Dedekind Completeness & Denumerability

Let $\mathfrak{X} = \langle X \preceq \rangle$ be a totally ordered set. Then \mathfrak{X} is said to be **Dedekind complete** if and only if for each nonempty subset Z of X, there exists an element a in X, called the **supremuim of** Z (in X), or sup Z for short, such that

(i) $z \leq a$ for for all z in Z, and

(ii) if b in X is such that $z \leq b$ for for all z in Z, then b = a.

A set Y is said to be **denumerable** if and only if there exists a one-to-one function f from \mathbb{I}^+ onto Y.

Let $\langle X, \preceq \rangle$ be a totally ordered set and f a function from a subset Y of X into X. Then f is said to be \preceq -strictly increasing if and only if for all x and y in X, if $x \prec y$ then $f(x) \prec f(y)$.

Continuum

 $\langle X, \preceq \rangle$ is said to be a **continuum** if and only if the following four statements are true:

- 1. **Total ordering**: \leq is a total ordering on X.
- 2. **Unboundedness**: $\langle X, \preceq \rangle$ has no \preceq -greatest or \preceq -least element.
- Denumerable density: There exists a denumerable subset Y of X such that for each x and z in X, if x ≺ z then there exists y in Y such that x ≺ y and y ≺ z.
- 4. **Dedekind completeness**: $\langle X, \preceq \rangle$ Dedekind complete.

Theorem (Cantor 1895): (existence) $\mathfrak{X} = \langle X, \preceq \rangle$ is a continuum if and only if \mathfrak{X} isomorphic to $\langle \mathbb{R}^+, \leq \rangle$.

Theorem: (uniqueness) Let $\mathfrak{X} = \langle X, \preceq \rangle$ be a continuum and \mathcal{F} be the set of isomorphisms of \mathfrak{X} onto $\langle \mathbb{R}^+, \leq \rangle$. Then for each f in \mathcal{F} $\mathcal{F} = \{g * f \mid g \text{ is a strictly increasing function}$ from \mathbb{R}^+ onto $\mathbb{R}^+\}$. Let Y be a nonempty set. A scale family (or *scale*) on Y is a nonempty set of functions from Y onto a subset of \mathbb{R} .

Let \mathcal{F} be a scale family on Y. Then the elements of \mathcal{F} are called **measuring functions.**

Some Scale Types

 $\mathcal{F} \text{ is said to be a ratio scale if and only if}$ (1) \mathcal{F} is a scale family, and (2) for any f in \mathcal{F} , $\mathcal{F} = \{ rf \mid r \in \mathbb{R}^+ \}.$

 \mathcal{F} is said to be an **interval scale** if and only if (1) \mathcal{F} is a scale family, and (2) for any f in \mathcal{F} ,

$$\mathcal{F} = \{ rf + s \, | \, r \in \mathbb{R}^+ \& s \in \mathbb{R} \}.$$

 ${\mathcal F}$ is said to be an ${\rm ordinal\ scale}$ if and only if

- (1) \mathcal{F} is a scale family, and
- (2) for any f in \mathcal{F} , $\mathcal{F} = \{g * f | g \text{ is a strictly increasing function from } \mathbb{R}^+$ onto \mathbb{R}^+ }.

Narens & Luce (1976)

Extend the modern representational approach by replacing extensive structures with structures of the form $\langle X, \preceq, \oplus \rangle$ satisfying the same axioms as extensive structures, except possibly *associativity*. Such structures are called **PCSs** (with a partial **operation**), or just **PCS**s when the operation is closed.

In particular, Narens & Luce showed that the major results of *Foundations of Measurement, Vol. 1* could be generalized using PCSs with partial or closed operations in place of extensive structures.

Existence & Uniqueness of Representations

$$\mathfrak{X} = \langle X, \preceq, \oplus \rangle$$
 is a PCS.

Narens & Luce's formulation of PCSs with partial or closed operations used the following axiom: half elements: for each x there exists y such that $y \oplus y = x$.

With half-elements they showed that there exist a structure $\mathfrak{N} = \langle R, \leq, \oplus \rangle$, $R \subseteq \mathbb{R}^+$, such that

- (existence) there exists an isomorphism from $\mathfrak X$ onto $\mathfrak N$, and
- (uniqueness) for all isomorphisms φ and ψ from \mathfrak{X} onto \mathfrak{N} , if for some *a* in *X*, $\varphi(a) = \psi(a)$, then $\varphi = \psi$.

Symmetries of PCSs

 $\mathfrak{X} = \langle X, \leq, \oplus \rangle$ is a PCS with a partial or closed operation. Then α is said to be a **symmetry** of \mathfrak{X} if and only if α is a function from X onto itself such that for all x and y in X,

$$x \preceq y$$
 iff $\alpha(x) \preceq \alpha(y)$

and

$$\alpha(x\oplus y)=\alpha(x)\oplus\alpha(y).$$

 \mathfrak{X} is said to be **homogeneous** if and only if for all *a* and *b* in *X*, there exists a symmetry α of \mathfrak{X} such that $\alpha(a) = b$.

Cohen & Narens (1979)

Cohen: Half-elements not needed. His method of proof used **symmetries**.

Narens: Homogeneous PCSs are ratio scalable.

A PCS $\mathfrak{X} = \langle X, \preceq, \oplus \rangle$ is said to be **homogeneous** if and only if for each x and y in X there exists a symmetry α of \mathfrak{X} such that

$$\alpha(\mathbf{x})=\mathbf{y}\,.$$

n-copy operator

 $\mathfrak{X} = \langle X, \preceq, \oplus \rangle$ is a PCS.

Let 1x = x and for each positive integer *n*, let $(n+1)x = (nx) \oplus x$. *nx* is called the *n*-copy operator of \mathfrak{X} .

Theorem The following two statements are equivalent:

1. \mathfrak{X} is homogeneous.

2. For each positive integer *n*, the *n*-copy operator is a symmetry of \mathfrak{X} .

Examples of PCSs

(1) $\langle \mathbb{R}^+, \leq, + \rangle$.

(2) $\langle \mathbb{R}^+, \leq, \oplus_1 \rangle$, where $r \oplus_1 s = r + s + r^{\frac{1}{3}} s^{\frac{2}{3}}$.

(3) $\langle \mathbb{R}^+, \leq, \oplus_2 \rangle$, where $r \oplus_1 s = r + s + r^2 s^2$. (1) and (2) are homogeneous with multiplications by positives reals as their symmetries.

(3) has the identity as its only symmetry.

Unit Representations

Theorem Suppose $\mathfrak{X} = \langle X, \preceq, \oplus \rangle$ a homogeneous PCS, $R \subseteq \mathbb{R}^+$, and φ is an isomorphism of $\langle X, \preceq, \oplus \rangle$ onto $\langle R, \leq, \odot \rangle$. Then the following two statements hold:

1. **Unit Representation**: There exists a function on *R* such that for all *r* and *s* in *R*,

$$r \odot s = s \cdot f\left(\frac{r}{s}\right)$$
.

2. $\langle X, \preceq, \oplus \rangle$ is an extensive structure if and only if f(x) = 1 + x.

PCSs with unit representations produce ratio scale representations and they can be used to generalize extensive measurement and its uses.

Narens (1981a)

(1) Generalized the Cohen & Narens to arbitrary qualitative structures

$$\mathfrak{X} = \langle X, R_1, \dots, R_i \rangle$$

to produce an even more general theory of ratio scale measurement.

(2) Developed a general theory for derived measurement scales for functions of several ratio scalable variables.

Extended Narens (1981a) to situations involving interval scalable structures, e.g., structures isomorphic to

$$\langle \mathbb{R}, \leq, \oplus
angle, \, \, ext{where} \, \, r \oplus s = rac{r+s}{2} \, .$$

(If an interval scalable structure is properly measurable by φ , then all other proper measures are of the form $r\varphi + s$, where r > 0 and s is real.)

Synthesized, reformulated, and extended the results of the previous mentioned articles concerning PCSs and its generalizations.

Applied the theory to utility theory, and provided a measurement-theoretic formulation of rank dependent utility theory for two outcome gambles.

Luce (2000) Utility of Gains and Losses