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Several Unresolved Conceptual Problems of Mathematical Psychology

R. Duncan Luce

University of California, Irvine

This article is a personal commentary on the following, to my mind,
unresolved issues of mathematical psychology: (1) the failure of the
field to have become a fully accepted part of most departments of
psychology; (2) the great difficulty we have in studying dynamic
mechanisms, e.g., learning, because large samples are difficult to obtain:
time samples wipe out the phenomena and subject samples are
unrepresentative because of profound and ill understood individual
differences; (3) the failure to unify successfully statistical and measure-
ment theories which, I believe, are two facets of a common problem;
(4) the proliferation of free parameters in many types of theories with
little success in developing theories of such parameters; (5) the
difficulties we have had in successfully formulating the mathematics
of uncertainty and vagueness; and (6) the issues of modeling what
are presumably discrete attributes and phenomena by continuous
mathematics: when and how is this justified? ] 1997 Academic Press

INTRODUCTION

For the 1995 meeting of the European Mathematical
Psychology Group in Regensberg, Germany, Professor Jan
Dro� sler urged me to assume the role of an elder statesman
��a role which, aside from the elderly part, does not come
very naturally. Indeed, his initial suggestion was that I
propose an agenda for mathematical psychology for the
coming decades. His models for my talk were Felix Klein's
Erlangen program for geometry and�or David Hilbert's
famous list of problems for mathematics. Being neither of
the caliber of Klein or Hilbert nor concerned with pure
mathematics, that tack did not strike me as viable. So, instead,
I spoke on a research topic which was then occupying my
attention, namely, the conditions that cause several different
ways of measuring utility all to agree (Luce, 1996).
Nevertheless, Dro� sler continued to urge that my written
paper be of a more general nature, and I have succumbed to
his blandishments. But rather than recommend or (mis)
predict the future of the field, I have opted to speak of some
of my disappointments with the mathematical psychology
of my era. Of course, such disappointments do not form a
particularly coherent package, and so this paper necessarily
has a somewhat disjointed quality, passing from one issue to

another with little by way of transition. Moreover, the
topics do not seem to have a natural order, so I have
organized them��and even this judgment is debatable��
from what seems to me the more to the less general.

LIMITED ACCEPTANCE BY PSYCHOLOGISTS

On entering the field 45 years ago I anticipated that as
mathematical psychology developed, it would increasingly
be incorporated into the intellectual life of departments of
psychology. In the United States, that has not happened to
any great extent. There are enclaves of strength such as
those at Indiana, Irvine, Purdue, and Stanford plus several
other departments with considerable strength in psycho-
metrics, but most have at most one such person, usually
hired to teach statistics. Departments typically make very
limited mathematical demands on graduate students; a
mathematical psychologist certainly is ill advised to give
general colloquia that strongly emphasize mathematical
theory; and our few mathematically sophisticated Ph.D.s
often have difficulty finding suitable positions. Aside from
those few departments with a focus on mathematical psy-
chology or psychometrics, the only other exception to these
remarks is another small set of departments that strongly
emphasize vision and�or audition, where techniques of
complex analysis are taken for granted.

One odd aspect of all this is that some individuals central
to mathematical psychology��e.g., Atkinson, Estes, Shiffrin,
Simon, Sperling, Suppes, and myself��have received con-
siderable individual acclaim such as membership in the
National Academy of Sciences. The field itself seems to be
respected without being incorporated into the everyday life
of psychology. One evidence for this is that the size of the
Society for Mathematical Psychology has not grown over
the years, certainly not in proportion to psychology as a
whole or as much as certain specialty areas, such as
neurosciences. This measure may, however, be misleading
because a number of people developing mathematical
models (including many of my colleagues) prefer to attend
only meetings of substantive subfields.

What underlies this limited incorporation of mathemati-
cal psychology? I suspect that many people will argue that
the field lacks many communicable findings, but I don't
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really think that position is easily defended unless one
prefixes ``communicable'' by ``easily.'' To my mind, three
other reasons are far more significant. First, the mathemati-
cal level needed to do serious work has often turned out to
be beyond and different from what can be obtained from a
few lower division mathematics courses, in particular the
standard calculus and linear algebra sequence. A second
reason is the computer, which has made it relatively easy to
simulate quite complex interactive systems. For many, it is
clearly simpler and more agreeable to program than it is to
study processes mathematically. Do not misunderstand;
I am not a contemporary Luddite vainly trying to ban the
computer, for it has clearly provided us with enormous
power to augment what we can do experimentally and
theoretically. Simulations, however, simply do not sub-
stitute for mathematical formulations and analysis,
especially when one is trying to formulate the basic science
rather than to work out the implications of well-accepted
laws. One should not forget that most of the physics on
which modern technology is based was developed long
before modern computers. A third reason is the failure,
especially in the United States, of the psychometric and
mathematical modeling communities to form a strong
intellectual alliance. Both groups have exhibited considerable
mutual disdain.

Psychology contrasts sharply with economics, where it is
routine for a substantial cadre of advanced researchers to
know and to use considerable (classical) mathematics that
is taught to many undergraduates. Moreover, mathematical
economics and econometrics seem to coexist rather more
effectively than do mathematical psychology and psycho-
metrics. Whatever the reason, we mathematical theorists
seem to be more of an endangered species in psychology.

With these political remarks said, I turn to more
substantive issues.

NONSTATIONARITY AND INDIVIDUAL DIFFERENCES

When I first became aware of mathematical psychology in
the late 1940s and early 1950s, an area then under active
development was learning models: the operator models of
Bush and Mosteller (1955), to which I contributed a non-
linear, commutative one (Luce, 1959, 1964), and the
stimulus sampling�Markov chain models of Estes, Suppes,
Bower, and others (see Laming, 1973, for a list of references).
Because change��learning, in particular��is clearly of major
interest and because a great deal of attention was paid to
these dynamic models, I had anticipated that they would
come to dominate the field. Although they may have helped
spawn a number of things, including much work on atten-
tion, memory, and neural networks, they never did assume
a role comparable to dynamics in physics. Why?

From the start we were fully aware of the inherent
dilemma of studying change when there are substantial

individual differences among our subjects. Ideally, one
would like to study change in an individual, but it is
virtually impossible to collect sufficient data to model what
is going on except, possibly, in certain special situations
such as lower mammals and birds in Skinnerian
apparatuses. Basically, the problem is that the change is not
repeatable in any simple way��one just does not know how
to erase what has been learned, to return the organism to its
original state, and to permit a repetition of the learning
effort over and over until sufficient data are accumulated to
see the details of the mechanism. Were the subjects all iden-
tical and statistically independent, as is true of classes of
physical particles and as may be approximately true of
relatively pure genetic strains of some mammals and insects,
averaging over subjects would be fine. But whenever we take
the effort to look at all carefully at individual people we see
substantial differences, and so we are not justified in averaging
except in the very special case where the predicted relation
is linear. No other family of functions has the property that
an average of several members from the family is also in the
family.

These facts have not precluded most psychologists from
using group data, but one must be very careful about the
conclusions one attempts to draw from them and certainly
one is almost never justified in naive averaging to construct
learning curves, as we used to do.

Our lack of detailed knowledge about the dynamic
mechanisms of behavior has the consequence that we are in
absolutely no position to say anything solid about when to
expect stable asymptotic behavior and when to expect
chaos. The fact that some social and psychological pheno-
mena seem rather chaotic has led some psychologists and
sociologists to hope that we can use chaos theory to under-
stand what is happening. To the best of my knowledge the
asymptotic behavior, which is where one sees evidence of
chaos, has been worked out only for some specific mathe-
matical models. Little, if anything, is known about inferring
the details of the dynamics from observations about the
patterns of chaos. I suspect that like many other social
science fads, this too will pass until we have enough well-
confirmed dynamic theory to make it useful. For a sharply
dissenting view, see Gregson (1988), and also note that a
new journal Nonlinear Dynamics, Psychology, 6 Life Sciences
has just been announced.

Is there a way to resolve the issue of dynamics in the
presence of individual differences? I am not at all sure there
is if the differences reflect basic differences in mechanisms
among subjects. But to the degree the differences reflect
distributions of parameter values in a common mechanism,
then, in principle, the answer seems to be yes. However, the
details certainly are not easy. Perhaps the people who have
best developed strategies for this case are Jean-Paul
Doignon, Jean-Claude Falmagne, and Falmagne's students
Kamakshi Lakshminarayan and Michael Regenwetter
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(Doignon 6 Falmagne, 1997; Falmagne, 1989, 1993, 1996;
Falmagne 6 Doignon, 1997; Falmagne, Regenwetter, 6
Grofman, 1997; Lakshminarayan, 1996). Their underlying
idea is simple enough, namely, to suppose that there is a
distribution in the population of the parameter values of
the dynamic process and to use group data to infer both the
degree to which the model is correct and to some extent
the distribution of parameter values.

The execution of this program seems to encounter two
major hurdles. First, what should we suppose to be the
nature of the distribution of parameters? That choice, as
with most statistical models, is dictated more by mathemati-
cal convenience and tradition than by any very deep
understanding of the distribution in the population. Some
effort is made, using computer simulations, to show that the
results are relatively robust under a range of possibilities.
The other hurdle is that for even rather short learning
sessions, incredibly large amounts of data must be collected
and much computation is required. In work on knowledge
structures, Falmagne and his associates (see Lakshminarayan,
1996) are finding that on the order of 1000 subjects are
needed to study a learning chain on only five items. The
growth in subjects and computer power needed tends to be
exponential with the size of the learning task. These
limitations strike me as probably severe.

A somewhat related issue involving statistics is my next
topic.

STATISTICS AND MEASUREMENT THEORY

From my perspective, statistics and measurement theory
are two faces of a common topic, namely, the recovery of
(static) structure from primitive observations that are, to a
degree, corrupted by sources of uncertainty or error, often
lumped under the term ``random noise.'' In statistics one
typically works only with data that are already cast in
numerical form and one postulates some algebraic form for
the underlying structure. The two most studied are the
linear model,

y=:
i

:ixi+#, (1a)

and the multiplicative one,

y=`
i

x; i
i +#. (1b)

Others are sometimes examined by taking various
conventional transformations of y, although the motive for
doing so seems to be mainly to increase the validity of the
statistical assumptions which usually involve a random
perturbation��often assumed to be normally distributed��
added to y or to the xi .

Inmeasurement theory therawdata are typicallypostulated
to be ordinal in nature��some relational comparison
of x=(x1 , ..., xn) and x$=(x$1 , ..., x$n)��and the question
addressed is the conditions under which the data structure
exhibits numerical measures having certain properties.
Until about 1985 a typical theorem took the following form:
if certain properties hold on the ordinal relation, then there
exist real-valued functions ,, ,i , i=1, ..., n, and F such that

,(x)=F[,1(x1), ..., ,n(xn)] (2a)

is order preserving. Usually F was specified in advance,
most commonly as

F(X1 , ..., X2)=:
i

Xi . (2b)

More recently, more sophisticated questions have been
addressed: Do broad classes of ordered structures have
representations that are of ratio or interval scale type
(Stevens, 1946, 1951) and, if so, how can their mappings be
constructed (Alper, 1985, 1987; Narens, 1981a, b)? These
results do not prejudge the form of the representation
beyond the condition that certain symmetries of the
underlying structure��-called the translations��take the
numerical form of difference transformations. A good deal is
now known about the possible representations under the
totally unrealistic assumption that the data are noise free.
(Much of this knowledge is summarized in the three
volumes of the Foundations of Measurement, Krantz, Luce,
Suppes 6 Tversky, 1971; Suppes, Krantz, Luce, 6 Tversky,
1989; Luce, Krantz, Suppes, 6 Tversky, 1990.)

The difficulty lies in putting these two faces together,
neither prejudging the structural form nor pretending that
the data are noise free. This has turned out not to be easy,
even though the need has been recognized for decades. If
one begins with noisy qualitative data, then one simply does
not know how to associate statistics to the existing qualitative
mathematics describing the underlying structure. And if one
begins with noisy numerical data, one does not know how
to do the statistical analysis of all possible monotonic trans-
formations of the data and then to select the best fitting one.
In practice, one takes one of two extreme tacks: either treat
the preponderance of choices in some sort of repeated design
as establishing an algebraic order or subject numerical
rating data to a few numerical transformations and apply
the statistical model to each, simply ignoring the fact that
the usual statistical assumptions��normality, equal variances,
etc.��cannot possibly be correct in all of them and hoping
that it does not much matter.

Ideally, one would like to go back to basics and attempt
to construct a measurement theory in which the random-
ness somehow is dealt with at the level of the primitives. In
such a theory, a representation theorem would be rather
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different from the current ones. One would not construct a
numerical representation on the underlying set A of objects,
but rather a mapping into some family of random variables,
[X(a) : a # A]. One would expect the behavioral theory to
characterize the family and to have the property that some
statistic of central tendency, such as the mean or median,
behaves algebraically like the corresponding noise-free
classical theory. For example, the kind of representation
I would expect for a noisy generalization of extensive
measurement might be the family of gamma distributed
random variables with the underlying concatenation opera-
tion, b being represented as the sum of independent random
variables and their means acting like ordinary extensive
measures, i.e.,

E[X(a b b)]=E[X(a)+X(b)]

=E[X(a)]+E[X(b)]. (3)

The simple fact is that we do not know how to do this. All
treatments of randomness with which I am familiar pre-
suppose a numerical representation; there simply is no
qualitative theory of the concept. This is a limitation not just
of mathematical psychology, but of probability theory in
science in general. Perhaps we psychologists are more
acutely aware of it than, say, classical physicists because of
the great difficulty we have in making independent, repeated
observations of exactly the same comparison.

A more modest proposal is to treat the data as proba-
bilistic in nature��either as a probability distribution over
algebraic models or as the primitive itself. One question
raised is that of conditions under which there exists an
underlying random variable representation such as was
postulated early on in the discriminable dispersion models
of Thurstone (1927a, b, c) and in the random utility models
of Block and Marschak (1960) and Marschak (1960). For
later results of this sort, see Marley (1990).

This work has recently been extended considerably by
Doignon and Regenwetter (1997), Heyer and Niedere� e
(1989, 1992), Regenwetter (1996), and Regenwetter,
Marley, and Joe (1997)��but only for fundamentally
ordinal structures. We still cannot really deal probabilisti-
cally with the kind of structural questions that interest many
substantive scientists. For example, consider subjects
choosing among gambles (or uncertain alternatives). One
property with which I have been particularly concerned,
arises if we include among the primitives a binary operation
� of joint receipt. Let (x, p ; y) denote a lottery in which x
is the outcome with probability p and y with probability
1& p and let e denote the status quo (often taken to be no
exchange of money). Then the property called segregation
asserts that for either gains, i.e., x, yoe, or for losses, i.e.,
x, yOe,

(x, p ; e)� yt(x� y, p ; e� y)t(x� y, p ; y). (4)

Note that from a rational perspective, this condition is fairly
compelling��the two sides are completely equivalent. Luce
and Fishburn (1991, 1995) and Luce (1996) have made
considerable theoretical use of Eq. (4).

Using somewhat crude statistical methods, such as whether
or not the choices exhibit a symmetric pattern in the
differences of independently established certainty equiv-
alents, Cho and Luce (1995) and Cho, Luce, and von
Winterfeldt (1994) have concluded from their data that the
evidence, although noisy, favors segregation. It is, as yet,
unclear how a property like this should be studied in the
context of random variable models, and until it is, I don't
see much hope of carrying out really acceptable statistical
analyses of substantively interesting properties and theories.
At the same time, I don't think it reasonable to expect
theorists to abandon their modeling and experimentalists
their evaluating just because we don't know how best to do
the statistics. One should never forget that the very success-
ful physical sciences muddled along quite nicely with very
primitive statistics, in part, of course, because of really large
sample sizes which we rarely have.

PROLIFERATION OF PARAMETERS VERSUS
THEORIES OF PARAMETERS

Most models one encounters in psychology have a fair
number of unspecified parameters that are to be estimated
from the data to be explained. This is true not only of the
dynamic models discussed earlier, but equally for perfectly
static ones such as signal detection theory (SDT) and most
response time, memory, and attention models. Moreover,
many of these theories are reasonably tractable only when
there are very few stimuli and responses. As those numbers
increase, the number of parameters often increases
exceedingly rapidly. For example, in areas where SDT is
used, the 2-stimulus, 2-response model, with its ubiquitous
ROC curves and the well-known d $ and response bias
measures, is quite tractable. But go to just 3 stimuli and 3
responses and what in the (2, 2) case had been a cut point
on a continuum becomes an unspecified partition of 2-space
into 3 (presumably connected) regions��this to account for
only 6 independent conditional probabilities. Unless the
class of partitions is sharply limited, the problem is totally
underdetermined by the data. But on what principles does
one limit the partitions? I do not sense that we have a very
good understanding of how to do this throughout the world
of information processing models, although considerable
effort is currently underway as seen in, for example, Ashby's
(1992) collection of papers.

One way to restate the problem is that we usually do not
have a theory of the parameters or, put still another way, we
do not understand very clearly what the parameters mean.
If we did, we could then estimate them in one experiment
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and use those values in the model for a different experiment.
But often that does not work even in the simplest of situa-
tions. For example the d $ values estimated in a 2-stimulus,
absolute-identification experiment do not directly predict
the effective d $ values in an n-stimulus, n>2, experiment of
the same type (Miller, 1956; Luce, Green, 6 Weber, 1976).

Do we have any examples of theories of parameters? To
my knowledge, examples lie not in the world of information
processing models, but elsewhere. In the theories of
individual decision making in which the concept of utility
plays a role, we find models of the following character. As
mentioned earlier, the primitive data often are choices made
between risky or uncertain alternatives, and the models
describe constraints among these choices. These constraints
do not include any parameters and they are testable in finite
data samples. Such testing must be done with some care to
avoid testing the conjunction of the property in question
with other properties that are as empirically questionable as
the one purportedly under study. This goal has not always
been achieved and has probably led to some erroneous
conclusions (Luce, 1992).

Well-known examples of such purely behavioral proper-
ties are transitivity of choices and monotonicity of choices
with changes of a single consequence of a gamble. Less-well-
known ones include, among several others that I will not
go into here, the behavioral hypothesis of segregation
mentioned above, Eq. (4). The mathematics involved in
these models lies in discovering some convenient��usually
numerical��representation of these data constraints. Such
models involve the construction of numerical functions��
a utility function over both certain and uncertain alter-
natives and one or more weighting functions over chance
events. The earliest such model��due to von Neumann and
Morgenstern (1947)��is the best known, namely, that the
behavior is as if the person has a utility function U and is
maximizing its expectation:

:
i

U(xi ) pi . (5)

Here a single function is constructed from the behavior.
Gradually over the years more complex models have

evolved as we have come to understand experimentally
which constraints do and do not seem to hold. A major
landmark was Savage's (1954) axiomatic generalization of
Eq. (5) to subjective expected utility (SEU). Fundamen-
tally, he showed that one could begin with events Ei to
which no probability is attached, and if the individual's
choice behavior is sufficiently systematic, it will be as if that
person is maximizing

SEU(g)=:
i

U(xi ) S(Ei ), (6)

where g=(x1 , E1 ; ...; xn , En) is a gamble (or uncertain
alternative), U is a numerical utility function over conse-
quences, and S is a finitely additive probability measure
(unique to the decision maker) over the underlying chance
events. Despite the widespread feeling that Savage's axioms
are normatively compelling, much as those of elementary
logic are, SEU is known to be descriptively wrong as,
of course, are some axioms of logic. Ellsberg (1961)
demonstrated, in a very simple situation, that people do not
act as if they assign a fixed subjective probability to a truly
uncertain event.

Numerous later models have attempted to understand
what is happening by working with nonprobabilistic
weights on events. This is not the place to detail these
models except to note that in these cases we do have testable
theories of these unknown functions that from another
perspective seem like parameters to be estimated. Indeed, if
additional (nonparametric) behavioral conditions are
satisfied, one can get quite specific forms e.g., Luce and
Fishburn (1991, 1995) and Miyamoto (1988) have arrived at

U(x)={C(1&e&cx),
&K(1&ekx),

x�0
x<0

, (7)

where all constants are positive, as the only possible form
for the utility function when it is concave for gains, convex
for losses, and segregation and binary prospect theory
(Kahneman 6 Tversky, 1979) hold. Others have come up
with alternative forms, but in most cases behavioral condi-
tions underlie them. It is merely a question of trying to
decide empirically which, if any, of these conditions is
correct.

It is perhaps worth noting that much of classical physics
involved the formulation of observable ``behavioral''
relations (laws) and developing differential equations to
summarize these relations. Examples are Newton's laws,
hydrodynamic theory, Maxwell's equations for electro-
magnetism, classical thermodynamics, and both special and
general relativity theory. Note that this type of modeling is
not at all analogous to information-processing modeling.
The closest physical analogies to such models of unobser-
vable structure are the kinetic theory of gases, which came
long after there was a well-developed behavioral theory of
thermodynamics, and the modern theories of atomic
structure.

Although it is all too easy to write down information-pro-
cessing models for psychological behavior, it is an open
question in my mind whether this is really the best way to
proceed. Latent, not directly observable structures��the
hallmark of such models��afford too many options, leading
to badly underdetermined models with many free para-
meters. But clearly, the mainstream of psychology is passing
me by.
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UNCERTAINTY AND VAGUENESS

Almost all of the mathematics most of us know is
grounded in set theory. So are computers. Almost none of
our conversation is so grounded. We communicate, as I am
trying to in this article, mostly in terms that have a certain
penumbra of uncertainty or vagueness. If someone says ``I'll
return at dusk,'' you do not expect a precise set-theoretic
definition of what that person means, certainly not a sharp
luminosity level. This has been a well-recognized contrast
between mathematics and discourse for as long as I've been
thinking about science and appreciably earlier, judging by
authors such as Poincare� (1929), who commented that ``the
physical continuum is, so to speak, a nebula not resolved;
the most perfect instruments could not attain its resolu-
tion... '' (p. 46).

To some degree probability theory attempts to deal with
some aspects of uncertainty, but clearly that model is not
really sufficient. As many, but especially Glenn Shafer
(1976), have been at pains to point out, one may be so
uncertain that one sometimes assigns a low likelihood both
to an event and to its complement. If you do not know
where Izmir is located, you probably are not very willing to
assign as much as an even chance to rain there tomorrow
and, if asked separately, you are also unwilling to assign as
much as an even chance to no rain there tomorrow. Your
uncertainly is so great that, independently assessed, your
estimates won't add to 1. In other examples, increasingly
fine partitions of the events lead to estimates that actually
sum to far more than 1 (Fox 6 Tversky, 1997; Redelmeier,
Koehler, Liberman, 6 Tversky, 1995; Tversky 6 Koehler,
1994). To the degree this occurs, which seems to be
considerable, models such as SEU (Eq. (6)) must be wrong.

The most extensive attempts to deal directly with the
thorny problem of vagueness have been multi-valued logics
and Zadeh's (1975) theory of fuzzy sets (for a fairly recent
summary of fuzzy set theory see Klir and Folger, 1988). The
former has penetrated very little and the latter hardly at all
into modern mathematics; however, fuzzy sets and relations
have developed into a minor cottage industry in engineering
and computer science, where they are being used in various
control devices. Repeated attempts have been made to use
them theoretically in psychology, but to the best of my
knowledge, none has been viewed as particularly illuminat-
ing. Part of the problem, so far as I am concerned, is that the
theory of fuzzy sets is, after all, classically set theoretic with
an underlying membership function that is a simple numeri-
cal map that to all intents is like a distribution function. The
novel aspect of the theory is the attempt to define logic-like
operations of ``and,'' ``or,'' and ``implies'' in terms of creating
new membership functions from old ones. So, for example,
the membership function for ``dusk'' is almost certainly
monotonic with luminosity and that for ``humidity'' is, hold-
ing temperature constant, monotonic with the proportion of

water vapor, and so the fuzzy concept of a ``humid dusk''
becomes a calculation in terms of these two measures.

Perhaps; but I remain skeptical. I sense that this approach
is missing the main point, but I have nothing better to offer.
I had hoped to see a generalized set theory develop which,
like ordinary set theory at the end of the 19th century,
would prove so compelling that it would command the
assent of most mathematicians as being a generalization
with a wide potential for new mathematics. Among other
things, it might alter the nature of what is seen as
computable. That has not yet happened.

DISCRETENESS OR CONTINUITY

Under this heading I shall treat two quite different issues,
one very general in the sciences that use mathematics in
their formulations and the other very specific to psychology.

The general one is the philosophy-of-science problem of
why continuous mathematics works at all in the sciences. If
we take seriously what physicists tell us, many attributes
must be discrete, although very finely so compared to the
sort of sensory discreteness I will discuss below, but none-
theless continuous mathematics (in the proper hands)
seems to achieve correct answers. Physicists and
philosophers of physics have long been perplexed by this
fact; witness the famous article of Eugene Wigner (1960)
titled The unreasonable effectiveness of mathematics in the
natural sciences (see also Narens and Luce, 1990). To my
knowledge there is still no fully satisfactory answer,
although the recent work of Suppes (1995; Sommers 6
Suppes, 1996a, b; Suppes 6 Chuaqui, 1995) may be a
significant step forward.

Let me illustrate part of the problem in an area familiar
to many of us, the representational theory of measurement.
Stevens (1946, 1951) noted the somewhat surprising fact
that the then-existing examples of measurement (mostly
from the physical sciences) seemed to be of three types that
he called ordinal, interval, and ratio. For a long time the
underlying source of his apparently limited classification
was not understood, but Narens (1981a,b) tackled the
problem at a very general level and Alper (1985, 1987)
obtained a final solution (see below) to the following effect:
Suppose the domain of measurement is a continuum, the
structure is homogeneous in the intuitive sense that each
point is structurally indistinguishable from each other one,
and such structure-preserving mappings (automorphisms)
can have only a limited number of fixed points. Then there
is a representation into the real numbers such that the scale
type is either interval, ratio, or a subgroup between these
two. Moreover, the representation can be chosen so that the
translations are just that,

x � x+s, s any real number,
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and the remaining ones, called dilations, are of the form

x � rx+s, s any real and

r>0 in a multiplicative subgroup.

Now, if we think of such a structure as an asymptotic
idealization of the discrete world, then we are faced with try-
ing to figure out what about the discrete cases ultimately
evolves into the homogeneity and finite uniqueness of the
``limiting'' continuous model. This step does not seem to be
understood. Of course, part of what has to be done is to
make sure that a nested sequence of finite structures (which
can be thought of as increasingly better finite approxima-
tions to a countable model) have suitably convergent
families of numerical representations. This part seems to be
less of a problem than the jump from the countable case,
with very fewautomorphisms (symmetries), to the continuum,
with its richness of automorphisms. This transition has
never been formulated explicitly.

An issue of discreteness very specific to psychology is
whether the internal representation of a physical stimulus
drawn from a ``continuum,'' such as intensity or frequency,
is sufficiently discrete that we should not ignore that feature
or whether it is so fine that a continuous representation is
adequate. I find myself in a conflicted position on this issue.
On the one hand, for a very long time I've been suspicious
that some sensory attributes are really rather discrete but
that noise tends to mask that discreteness. On the other
hand, I personally prefer to work with continuous models.
The discrete models, with their horrendous combinatorial
aspects and typical lack of neat algebraic features, tend to
leave me cold��although some of the network results of the
past 10 years (White 6 Duquenne, 1996; Ganter 6 Wille,
1997) are nice and, with computers, quite feasible to use.
But the real question is not personal taste, but empirical
facts.

I believe that the current sweeping victory of the ideas of
the continuous signal detectability theory (SDT) may
provide a sobering lesson in the sociology of science. It
appears to me that most psychophysicists have elected not
to explore very deeply questions of evidence against
continuity or near continuity. There isn't a lot of negative
evidence, but what there is has been largely ignored after an
initial flurry of activity. Let me mention four examples.

Early on, Stevens, Morgan, and Volkman (1941) suggested
that sensory intensity might be discretely represented sub-
jectively and that for such a simple task as detection it was
sufficient to distinguish only two internal states: detect and
not detect. Were that true, they argued, the psychometric
function should move linearly between 0 and 1 with the
intercepts standing at a 2:1 ratio. About two decades later,
I (Luce, 1963) pointed out that, correspondingly, the ROC
curve should have two linear limbs��which came to be

called the low-threshold model. After some fairly casual
examination of data suggesting some support for the 2-state
model, a careful statistical analysis by Krantz (1969)
demonstrated that to be wrong, but he did not reject a
3-state model. The field seemed to react to the rejection of
the 2-state model as support for the continuum. Little else
has been explored for these experiments. Part of the reason
is that if one does not know much about the nature of the
states, the estimation of their parameters is a bit of a
nightmare. Still the jump one, two, infinity seems a bit
precipitous.

This is especially the case when one realizes that all
discrete state models predict that the ROC curve for the
2-alternative, forced-choice experiment should exhibit a flat
portion with slope 1 in the region where the ROC curve
crosses the negative diagonal. The continuous models do
not predict such flatness. Rather, the continuous SDT
model predicts that in z-score coordinates the curve is
straight with slope 1 whereas the discrete models are bowed.
As I have repeatedly pointed out and as has been equally
studiously ignored by the field, Norman (1964) in a care-
fully run experiment reported 2-alternative, forced-choice
ROC curves on three subjects that agree with discreteness
and not with continuity. To my knowledge, no one has
refuted these observations. Indeed, no one seems ever to
collect 2-alternative, forced-choice ROC curves, there being
a myth to the effect that this procedure, unlike the yes�no
one, is unbiased. I find this an odd response of what
purports to be a self-correcting science. Just why don't
Norman's data reject SDT?

Two other signs of discreteness lie in the temporal area.
The temporal sluggishness of the visual system led Stroud
(1955) and others to wonder whether information is
clustered in temporal packets of about 100 ms within which
temporal order is lost or ignored. The fact that movies work
quite successfully at 16 frames a second is consistent with
that hypothesis, although it certainly does not entail it. Of
course such crude temporal discreteness is not a general
sensory phenomenon. For example, the auditory system is
highly sensitive to some small��less than one millisecond��
temporal differences. The major difficulty in ever testing this
hypothesis was the issue of synchronization of the discrete-
ness with the signals. How does one make sure that two
temporally close signals are or are not in the same temporal
quantum? This line was not further pursued.

Finally, there are the remarkable data of Kristofferson
(1980, 1984) on time estimates over a wide range of times.
He showed that a plot of standard deviations versus mean
response is not the proportionality of Weber's law, as many
of us expected, but rather more like a step function with the
steps appearing at factors of 2 of the mean and with jumps
in standard deviation by factors of - 2. These data strongly
suggest highly discrete changes in some aspect of, in this case,
the combined sensory and motor systems. Unfortunately,
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these experiments are exceedingly difficult and tedious to
conduct, and other scientists seem not to have accepted the
challenge.

The simple fact seems to be that sensory psychologists
just are not greatly interested in the question of whether
sensation is discrete or continuous.

CONCLUDING REMARKS

Because this paper describes several, but far from all, of
the unresolved issues of mathematical psychology in the
second half of the 20th century, its tone has necessarily been,
depending on your perspective, discouraging or challenging.
To balance that a bit, let me make clear that I think the field
has exhibited a good deal of cumulative progress. We know
vastly more about a number of topics than we did in 1950.
These include random variable models of simple choices
and their close relation to geometry; the relation of dimen-
sional analysis to theories of measurement; the entire
structure of nonadditive measurement including both the
very general theorems cast in terms of automorphisms as
well as the general theory of binary operations and conjoint
structures; psychophysical modeling of all sorts including
mechanisms of spatial inference, motion detection, and
rather well-developed theories of response times; theories of
decision making including utility and subjective probability;
and connectionist and network modeling including very
sophisticated combinatorial analysis. Knowledgeable
readers can add others, which I count on their continuing to
do in the coming years.
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