by Krantz (1964), who de­
fined an operation on A X P, and later by Holman (1971), who 
defined an operation on just one component. The latter con­
struction has the advantage of generalizing to nonadditive struc­
tures. Suppose, for the moment, that the structure is sufficiently 
"regular" (e.g., continuous) so that any equation of the form 
(a, p) - (b, q) can be solved for the fourth element when the 
other three are specified. This condition is called unrestricted 
so!yability. Turning to Figure I, fix ao in A and Po in P, and 
consider any a and b in A such that, in terms of ordering I'::A 
induced by t on the A component, a >- A ao and b >-A ao. The 
goal is to find a way to "add" together the "intervals" from ao 
to a and from ao to b. The strategy is to map the ao to b interval 
onto a comparable interval on the second component that begins 
at Po, and then to map the latter interval back onto the first 
factor, but this time with a as its starting point. The map to the 
second factor is achieved by solving for the element called 'II'(b) 
in the equation (ao, 'II'(b» - (b, Po). And the return mapping is 
achieved by solving for the element called a • b in the equation 
(a • b, Po) - (a, 'II'(b». What Holman discovered was that a 
necessary condition for the conjoint structure to be additive is 
for this induced concatenation operation. to be associative. This, 
in turn, is equivalent to the following property, called the Thom­
sen condition, holding throughout the conjoint structure: when­
ever both (a, r) - (c, q) and (c, p) - (b, r) hold, then so does 
(a, p) - (b, q). In essence, this says that the common terms c 
and r cancel out, as is true of the corresponding simple additive 
equations involving real numbers. 

A further condition, an Archimedean one, is also needed in 
order to prove the existence of an additive representation. Ba­
sically that axiom simply says that the induced operation meets 
the usual Archimedean property of extensive measurement, al­
though it can be stated directly in terms of ~ without reference 
to the operation. So, in sum, conditions that are sufficient to 
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construct an additive representation of a conjoint structure are: 
weak ordering, independence, the Thomsen condition, unre­
stricted solvability, and the Archimedean property. What Krantz 
( 1964) and Holman (1971) did was to show that, despite the fact 
that there is no empirical operation visible in an additive conjoint 
structure, the trade-off formulated in that structure can be recast 
as an equivalent associative mathematical operation. This allowed 
the earlier representation theorem for extensive structures to be 
used to prove the existence of an additive conjoint representation. 
This construction is such that it can actually be mimicked in 
practice by constructing standard sequences and using these to 
approximate, within a specified error, the desired measure. In 
the early 1970s such constructions were carried out for loudness 
by Levelt, Riemersma, and Bunt (1972) and by Falmagne (1976). 

Generalizations: Restricted Solvability 
and Nonassociativity 

Since the early I 960s, many variants of extensive and additive 
conjoint measurement have been used by scientists in a number 
of fields. We are not able to go into the details here, but the 
contributions of J.-c. Falmagne, P. C. Fishburn, D. H. Krantz, 
R. D. Luce, F. S. Roberts, P. Suppes, and A. Tversky deserve 

Factor P 

special note, because they repeatedly emphasized the need to 
understand explicitly how measurement arises in science and 
clearly demonstrated its potency in a number of theoretical and 
experimental domains. 

The original theory of additive conjoint measurement and its 
reduction to extensive measurement was quickly seen to be too 
restrictive in two senses. First, in many social science situations 
involving trade-offs-even ones with "continuous" factors-un­
restricted solvability fails to hold. For example, the loudness of 
a pure tone depends both on signal intensity and frequency 
(which is the reason for loudness as well as gain controls on an 
amplifier), but the limits on human hearing are such that it is 
not always possible to match in loudness a given tone by adjusting 
the frequency of another tone of prescribed intensity. (The reasons 
for this have to do with the processing limits of the human ear.) 
What does hold, however, is a form of "restricted solvability," 
which says, for example, that with b in A and p and q in P given, 
then there is an element a in A that solves the equivalent 
(a, p) - (b, q) provided that we know there exist elements a' 
and a" in A such that (a', p) >- (b, q) >- (a", pl. So, for example, 
letting the first component be the intensity of a tone and the 
second its frequency if (b, q) is a given tone, and p is a given 
frequency then the question is whether there is an intensity a so 

Po . ................................................... 

a b aOb 

Factor A 
Figure 1. A graphic depiction orthe solutions 'lr(b) and a • b in a conjoint structure whose components are 
mapped on a continuum. (The solid curves are indifference curves. Various values on factor A are denoted 
I/o, a, b, and a • b, and those on factor P by Po and .. (b». 
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that the tone (a, p) is equal in loudness to (b, q). Although it is 
not always possible to find such an intensity, it is certainly plau­
sible that it exists whenever there are intensities a' and a" so that 
tone (a', p) is louder and the tone (a", p) is less loud than (b, q). 
It turns out, although the argument is more complex, that one 
can still prove the existence of an additive representation with 
restricted solvability substituted for unrestricted solvability (see 
Krantz et aI., 1971, Chap. 6). In terms of Holman's induced 
operation mentioned above, this change of assumption renders 
the operation a partial one, that is, one that is defined only for 
some pairs of elements. Because it is possible to work out a version 
of extensive measurement for partial operations (see Rrjinements: 
Difference Sequences and Partial Operations)-indeed, such is 
necessary to understand probability as fundamental measure­
ment-it is still possible to carry out the construction for the 
conjoint structure. 

Second, the property of additivity, captured in the Thomsen 
condition, does not always hold. Fortunately, Holman's definition 
of an operation, or a partial operation in the case of restricted 
solvability, does not in any way depend on the Thomsen con­
dition. Thus, in general, any conjoint structure gives rise to a 
concatenation structure in which the induced operation satisfies 
monotonicity. Such induced operations are associative in exactly 
those cases in which the Thomsen condition holds. Moreover, 
one can show that a very great variety of nonassociative operations 
arise as induced operations of conjoint structures. This in itself 
was adequate reason to study nonassociative concatenation 
structures, which began in the mid-I 970s. In trying to understand 
the uniqueness of nonassociative representations, a more com­
plete theory of scale types (described in Scale Type: General 
Definition) had to be developed. 

Narens and Luce (1976) showed that any concatenation struc­
ture meeting all of the conditions for an extensive structure except 
for associativity has a numerical representation in terms of some 
nonassociative numerical operation. Their proof was not con­
structive. Rather it rested on the classic result of the mathema­
tician Cantor (1895), to the effect that a totally ordered set X (a 
weakly ordered set in which equivalence is equality) is isomorphic 
to a subset of real numbers under;,; if and only if it includes a 
subset Y comparable to the rational numbers in the sense that 
it is countable (Y can be put in one-to-one correspondence with 
the integers) and order dense in X-which means that for any 
two distinct elements of X it is possible to find at least one element 
from Y that is between them. The key to the proof was to use 
the axioms of the nonassociative structure to show the existence 
of such a countable, dense subset. Since then, Krantz has de­
veloped a constructive proof (Krantz et al., in press). 

At the time, Narens and Luce (1976) were much concerned 
by their failure to characterize fully the family of representa­
tions-the scale. They were able to show that when two homo­
morphisms into the same numerical system agree at a point, 
then under weak conditions they are identical. This result does 
not, however, establish how two different homomorphisms relate. 
That question was resolved by Cohen and Narens (1979) who 
showed that the group of automorphisms of this kind of con­
catenation structure, and so the group of transformations that 
describe its scale type (see Table I), can be ordered in such a 
way that the Archimedean axiom holds. Thus, by what HOlder 
had established, the transformation group is isomorphic to a 

subgroup ofthe multiplicative group of the positive real numbers. 
When the subgroup is actually the entire group, we have what 
Steven~ called a ratio scale. The other subgroups had not been 
previously encountered as measurement scales, but Cohen and 
Narens were able to give numerical examples of each type. We 
return to questions of scale type later (see Scale Type: General 
Definition). 

Distribution of Concatenation Operations 
in Conjoint Structures 

Once it is realized that conjoint measurement, which treats 
those structures Campbell spoke of as "derived," is just as free 
from prior measurement as is extensive measurement, a problem 
arises that understandably went unrecognized by the earlier in­
vestigators. An attribute, such as mass, can be fundamentally 
measured in more than one way. For example, the mass ordering 
of substances, S, and volumes, V, yields a conjoint representation 
!/Is!/lv, which is a measure of mass (Figure 2). At the same time, 
the usual extensive structure of concatenation of masses leads 
to the standard additive measure 'Pm. Obviously, "'s!/lv must be 
an increasing function of 'Pm because both measures preserve 
the mass ordering. Furthermore, hecause volumes can also be 
concatenated, an extensive measure of volume, C('v, also exists, 
and the conjoint measure of volume, !/Iv, is a monotonic in­
creasing function or it. From what is known about physical mea­
surement, a particular !/I8, call it 'Ps, can be chosen so that 
'Pm = 'Ps'Pv. This is the representation that is customarily used 
for this conjoint structure, and the particular substance measure 
'Ps is called the "density" of the substance. Note, however, that 
from the point ofview of conjoint measurement, for each positive 
real", and (3, 0/( 'Ps)~( 'Pv)~ is an equally valid representation, and 
so ('Pst is an equally valid measure of density. Thus by selecting 
the exponent {3 to be I (or equivalently, by identifying !/Iv with 
'Pv), we have by fiat altered what is really a log-interval repre­
sentation density into one that appears to be a ratio scale. (This 
means that in order to force density actually to be a ratio scale, 
more physical structure than the ordering of the density-volume 
pairs is needed,) As we noted earlier, Stevens (1959) failed to 
recognize the use of such conventions when he remarked that 
log-interval scales were scarce. Quite the contrary, they are ex­
ceedingly common, but are often lost sight of by the practice of 
making certain arbitrary choices of exponents. 

The reason why the extensive and con.ioint measures of the 
same attribute are often powers of each other is that the two 
structures are interlocked qualitatively by what are called "laws 
of distribution." In the example above, two such laws hold-one 
between mass and the conjoint structure and the other between 
volume and the conjoint structure. Such laws take the following 
form for an operation on a component: Let <:: he the conjoint 
ordering of A X P, <::A the order induced on the first component, 
and ° A a concatenation operation on A such that <A, <::A, • A> is 
an extensive structure. Following Narens and Luce (1976) and 
Ramsay (1976), we say that '4 is distributive in the conjoint 
structure provided that the following condition holds for all a, 
b, c, d in A and p, q in P: whenever 

(a, p) - (c, q) and (b, p) - (d, q), 
then 

(a 0A b, p) - (c 'A d, q). 
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When the operation is on A X P, a somewhat diffc:rent but equiv­
alent formation is needed. It is not difficult to show that if the 
extensive and conjoint measures ort the A component are related 
by a power function, then this qualitative distribution condition 
must hold. It derives from the usual numerical distribution 

(x + y)z : xz + pz. 

A major obseI-vation of Narens and Luce (1976) was that the 
convene is also true. The dislributive interlock is a qualitative 
condition, which togcthcf' with the propcrtica of extensive and 
additive corUoint structures underlies the entire structure of 
physical dimensions. In fact, Narens (198Ia) cstablished a far 
more general result than the one mentioned above: One need 
not assume that - ,4 is associative; it is sufficient that the structure 
involving the concatenation operation has a ratio scale repre­
sentation (exactly what that entails is described in SMle 'l jme: 
General De/milion and Possible RepresenJlJliOfis o[CONXJ1enaJion 
SlnlClures). Moreover, onc need not assume that the conjoint 
structure has a multiplicative representation, as that follows from 
the other assumptions. 

General Representation Theory 

Representations and Scales 

As the various examples of mcas~ment discus,<;cd above ap­
peared after World War II , it began to be fully appreciated that 

CONTAINERS (Volume.) 

V, v, 

(V,,5,) < (V, ,5,) 

they arc all SPCcial cases of a general method of mcas~ment 
thai has come to be referred 10 as "representational tbeory." 
This view, whose earliest explicit formulations were probabty 
those of Scott and SuPpes ( 1958) and Suppes and Zinncs ( 196]), 
holds thai measurement is possible whenever the following ob­
tains: First, the underlying empirical situation is characterized 
as an ordered relational structure % - (X, t. S! , ... , S ... ). where 
~,S, .... , S" are the p,imiti~'#!S ofthc structure (Appendix I). 
These primitives are empirical relations (including possibly op.. 
ttatioos) on X that characterize the empirical situation under 
consideration. Second, there arc restrictions-axioms-on the 
structure that reflect truths about the empirical situation. These 
are to be considered as putative empirical laws. Third, there is 
specified a numerically based relational structure 'R ." (R, ~, 
R, •... , R1). where R is a subset of the real numbers and the 
HI are relations and operotions of compurable types to the cor­
responding empirical ones. Finolly. the fourth feature, which 
accomplishes measurement, is the proof of the existence of a 
struClure preserving mapping from % into 'fl. We refer to % as 
the empirical or quLllital{I'e structure, :Ii as the representing 
structllre. and the stru(,1urc-preserving mapping as a homo­
morphism ora represenJaJiun. Thecollection of alt homomorph­
isms into the same representing structure is referred to as a scale 
(see Footnote I). 

The basic aim of representational theory is flrst, to use the 
axioms to show that the scale is not the empty set-this is called 

LIQUIDS (Subllance.) 

5, 5, 

(V, ,5,) - (V, ,5,) 

Plgurt 2. A pan ballInce determinatH.lIl orthe mus ordering of vo]wne-5ubswot pairs. 



174 LOUIS NARENS AND R. DUNCAN LUCE 

0----.. ·y,Z 

• X 

A 

Figure 3. Observer B lives on Object 1 and perceives Object 2 as having 
velocity y; whereas observer A perceives Object 1 (and its resident, observer 
B) as having velocity x and Object 2 as having velocity z. (The concate­
nation operation. is defined by x. y = z.) 

the existence or representation theorem-and second, to char­
acterize how these mappings (homomorphisms) that constitute 
the scale relate to one another-this is called the uniqueness 
theorem. In the classical case of extensive measurement, it is 
shown that a nonempty scale exists and is characterized as a 
ratio scale in the sense that <p and <p' are both in the scale if and 
only if there is a positive real constant r such that <p' = "1'. 

It should be realized that the representing structure is not 
itself unique; there always are a variety of alternative ones, and 
different ones are used for different purposes. Velocity provides 
an example of this. Suppose X is a set of constant velocities in 
a given direction that are ordered by the distances traveled in a 
fixed time interval. Concatenation of velocities x and y is the 
velocity that is obtained by superimposing x on y. That is, x • Y 
is the velocity of a body that an observer on another body moving 
at velocity x would judge to have the velocity y. (Figure 3.) In 
classical physics X is taken to be all possible velocities, whereas 
in relativistic physics it is convenient to restrict X to velocities 
less than that oflight. Except for that difference, the two structures 
are assumed to be extensive; however, in their measurement very 
different representations are used. In the classical case the usual 
additive representation is used, but in the relativistic case one 
selects c > 0 to represent the velocity of light and maps 
(X, i::;, 0) into «0, c), <!, EIlc), where EIlc is defined as follows: 
for all u and v in (0, c), 

u+v 
u EB c v = -:----:-:; 

1 - uv/C'- . 

It can be shown that these two numerical representing structures 
are in fact isomorphic, the isomorphism beingj(u) = tanh-1(u/ 
c), u in (0, c). If in the relativistic case • were represented additively, 
the velocity of light would be assigned the value 00. The real 
reason for changing the representation from an additive one is 
not to avoid 00, but rather to maintain the usual relation among 
velocity, distance, and duration, namely, that the former is pro­
portional to distance traversed divided by the duration. 

Homogeneity and Uniqueness 

With the results about nonassociative structures as a stimulus 
and working within the general representational framework, Na­
rens (1981 b) proposed a method for classifying scale types which 
has proved useful in describing the possible representations that 
can arise. Although the two concepts needed, homogeneity and 

uniqueness. are formulated in a rather abstract way, only the 
former seems illusive. So we focus on it both here and in the 
next section. 

Many of the most familiar mathematical structures used in 
science, such as Euclidean space, exhibit the property of being 
homogeneous. Like homogenized milk, each part of the space 
looks like each other part. This is the general intuitive concept: 
Every element in the domain of the structure is, from the point 
of view of the properties defining the structure (its primitives), 
just like every other element. There is no way of singling out an 
individual element as different from the others. To formulate 
this precisely and generally, two things are needed: (a) a very 
general concept of what we mean by a structure, and (b) the 
concept of an automorphism of a structure. The latter permits 
us to say when the structure looks the same from two points of 
view. 

To describe the situation, a very general model of measurement 
is used. First, % = (X, ~, Sb ... , Sn> is a relational structure 
that characterizes the empirical situation in the sense that ~ is 
a total ordering of X (i.e., a weak ordering for which indifference, 
~, is actually equality) and Sb ... , Sn are other empirical re­
lations. Second, :R = (R, <!, R I , ••• , Rn) is the representing 
numerical structure. And third, ~ is a scale for %. In many 
important scientific applications, R is either the real numbers or 
the positive real numbers and the elements of 3 are isomorphisms 
of % onto :R. We assume this situation throughout the rest of 
this article unless stated otherwise. 

An automorphism is simply an isomorphism of a structure 
with itself, that is, a one-tn-one map of the structure with itself 
that preserves all ofthe primitives. Intuitively, an automorphism 
corresponds to what we usually refer to as a symmetry of the 
structure, namely, a mapping ofthe structure so that things look 
the same before and after the mapping is completed. So, for 
example, if the structure is a sphere, we know that it is sym­
metrical in the sense that it looks exactly the same before and 
after any rotation about its center. Thus, for the sphere, rotations 
are automorphisms. The general concept applies, of course, to 
any relational structure. It is easy to verify that for each auto­
morphism ct of% and for each <p in 3, the mapping<p. ct, where 
• denotes function composition [i.e., for x in X, <p • a(x) = 
<p(ll'(x»), is also in 3, and if <P' is also in ~, then a = <p-1 • <p'is 
an automorphism of %. Thus, there is a one-to-one correspon­
dence between the scale ~ and the automorphism group, and so 
a classification of the one is equivalent to a classification of the 
other. The following classification of the automorphism group 
in terms of its richness (called "homogeneity") and of its redun­
dancy (called "uniqueness") has proven to be very useful. The 
structure is said to satisfy l-point homogeneity if and only if for 
each x, y in X, there exists an automorphism a of the structure 
such that ll'(x) = y. This means that the structure exhibits a good 
deal of symmetry, because the automorphisms of a structure 
capture its symmetries. In geometry, this concept is equivalent 
to the concept of" I-transitivity," which has been extended there 
to apply to any M distinct points mapped by a continuous trans­
formation to any other M distinct points of %, in which case it 
is called .oM-transitivity." For measurement, the generalization 
that is relevant is that each set of M ordered elements can be 
mapped by some automorphism into any other set of M com­
parably ordered elements. This latter condition is called M-point 
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homogeneity. For M > 1 it is different from the geometric concept 
of M-transitivity. When a structu~ is M-point homogeneous for 
every positive M, it is said to be oo-point homogeneous. 

It is convenient to abbreviate" I-point homogeneity" just to 
"homogeneity," but we are careful to distinguish clearly other 
values of M-point homogeneity. 

To capture the idea of redundancy in the automorphism group, 
we say that the structure satisfies N-point uniqueness if and only 
if whenever two automorphisms agree at N distinct points, then 
they agree everywhere. If the structure is not N-point unique for 
any finite N, it is said to be oo-point unique. 

Several simple observations: Suppose a structure is infinite, 
M-point homogeneous, and N-point unique. Then M :0; N; if 
M' :0; M, then the structure is M'-point homogeneous and if 
N' ;>c N, then it is N'-point unique. Thus, in particular, all M­
point homogeneous structures, M;>c 1, are I-point homogeneous, 
that is, homogeneous. 

Testing for Homogeneity 

Although homogeneity is a concept about the structure, it is 
in fact usually not obvious how to recast it in terms of qualitative 
properties that can be readily studied empirically. In some cases, 
particularly when there is a primitive binary operation, such 
logical equivalences are known (see Possible Representations of 
Concentration Structures). (It should be mentioned that the proofs 
of such equivalences are usually not easy and generally require 
much mathematical machinery or the use of a nontrivial rep­
resentation-uniqueness result.) Quite often homogeneity need 
not be explicitly stated because it follows as a consequence of a 
representation theorem. For example, in the extensive case for 
which there is a representation onto the positive real numbers, 
I-point homogeneity easily follows from the existence and 
uniqueness results for additive representations. In such cases or 
in ones in which an empirical equivalent is known, homogeneity 
does not pose a serious empirical problem. Yet in many impor­
tant scientific applications no such structural equivalences are 
known; in such cases homogeneity is simply postulated directly 
as a theoretical concept. Nonetheless, because of its power, it is 
often easy to devise simple tests to show that it does not hold 
even though we may not know how to test affirmatively for when 
it does hold. The following is one of the more useful such tests. 
Suppo,;e % = <X, S" ... , Sn) is a relational structure and that 
P is a property (one place relation) about X that is definable from 
the primitives S" ... , Sn using ordinary first-order predicate 
logic. It can be shown that if % is I-point homogeneous, then 
either p(x) is false for every x in X or p(x) is true for every x 
in X. 

Tbe following examples iliustrate its use. Suppose % is a qual­
itative structure for probability (see Refinements: Difference Se­
quences and Partial Operations), and A I:; B stands for "A 
is at ler.st as likely as B." Consider the predicate 

peA): for all B, A I:; B. 

Observe that peA) is true for A = the sure event and false for 
A = the null event. Thus, we know that qualitative probability 
is not homogeneous. This contrasts with the usual extensive 
models for length and mass, which are homogeneous. As a seoond 
example, consider a structure «0, I), R) in which (0, 1) is the 

open interval of real numbers between ° and and R is the 
ternary relation on (0, I) defined by: 

R(x, y, z) if and only if x, y, z are in (0, I) 

and x + y = z. 

Consider the predicate 

P(x): there exists a z such that R(x, x, z). 

Because P(I/3) is true and P(2/3) is false, the structure «0, I), 
R) is not homogeneous. 

As we shall see in the next section, the only other important 
case of finite point homogeneity is 2-point. Unlike I-point ho­
mogeneity, it has proved very difficult to find qualitative equiv­
alences to 2-point homogeneity that are empirically realizable 
and hold across a wide range of interesting structures. So, in 
practice, one either simply postulates it as a theoretical assump­
tion or derives it (usually through a complicated mathematical 
argument) from the particular primitive relations under consid­
eration. As with I-point homogeneity, there are ways to show 
that it fails: (a) Because structures that are 2-point homogeneous 
are also I-point homogeneous (see the end of Homogeneity and 
Uniqueness), the definitional test for I-point homogeneity can 
be invoked. (b) Because a I-point unique structure cannot be 
2-point homogeneous (see the end of Homogeneity and Unique­
ness), it suffices to show the structure is I-point unique, and 
sometimes that is easy to do. (c) As we describe in Possible Rep­
resentations of Concatenation Structures, the special case of a 
2-point homogeneous structure with a primitive monotonic op­
eration necessarily has a very restrictive form of numerical rep­
resentation, and it may be possible to show by empirical tests 
that such a representation is simply too restrictive to model the 
empirical situation. 

Scale Type: General Definition 

Recall that in infinite structures, there is a largest value, K, of 
homogeneity and a smallest value, L, of uniqueness. These are 
referred to, respectively, as the degree of homogeneity and 
uniqueness. This pair of numbers, (K, L), is useful for classifying 
the type of scale exhibited by a structure; it is called the scale 
type. 

It is easy to verify that if S is a ratio scale, then S is of type 
(1, I); if S is an interval scale, then S is of type (2, 2); and if S 
is an ordinal scale, then S is of type (00, (0). Narens (l98Ia, 
1981b) established the following converse of these observations. 
Suppose a structure has a representation onto the real numbers. 
If its scale is of type (1, I), then a representing structure can be 
found such that its representations form a ratio scale; and if the 
scale is of type (2, 2), then it has a representing structure such 
that its representations form an interval scale. In addition, he 
showed that it is impossible for the scale to be of type (M, M) 
for 2 < M < 00. There are (00, (0) cases that do not have ordinal 
scale representations; however, this does not much matter because 
the oo-point homogeneous cases-including the ordinal scalable 
ones-simply do not arise in empirical situations for which there 
is a reasonable amount of structure. Alper (1984, 1985) has 
shown that the only cases of structures with representations onto 
the positive real numbers and of scale type (K, L) with ° < K < 
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L and I ,,;; L < 00, are the ones in which K = 1 and L = 2, and 
in that case a discrete interval scale (Table I) exists. These results 
give considerable insights into why so few scale types have arisen 
in the development of the sciences. 

The whole issue of how intelligently to classify structures with 
either K = 0 or L = 00 is wide open. 

Possible Representations of Concatenation Structures 

For the important and widely applicable case of concatenation 
structures of the form % = <X, <::, 0), where <:: is a weak ordering 
on X and • is a binary operation on X, comparable results to 
those given for general structures hold without the assumption 
that % can be mapped onto the real or positive real numbers. 
Luce and Narens (1983, 1985) have shown that if such a con­
catenation structure is of scale type (K, L) with K > 0 and L < 
00, then only types (I, I), (I, 2), and (2,2) can occur. The latter 
two necessarily are idempotent, and the (1, I) type is either 
idempotent, weakly positive (x 0 x >- x, for all x), or weakly 
negative (x 0 x -< x, for all x). An important sufficient condition 
for L to be finite is that the structure have a representation onto 
the positive real numbers for which the numerical operation is 
continuous. Continuity of an operation is usually judged to be 
an acceptable scientific idealization. For these three scale types, 
it is desirable to describe all possible candidate numerical rep­
resenting structures. So, using Narens's (198 la, 1981b) results, 
it suffices to consider concatenation structures on the positive 
reals with ratio, log-interval, or log-discrete interval scales (Table 
I). Suppose that e denotes the representing operation. Luce and 
Narens (1985), extending the results of Cohen and Narens (1979), 
have shown that in all these cases there exists a function f from 
the positive real numbers into itself such thatfis strictly increas­
ing, f(x)jx is strictly decreasing, and the operation is given by 

x €a Y = yj(x/y). 

It is worth noting that the only cases in which the above­
mentioned homogeneous structure can be positive (x 0 y >- x, 
x 0 y >- y) or negative (x 0 y -< x, x 0 y -< y) are the (I, I) ones 
with f( I) + I. All the remaining structures are intensive in the 
sense that x • x - x and if x >- y, then x >- x 0 y >- y. (Formal 
properties of concatenation structures are summarized in Ap­
pendix 3.) Clearly, the above operation e is invariant under ratio 
scale transformations. The (I, 2) and (2, 2) cases simply impose 
additional restrictions on f. For example, consider the equation 
such that for all x > 0, 

[(x") = [(x)". 

The (I, I) case is characterized by the equation holding if and 
only if p = I; the (I, 2) case by its holding if and only if for some 
fixed k> 0 and variable integer n, p = k"; and the (2, 2) case by 
its holding for all p > O. In this situation, the (2, 2) case is equiv­
alent to the existence of constants c, d, 0 < c, d < I such that 

{ 

xCyl-C, if x >- y, 

x €a y = x, if x - y, 

Xdyl-d if x -< y. 

The last representation, called the dual bilinear representation, 
shows that the (2, 2) case is highly restrictive, and that all (2, 2) 

operations are nothing more than two pieces of two bisymmetric 
operations. 

So far as we know, the dual bilinear representation, except for 
c = d, has not arisen in physics, but recently Luce and Narens 
(1985) have used it to formulate a generalized theory of expected 
utility, which appears to overcome a number of the empirical 
disconfirmations of the classical theories of the subject. This is 
described in the next section. 

Before turning to that, we consider two further questions: ax­
iomatization of general concatenation structures and conditions 
equivalent to homogeneity. Narens and Luce (1976) showed that 
concatenation structures satisfying all of the axioms of extensive 
structures except possibly associativity had a numerical repre­
sentation. Such structures, called PCSs, play an important role 
in measurement theory. Luce and Narens (1985) have provided 
a comparable axiomatization for general intensive structures. 
Much is known about axiomatizing homogeneity for concaten­
ation structures. First, on the assumption of a representation 
onto the real numbers, certain basic algebraic properties such as 
associativity, bisymmetry, and right autodistributity [(x. y) 0 

z - (x 0 z) 0 (y 0 z)] all force homogeneity to hold.' Second, for 
a wide variety of PCSs, homogeneity is equivalent to the following 
structural condition: For all elements x and y and all positive 
integers n, 

(x. yin = Xn 0 Yn, 

where x" denotes the nth element of a standard sequence based 
on x (see Axioms for Extensive Quantities). Luce (1986) has 
shown that a closely related, although perhaps less useful, cri­
terion exists for homogeneity in intensive structures. The third 
method for establishing homogeneity is to axiomatize directly 
all concatenation structures of a given type. For the (2, 2) case 
this is equivalent to axiomatizing the dual bilinear representa­
tions, which was done in Luce (1986). 

These techniques for characterizing concatenation structures 
by scale type can, of course, be extended to nonadditive conjoint 
structures, as Luce and Cohen (1983) showed; however, matters 
are a bit more complex than one might first anticipate. In par­
ticular, automorphisms of the conjoint structure need not always 
factor into automorphisms ofthe orderings induced on the com­
ponents, and even when they do the scale types are not usually 
the same. We do not go into these complex details here. 

Dual Bilinear Utility 

A theory of preferences among gambles can be based on the 
idea that gambles can be "concatenated" in a special way to 
form other gambles, and that rationality considerations need be 
applied only to the simplest concatenations of gambles with 
gambles (Luce & Narens, 1985). When rationality considerations 
are more broadly invoked, even marginally, this theory reduces 
to the usual subjective expected utility model used throughout 
the social sciences. 

2 It is worth noting that many times when an axiom is added to a 
general concatenation structure that has a numerical representation, it 
can be formulated numerically as a functional equation. In some cases, 
solutions are available in the literature; a good starting point for finding 
such solutions is Aczel (1966). 
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More specifically, suppose x and yare gambles and A is an 
event. Then x 0A y denotes the gamble in which x is the outcome 
when A occurs and y when A fails to occur. It is assumed that 
there is a preference ordering t over gambles. The Luce and 
Narens model ends up with a utility function U over the gambles 
(i.e., a real-valued function such that gl t g2 if and only if 
Ulg.] ;;,; Ulg2]) and two weighting functions, S+ and S-, defined 
over events such that 

U(x °A y) 

{

U(X)S+(A) + U(y)[l - S+(A)], if U(x) > U(y), 

= U(x), if U(x) = U(y), 

U(x)S-(A) + U(y)[l - S-(A)], if U(x) < U(y). 

The weighting functions, S+ and S-, need not be probability 
functions. This model is called the dwi bilinear utility model. 
The standard subjective expected utility model (SEU) arises when 
S+ = S- = a (finitely additive) probability measure over the set 
of events (see Fishburn, 1981, for a detailed summary ofSEU). 
The dual bilinear model may seem a little artificial at first. How­
ever, it follows from an almost universally used assumption about 
utility functions, namely, that the representations of an individ­
ual's utility function over gambles form an interval scale, together 
with some very natural and weak assumptions about 0A and t. 

An additional reason for considering the dual bilinear model 
is that it is weaker than the SEU model, and there is an abundance 
of empirical data showing that SEU fails to describe behavior. 
A summary of many of the problems was given by Kahneman 
and Tversky (1979). Basically, the failures are concerned with 
three types of "rationality." The first is transitivity of preference, 
which has been shown to fail under some circumstances by Lich­
tenstein and Slovic (1971, 1973) and Grether and Plott (1979). 
No model, such as the present one, which associates utility with 
gambles can account for this. The second type of failure has to 
do with what Luce and Narens call "accounting equations" and 
Kahneman and Tversky refer to as the "framing" of gambles. 
An example of an accounting equation that is implied by the 
dual bilinear model is 

where A and B are independent events, such as A is an even 
number corning up on a roll of a die and B is a red number 
coming up on a turn of a roulette wheel. Observe that x is the 
outcome on both sides if in independent realizations of the events 
both A and B occur, in that order on the left and in the opposite 
order on the right. An example of another accounting equation 
is 

where successive 0A mean independent realizations of the event 
A (e.g., the first "A" refers to an even number coming up on a 
roll of a die, the second "A" as an even number coming up on 
a different roll of the same die, etc.). This holds in the bilinear 
model if and only if S+ = S-, which is true for SEU but not in 
general for the dual bilinear model. The earliest discussion of 
failures of accounting equations was by Allais (1953; see also 
Allais & Hagen, 1979). A third type offailure is also one of the 
accounting type, but it is more subtle because it involves a kind 

of monotonicity of events. Suppose C is an event that is disjoint 
from events A and B, then the assertion is 

X "A Y ;:: X "8 Y if and only if x "AUC y t X "BUC y. 

In essence, then, the pair of gambles on the right is obtainable 
from the pair on the left by shifting the assignment of outcomes 
over C and y to x. Ellsberg (1961) pointed out that this often 
fails for people's preferences, and this has been repeatedly con­
firmed. In the dual bilinear model, this equivalence holds if and 
only if the two weights exhibit the property that for C disjoint 
from A and B, 

Si(A) ;0,; Si(B) if and only if 

SiCA U C) 2 Si(B U C), i = + or -. 

This is true of the SEU model because of the Ss are probabilities 
and so SiCA U C) = SiCA) + Si(C). The basic distinction between 
the two types of accounting equations has to do with forcing the 
two weights to be identical in one case and to be probability 
functions in the other. 

It should be noted that this model is in many ways similar to 
and more completely specified than the prospect theory of 
Kahneman and Tversky (1979), as was discussed in some detail 
in Luce and Narens (1985). As yet, no empirical studies have 
been reported that are targeted directly at the dual bilinear model. 

Conclusions 

In summary, a great deal is now known about the scales for 
inherently symmetrical, one-dimensional attributes and about 
how they interlock to form the systematic structure of multidi­
mensional physical quantities. Perhaps the major milestones of 
the past 25 years are these: First, the development of conjoint 
structures, which not only provided a deep measurement analysis 
of the numerous nonextensive, "derived" structures of physics, 
but also provided a measurement approach that appears to have 
applications in the nonphysical sciences and has laid to rest the 
claim that the only possible basis for measurement is extensive 
structures. Second, the development of the distributive interlock 
between ratio scale concatenation structures and conjoint struc­
tures, which serves to explain why physiCal measures are all in­
terlocked as products of powers of a few ratio scales. Third, the 
growing recognition of the importance of automorphism groups 
in classifying measurement structures, and the explicit definition 
of scale type in terms of degree of homogeneity and degree of 
uniqueness. Fourth, the application of that classification to or­
dered structures with a concatenation operation and to conjoint 
structures, thereby providing a complete catalogue for these sit­
uations of the possible representing structures for the homoge­
neous cases. 

A number of important problems remain unresolved. For one, 
we do not have an adequate axiomatization of the general class 
of homogeneous intensive structures except for the interval scal­
able ones. Second, we do not have comparable results for non­
homogeneous structures, even ones witb concatenation opera­
tions. This is not an esoteric question because any totally ordered 
structure with a partial operation-such as probability when 
looked at the right way-has only one automorphism, the identity 
map. Thus, in such cases the automorphism group fails to em-
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body any structural information. Nevertheless, despite their lack 
of global symmetry, such structures often appear to be quite 
regular in other aspects, and this needs to be captured in some 
fashion and studied. Third, there are some important cases of 
interlocking concatenation and conjoint structures that are not 
covered by the distribution results mentioned, perhaps the most 
striking example being relativistic velocity as a component of 
the distance conjoint structure with time as the other component. 
Because many psychological attributes appear to be bounded, 
understanding this physical case may be more pertinent than it 
first might seem. 
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Appendix I 

Some Structure Preserving Concepts 

x ~ (X, so, s" ... ,S.) is said to be a relational structure if and only 
if X is a nonempty set and So, S" .•. , S. are relations or operations 
onX. 

'" is said to be a homomorphism of the relational structure X = (X, 
So, SI •... , S".) into the relational structure .n = (R, Ro. R", .. , Rn) 
if and only if", is a function from X into R, for k = 0, ... , n, S. and Rk 
have the same number, ik, of arguments, and for all x" ... , x" in X, 

Six!' ... ,Xi.) if and only if Rk[r,o(Xj), ... , r,o(Xik)]' 
if Sk is a relation, and 

r,o[SiXj, •.. , XiJ] = R,Jc,o(Xj), ... , r,o(Xik)] 

if Sk is an operation. If R is a subset of reals and Ro is the usual ordering, 
2, of the reals (restricted to R), then in measurement theory homo­
morphisms of X into :Ii are called representations. 

'" is said to be an isomorphism of X onto :Ii if and only if '" is a 
homomorphism of% into :Ji, <p is onto :Ji, and f(J is a one-to-one function. 

<{! is said to be an automorphism of X if and only if", is an isomorphism 
of X onto itself. 

The set of automorphisms, G, of a relational structure X is closed 
under the operation of composing functions, •. (a • i3 is defined by 
" • (3(x) = a[{3(x)].) It is easy to show that (G, .) is a group. (G, .) is 
called the automorphism group of %. 

Appendix 2 

Some Concepts About Conjoint Structures 

Let ;: be a binary relation on the Cartesian product A X P and 13 = 

(A X P, ;:). 
13 is said to be a conjoint structure if and only if the following two 

conditions are satisfied. (a) Weak ordering: ;: is transitive and connected. 

(b) Independence: For all a, b in A, if for some p in P (a, p) ;: (b, p), then 

for all q in P (a, q) ;: (b, q); and for all p, q in P, if for some a in A 

(a, p) ;: (a, q), then for all b in A (b, p) ;: (b, q). 

Suppose 13 is a conjoint structure. Define ;:A on A as follows: For all 

a, b in A, a ;:A b if and only if for some p in P (a, p) ;: (a, q). It is easy 

to show that ;:A is a weak ordering of A. Similarly, a weak ordering ;:p 
can be defined on P. 

13 is said to satisfy (unrestricted) solvability if and only if for all a, b 
in A and p, q in P, there exist c in A and r in P such that (c, p) - (b, q) 

and (a, r) - (b, q). 
13 is said to satisfy restricted solvability if and only if for all a', a", and 

binAandp, qin P, 

if (a', p) <:: (b, q) <:: (a", p), 

then for some a in A (a, p) - (b, q); 

and for all a, b in A and p', p', and q in P, 

if (a, p') <:: (b, q) <:: (a, p"), 

then for some pin P (a, p) - (b, q). 

(Appendixes continue on next page) 
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Appendix 3 

Some Concepts About Concatenation Structures 

Let % ; <x. ?:, .). where?: is a binary relation on X and 0 is a binary 
operation on X. 

% is said to be a concatenation structure if and only if ?: is a total 

ordering and 0 is strictly monotonic. that is. x ?: y if and only if x • z ?: 

y. z if and only ifz. x?: z. y for all x, y. and z in X. 
% is said to be a weakly ordered concatenation structure if and only if 

t is a weak ordering (i.e., a transitive and connected relation) and 0 is 
strictly montonic. 

% is said to be positive if and only if x 0 y >- x and x 0 y >- y for all 
x.yinX. 

% is said to be idempotent if and only if x 0 x ~ x for all x in X. 

% is said to be intern if and only if x >- y implies that x >- x 0 y >- y 

and x >- yox >- x. 
% is said to be intensive if and only if it is idempotent and intern. 
o is said to be bisymmetr;c if and only if (x 0 y) 0 (u 0 v) ~ (x • u) 0 

(y. v) for all x. Yo u. and v in X. 
Note that "averaging" operations $. on the real numbers of the form 

r$.s; ar + (I - a)s, where 0 < a < I, are intensive and bisymmetric. 
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