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Measurement Theory*
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Institute for Mathematical Behavorial Sciences, University of California, Irvine

This review article attempts to highlight from my personal perspective
some of the major developments in the representational theory of
measurement during the past 50 years. Emphasis is placed on the
ongoing interplay between the development of abstract theory and the
attempts to apply it to empirically testable phenomena. The article has
four major sections. The first concerns classical representational
measurement, which was the successful attempt to formulate the major
measurement methods of classical physics: extensive and additive con-
joint structures, their distributive interlock in dimensional analysis, and
intensive (averaging) structures. The second illustrates a nontrivial
behavioral example using both extensive and conjoint measurement
plus functional equations to arrive at rank- and sign-dependent utility
(also called cumulative prospect) representations for decision making
under risk. The third section, contemporary representational measure-
ment, somewhat overlaps the classical one but includes new findings
and approaches: representations of nonadditive concatenation and
conjoint structures; a general theory of scale types; results for general,
finitely unique, homogeneous structures; structures that are
homogeneous between singular points; generalized distributive triples;
and a generalization of dimensional analysis to include any ratio
scalable attribute; and the concept of meaningfulness. The final section
concerns applications of the latter ideas to psychophysical scaling and
merging functions. ] 1996 Academic Press, Inc.

1. INTRODUCTION

The dialog between empirical science and measurement
theory is, of course, exceedingly complex and detailed, but
for the purposes of an overview I think that one can divide
it crudely into three overlapping aspects. The first, which I
call classical representation measurement (Section 2), can be
thought of as being predominant in the period from, say,

von Helmholtz's 1887 paper, which in English translation
was called ``Counting and Measuring'' (1887�1930),
through the publication in 1971 of both Volume I of the
Foundation of Measurement (Krantz, Luce, Suppes, 6
Tversky, 1971)1 and Pfanzagl's Theory of Measurement or
even to Roberts' (1979) Measurement Theory which bridges
to the newer material. It is always a question whether or not
to treat geometry as part of classical measurement.
Although I think it is quite reasonable to do so��witness
FM-2��for the purpose of this article I have chosen not to
include it.2 Classical measurement theory is characterized
primarily by topics in physical measurement leading to
representations in what became in the 19th century well
understood numerical systems of the types widely employed
in classical physics. The effort in this phase was primarily to
understand the empirical source of these numbers. For some
general criticisms of the representational measurement
approach, see Savage and Ehrlich (1992).

It is overly simple to say that all of the classical phase
was completed in 1971 or 1979 because discussions
continue about how best to view the generation of numbers
from measurement (Michell, 1990; Niedere� e, 1987,
1992)��indeed, one session of the Kiel conference was
devoted to this topic. Another topic, long an issue in the
classical literature, which has also received some attention
in the past 24 years, is error or uncertainty in measurement.
Although the approaches so far taken seem classical in
nature, it could well be that something quite distinct from
classical methods is needed to increase their usefulness.

The second phase, which I refer to as contemporary
representational measurement (Section 4), became active in
the mid 1970s and continues to the present; however, its
antecedents began at least as early as the famous Stevens
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2 Mundy (1994) takes to task representational measurement theorists, at
least to the extent they see themselves as philosophers of science, for adopt-
ing an approach to measurement that is too piecemeal. He emphasized that
our formulations are not sufficiently sweeping to include the various
representations used in modern physics.
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(1946) article pointing out the limited number of scale types
found in physical measurement. This phase has three inter-
related and still developing themes: nonadditivity, scale
types, and meaningfulness. (As was noted, it is unclear
whether the treatment of error will eventually become a part
of this movement.) This phase is characterized by the
development of new mathematical generalizations and by
an improved mathematical understanding of what underlies
representational measurement. Its purpose is primarily to
inform the sciences��especially the behavioral and social
ones��of the full range of measurement possibilities and to
provide concrete contributions to those sciences. Although
parts of this development seem fairly definitive, others are
clearly far from completed and are being actively pursued.

The third aspect consists of attempts to put our knowledge
about measurement to use in devising theory in some of the
sciences. In my opinion, we have only seen the tip of the
iceberg as far as scientific applications are concerned. My
coverage of them does not try to be comprehensive. Some
references are cited to other applications, and Roberts
(1979) included a number of the earlier applications. What
I do cover is broken into two sections. The first, Section 3,
concerns utility theory, to which I have devoted con-
siderable attention in the past few years, and it draws
primarily on the classical results. The second, Section 5,
concerns psychophysics and the merging of measurement
scales, and it draws primarily on the more recent results.

2. CLASSICAL REPRESENTATIONAL MEASUREMENT

The theme of classical measurement is the construction of
additive and vector space representations. In my view, the
major topics are extensive measurement as the source of
addition; additive conjoint structures and trade-off (or con-
servation) laws; the distributive interlock between extensive
and conjoint structures; dimensional analysis and its rela-
tion to fundamental measurement; and finally intensive
structures.

2.1. Extensive Measurement and Numbers

Although historians have traced developments in theory
of measurement back to the Greeks, Helmholtz (1887�1930)
is one of the earliest attempts to state explicitly��in terms of
an ordered system with an empirical operations��the collec-
tion of empirical laws that give rise to an additive numerical
representation. Ho� lder (1901) placed this system on an even
better mathematical basis, and others later extracted from
his paper the theorem now named for him: Every
Archimedean ordered group is isomorphic to a subgroup of
the additive reals (or, equally, of the multiplicative positive
reals).

Such structures, called extensive, consist of a set A of
elements that exhibit the attribute to be measured; an

ordering of A, � , by that attribute��so if a, b # A, a � b
means that a exhibits at least as much of the attribute as
does b; and a binary operation b on A of combining
elements so that a b b also exhibits the attribute. Mass and
length are prototypical. These primitives are assumed to
satisfy the following conditions3 : � is a weak order, and the
relation between � and b is monotonic, associative, com-
mutative, positive, restrictedly solvable, and Archimedean.

In a resurgence of interest in the middle part of the cen-
tury and extending to the present, various improvements
and generalizations of extensive measurement structures
were developed. Among these developments were improved
versions of the classical axiom systems (Niederee� e, 1987,
1992; Roberts 6 Luce, 1968; Suppes, 1951); their applica-
tion to difference and absolute difference structures
(Debreu, 1958; Scott 6 Suppes, 1958; Suppes 6 Winet,
1955; Tversky 6 Krantz, 1970); and modifications of the
classical model to bounded (Luce 6 Marley, 1969) and
periodic structures (Luce, 1971b).

There is little doubt that variants of extensive structures
form suitable models for such physical attributes as length,
mass, time, angle, etc., although not of density, momentum,
hardness, etc., and that these empirical systems are
probably the major source of the numerical ideas of order
and of addition of, at least, the integers and rationals.
Although many of us today, e.g., FM-1, 2, 3, may appear to
treat numerical systems platonically��as an abstract con-
cept given a priori��I think that most of us recognize, as
Michell (1990) has been at pains to point out, that the
additive rational numbers really arise as an abstract
formalization of the structure exhibited by many physical
attributes.

2.2. Additive and Nonadditive Representations of Extensive
Structures

An extensive structure (A, � , b ) always has an
additive representation, i.e., a mapping , into the real
numbers such that for all a, b # A,

a � b � ,(a)�,(b) (1a)

,(a b b)=,(a)+,(b). (1b)

Often this is the representation that is used��length, mass,
and charge are examples. But an extensive structure also has
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3
� is a weak order if it is connected and transitive; the relation between

� and b is monotonic � \x, y, z, x � y iff x b z � y b z iff z b x � z b y;
associative � \x, u, z, x b ( y b z)t(x b y) b z; commutative � \x, y,
x b yty b x; positive � \x, y, x b yox and oy: restrictedly solvable �
\x, y, if xoy, then _z such that x � y b z; and Archimedean � \x, y, _
integer n such that nxoy, where 1x=x and nx=(n&1) x b x. Com-
mutativity can be deduced from the other properties. Note that all of these
properties, save solvability, are necessary if an additive representation on
the positive real numbers exists.
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a multitude of nonadditive ones��indeed, any strictly
increasing function g on the reals generates one. And, some-
times, scientists opt to use one of the nonadditive represen-
tations. Perhaps the most vivid example is the ``adding'' of
velocities in the theory of special relativity. In this case the
qualitative structure of velocity concatenation is extensive
except for having a maximal element, the velocity of light.
Omitting that value, the remaining structure is extensive.
With velocity given its usual definition in terms of distance
s and time t, v=s�t, then it turns out that the extensive
operation is represented as:

u�v=
u+v

1+uv�c2 , (2)

where c is the velocity of light in that representation. (It is
� in the additive representation. ) This result was dictated
primarily by certain physical principles of invariance that I
do not go into here (but see Mundy, 1986, 1994).

A considerably less familiar example of a somewhat
analogous situation has arisen recently in utility theory
(Section 3.2). I believe that it is important for behavioral
scientists to realize that the existence of an additive
representation does not mandate its use if some nonadditive
one meshes better with other structures in which the exten-
sive attribute plays a role.

2.3. Additive Conjoint Structures and Conservation Laws

Helmholtz (1887�1930) remarked, as did many later
authors, on how multiplication, as well as addition, appears
in physics when different dimensions are involved. In trans-
lation (p. 29�30), he said:

``The multiplication of denominate numbers by pure numbers
remains then wholly within the limits of the definitions and proposi-
tions which are deduced above for the multiplication of pure num-
bers among themselves.

It is otherwise with the multiplication of two or more denominate
numbers. This has meaning only in definite cases when special
physical combinations are possible among the units involved, which
(combinations) are subject to the three laws of multiplication...

Physics forms a great number of such products of different units
and corresponding thereto also examples of quotients, powers, and
roots of the same...

Most of these combinations rest upon the determination of coef-
ficients; many of these magnitudes can supply, however, in addition
additive physical combinations such as rates of motion, currents,
forces, pressures, densities, etc.''

Subsequent authors, including Campbell (1920, 1928)
and Bridgman (1922�1931), continued to treat multiplica-
tion between attributes as both important but secondary
to extensive measurement. Indeed, such multiplicative
measures were called derived because of their apparent
dependence on prior extensive measurements. An excellent
example is the density \ of a homogeneous substance which

involves extensive measures of the volume, V, and the
corresponding mass, m(V ), of the substance. The empirical
law is that for any substance the ratio \=m(V )�V is
independent of V.

In the 1960s a new tack was developed in which ordered
Cartesian products came to be studied in their own right
as embodying scientifically important trade-offs (or conser-
vation laws) between independent variables affecting an
attribute of interest (Debreu, 1960; Luce 6 Tukey, 1964).
The motive was to generalize measurement to the
behavioral and social sciences where extensive operations
seemed sparse, but once formulated we recognized that this
mathematical system also captured, in as fundamental a
way as extensive measurement, the qualitative features of
the so-called derived measures. For a fairly recent review,
see Wakker (1989).

For (A_P, �) to have a numerical additive representa-
tion ,A+,P that preserves the order � major necessary
properties are: � is a weak order that is monotonic in each
coordinate, each coordinate matters, Archimedeaness holds
in some suitable sense, and crucially that the Thomsen
condition holds: \a, b, f # A, p, q, x # P

(a, x)t( f, q) and ( f, p)t(b, x) O (a, p)t(b, q).

(3)

To achieve sufficiency, we added a form of solvability whose
details will become apparent shortly. After being exposed to
this result, Krantz (1964) quickly saw that the mathematical
proof could be reduced to that of extensive measurement,
and Holman (1971) provided an alternative and ultimately
more useful definition of an extensive operation that
encodes on one of the independent variables, say A, all of
the information found in the trade-off structure. To be
explicit, suppose (A_P, �) is the conjoint structure and
a0 # A, p0 # P are fixed elements. For b # A, define ?(b) to be
a solution to the equivalence

(a0 , ?(b))t(b, p0). (4a)

Clearly, one must assume that such solutions exist (but see
Section 2.7 for cases where they need not exist). In words,
the ``interval'' from a0 to b on the A component is ``matched''
by the ``interval'' from p0 to ?(b) on the P component. In
terms of this, for a, b # A, define a b b to be a solution, again
assumed to exist, to the equivalence:

(a b b, p0)t(a0 , ?(b)). (4b)

In words, the ``interval'' from a0 to a b b is the ``sum'' of the
(a0 , a) and (a0 , b) intervals achieved by first mapping the
``interval'' (a0 , b) of A to the equivalent ``interval'' ( p0 , ?(b))
and then by an inverse transform map that to the equivalent
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``interval'' (a, a b b). For structures with a strong form of
solvability, the operation is always defined; with more
restricted forms of solvability, only a partial operation
arises, but the theory of extensive structures had been
generalized to cover that case as well (Luce 6 Marley,
1969).

Additive conjoint structures have come to be moderately
important in the behavioral sciences in at least three ways.
First, they correspond closely to the scientific strategy of
studying trade-offs among independent variables that
maintain a dependent attribute constant. Psychologists and
economists, in particular, had long exploited this strategy in
the form of equal-attribute contours or indifference curves
(see Levine, 1971, 1972; Krantz 6 Tversky, 1971; Michell,
1987, 1990; and any introductory economics text). Second,
this development helped initiate a cottage industry of busi-
ness applications. Two fairly recent summary references
are Green and Srinivasan (1990) and Wittink and Cattin
(1989). And third, they serve as partial underpinnings for
theories such as the utility one discussed in Section 3.

2.4. Distributive Triples

Once additive conjoint measurement was axiomatized,
we realized that some attributes would necessarily have two
quite independent axiomatizations. Consider mass as an
example. Of course, the extensive operation of combining
masses leads to an additive representation; an equally good
axiomatization arises in the conjoint structure whose com-
ponents are volumes and homogeneous substances. Clearly,
physics admits but one measure of mass, not two inde-
pendent ones, so there has to be an interlock that captures
that fact. Formulating that interlock was first addressed by
Luce (1965) and Marley (1968) (and reported in FM-1,
1971), but the major improvement in understanding came
with Narens' (1976) formulation of distribution4 in a utility
context, which Luce and Narens (1985) later used much
more generally. The idea is that if � is an ordering of a
Cartesian product A_P and bA is a binary operation on A,
then the structure is distributive if

(a, p)t(c, q) and (b, p)t(d, q)

imply (a b A b, p)t(c b A d, q). (5)

Suppose that the conjoint structure is additive, that
(A, �A , bA) is extensive with an additive representation
,A onto the positive reals, R+, and that the extensive struc-
ture is distributive in the conjoint one. Then we showed that
there is an order preserving mapping ,P from P into R+

such that ,A,P represents the conjoint structure. Thus, the
extensive and conjoint measures of the A-attribute agree.
Such interlocked structures were called distributive triples.

In cases where extensive operations also exist on at least
one of P and A_P, then the conjoint representation takes
the form of either ,A,k

P or ,A,k
A_P . In these cases one can

state precise qualitatively laws (of exchange and similitude)
that serve both to impose distribution and to characterize k
as a rational number.

2.5. Dimensional Analysis

Beginning at least as early as 1822 in Fourier's classical
work on heat, both applied physicists and engineers have
employed the method of dimensional analysis to uncover
the mathematical form of physical laws. A key statement of
the method was Buckingham (1914), and careful vector
space formulations can be found in Palacios (1964), Sedov
(1956�1959), and Whitney (1968). Of these, I think Whitney
did it best. Although everyone recognized that extensive
structures serve as the basis of the vector space of physical
quantities and that derived measures are linked as products-
of-powers to extensive representations and to other derived
ones, no actual detailed formalization of this interlock was
provided. Rather, it was simply assumed that a numerical
vector space representation was suitable, with little sugges-
tion of how it was to be constructed qualitatively from
extensive structures. Once the qualitative theory of dis-
tributive triples was worked out, it became feasible to
provide an explicit account. A first attempt at accounting
for such a representation was Causey (1969); a somewhat
different version was presented in Chapter 10 of FM-1; and
an improved version was reported in Section 22.7 of FM-3.
The crucial linkage is having a sufficient number of dis-
tributive triples: every nonratio scaled attribute must
appear in at least one distributive triple with an extensive
attribute. Moreover, two triples that involve the same
variables, such as mass and velocity in laws for both
momentum and kinetic energy, must be dimensionally
consistent.

Such a formulation in terms of distributive triples appears
to cover the classical structure of physical quantities, but it
fails to account for such relativistic ones as velocity. It is
easy to show from Eq. (2) and s=vt that the distributive
interlock, Eq. (5), fails. So far, no one has suggested an effec-
tive way to describe the interlock in such cases. To do so is
of considerable importance because attributes such as
utility, loudness, and brightness all seem to be bounded.
Indeed, as we will see in Section 3.2, the boundedness of
utility is readily forced by other plausible conditions. I
believe that the behavioral sciences will benefit considerably
when we understand better the nature of the interlock
between conjoint structures, with a multiplicative represen-
tation, and operations on one of its components with a
representation, in terms of the corresponding conjoint
measure, that is bounded and nonadditive.

81DIALOG BETWEEN EMPIRICAL SCIENCE AND MEASUREMENT THEORY
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Returning to dimensional analysis, a crucial source of its
power to arrive at the form of laws is the postulate or prin-
ciple that any physical law must exhibit dimensional
invariance, which asserts that if the variables x1 , x2 , ..., xn

satisfy an empirical law of the form F(x1 , x2 , ..., xn)=0
and if , is what physicists call a similarity transformation
of the variables, then it is also the case that
F[,(x1), ,(x2), ..., ,(xn)]=0. What is surprising about
dimensional invariance, and is best appreciated only by
studying actual examples of its use, is the degree to which
this principle determines the form of physical laws when, but
only when, one knows precisely which variables and dimen-
sional constants are relevant.

In FM-1 we recounted three distinct arguments that have
been offered in defense of assuming dimensional invariance,
but we were not content with any of them. Later work, dis-
cussed below in Section 4.8, seemed to clarify why such a
property is a necessary (although certainly not a sufficient)
condition for a function among variables to be a physical
law.

2.6. Intensive Bisymmetric Structures and Averaging
Representations
A second major class of physical structures with an opera-

tion are those for which an averaging representation holds,
such as

,(a b b)=p,(a)+(1&p) ,(b), (6)

for some fixed p # (0, 1). The major qualitative features that
distinguish such systems from extensive ones are: they
are intern, i.e., min(a, b) � a b b � max(a, b), rather than
positive, and associativity does not hold but is replaced by
the following bisymmetry property

(a b b) b (c b d )t(a b c) b (b b d ). (7)

Pfanzagl (1959) and Acze� l (1948) found axioms sufficient
for the representation of Eq. (6), and FM-1 proved that
result by reducing it to a case of an additive conjoint
measurement by defining the following order �$ on A_A:

(a, b) �$ (c, d ) if and only if a b b � c b d. (8)

Such intensive structures not only play a role in physics,
but also in psychology and the social sciences where they
are fairly common. One example is the expectation-
type representations that have arisen in utility theory
(see Section 3); another is the comprehensive work of
Anderson (1981, 1982, l991a, b, c) in which he has fit with
considerable success more general weighted average
representations to ranking data of various attributes (in this
connection, see Section 5.2).

In summary, then, we have reduced the study of
averaging structures to that of additive conjoint ones (via
Eq. (8)); the study of additive conjoint ones to extensive ones
(via Eq. (4)); and the latter to an application of Ho� lder's
theorem by means of an embedding argument. In that
chain, bisymmetry leads to the Thomsen condition which in
turn leads to associativity, which is the major property
underlying the additivity of the representation. Indeed, after
perusing FM-1, the category theorist Peter Freyd once
remarked, apparently in a disparaging way, that classical
measurement theory is nothing but applications of Ho� lder's
theorem. As we shall see in Section 4. 2, this continues to be
true, but in a more subtle way, even when we study
inherently nonadditive structures.

2.7. Finite and Countable Structures

Although I have not personally contributed to the topic,
a number of papers have focused on the axiomatization of
structures defined over finite or countable sets. Basically,
these systems are of three distinct types. The first consists of
finite or countable structures that can be mapped onto an
interval of integers; such structures form, in essence, a single
standard sequence [nx0] obtained by combining the least
element x0 with itself n times. The second type of structure
is also countable, but it is dense and it maps into the
rational numbers. Axiomatizations of these two types both
involve classical ideas and could have been developed early
on, although they were not. The third type of structure is
finite and representations are based on solving systems of
linear inequalities. The major results here are two. The first
is the well known theorem of Scott (1964), which was proved
by using the theorem of the alternative, that provided a
family of necessary and sufficient conditions for an additive
representation. A somewhat different formulation of the
result is given in FM-1. The second major result is the proof
by Scott and Suppes (1958) establishing that no finite
system of inequalities can suffice for all finite difference
structures; the number of inequalities to be checked must
grow with the size of the domain. This result was extended
to conjoint structures by Titiev (1972). These results are
summarized in Chap. 21 of FM-3.

2.8. Error

Bridgman (1927�1938, p. 36) was well aware of the
problem of measurement error:

``In most emperical sciences, the penumbra [of uncertainty] is at
first prominent, and becomes less important and thinner as the
accuracy of physical measurement is increased. In mechanics, for
example, the penumbra is at first like a thick obscuring veil at the
stage where we measure forces only by our muscular sensations,
and gradually is attenuated, as the precision of measurements
increases....''.
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In a similar vein, Poincare� (1929, p. 46) wrote:

``It happens that we are capable of distinguishing two impressions
one from the other, while each is indistinguishable from a third....
Such a statement, translated into symbols, may be written:

A=B, B=C, A<C.

This would be the formula of the physical continuum, as crude
experience gives it to us, whence arises an intolerable contradiction
that has been obviated by the introduction of the mathematical con-
tinuum....

The physical continuum is, so to speak, a nebula not resolved; the
most perfect instruments could not attain to its resolution...''.

This sort of ordinal fact was studied in the behavioral
sciences long before these remarks were written, beginning
with Fechner (1860�1966) and leading to the modern
theories of constant and random utility models��which, in
fact, are not restricted to utility ideas (Falmagne, 1985;
Luce, 1959a; Luce 6 Edwards, 1958; Marley, 1990;
Marschak, 1960; Narens, 1994; FM-2, Chap. 17). Failures
of discrimination were also later studied in a purely
algebraic framework, first as relations called semiorders by
Luce (1956) and generalized to interval orders by Fishburn
(1970). From this beginning a substantial literature has
ensued [for summaries see Fishburn (1985) and FM-2,
Chap. 16]. Some interest now exists in the lattice structure
of all possible semiorders on a fixed finite set, and Doignon
and Falmagne (in press) have studied stochastic learning
processes that might underlie the development of a weak
order from the null order by a series of single step changes
in semiorders. This approach provides a possible model for
the development of preferences.

But order is not enough. There are operations. Continu-
ing the quotation from Bridgman (1938, p. 36):

``We may now go still further. Operations themselves are, of
course, derived from experience, and would be expected to have a
nebulous edge of uncertainty. We have to ask such questions as
whether operations of arithmetic are clean-cut things. Is the opera-
tion of multiplying 2 objects by 2 objects a definite operation, with
no enveloping haze? All our physical experience convinces us that
if there is penumbra about the concept of operations of this sort it
is so tenuous as to be negligible, at least for the present; but the
question affords an interesting topic for speculation. We also have
to ask whether mental operations may similarly be enveloped in
haze.''

The attempts so far to incorporate operations into either
random utility models or semiorders or interval orders have
come to very little. Basically, the only tractable case has
been one in which a form of Weber's law holds (Falmagne,
1980; Falmagne 6 Iverson, 1979; Luce, 1973; Narens,
1980). In sum, we do not at present have a very usable
theory of error when we are interested in ordered structures
that have additional relations or operations.

An interesting recent development is Heyer and Niedere� e
(1989, 1992) who assume that each respondent satisfies an
algebraic model of a certain type, but that the population

exhibits a distribution over these models. To my knowledge,
this approach has yet to be applied to data. And it assumes
that each individual's data are generated from an algebraic
system and that all of the probability resides in the population,
not the individual. That hypothesis seems very suspect to me.

From my perspective, statistics and measurement theory
are really two facets of a single problem that has never
been fully formulated, namely, structure and variability.
Typically, the statistical approach assumes a form for the
representation of the structure and attention is focused
primarily on formulating in terms of that representation the
properties of variability. In contrast, the measurement
theorist formulates the structure qualitatively, and derives
the form of the representation, but is unable to confront in
any deep way the qualitative representation of variability.
Thus, as Luce and Narens (1994) noted, the problem is
probably the very deep one of finding a suitable qualitative
formulation of randomness. Recall that statistical treat-
ments of randomness are all at the numerical (or representa-
tional) level��as random variables. To my knowledge, no
satisfactory underlying qualitative theory exists,5 and so it is
unclear how one should incorporate the idea of randomness
into the kind of qualitative-representational theory that
characterizes axiomatic measurement.

3. APPLYING CLASSICAL MEASUREMENT TO
INDIVIDUAL DECISION MAKING

Although classical measurement structures are often
applied to data analysis��several examples were mentioned
earlier��the number of applications to substantive psy-
chological theory is more limited. The two areas that have
received the most theoretical input from contemporary
measurement theory are psychophysics and judgment�deci-
sion making. I will illustrate aspects of this work, but I make
no attempt to provide a thorough survey. In this section I
focus on some problems in judgment and decision making
to which I have contributed during the past six years and
that draw, primarily, on classical measurement ideas. In
Section 5 I will illustrate some examples that draw primarily
on the more recent ideas summarized in Section 4. Although
what I report here only uses classical ideas, it has been in
fact affected by the our deeper understanding of measure-
ment from the recent work, e.g., the work on structures with
singular points (Section 4.5).

3.1. Gambles and Lotteries

Starting with von Neumann and Morgenstern (1947), an
elaborate development has taken place of, first, theories of
expected, then subjective expected utility (Savage, 1954),
and more recently varieties of weighted utilities (Fishburn,
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5 One attempt, which I do not find satisfactory, is that of Suppes and
Zanotti (1992) (see also Section 16.8 of FM-2).
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1988; Quiggin, 1993). The basic primitive has always been
a preference order over gambles (or uncertain alternatives),
which are defined to be functions from finite partitions of
events into a set of consequences (totally distinct from the
events). If the decision maker is provided with probabilities
rather than uncertain events and if the consequences are
money, then the gambles are called lotteries. Many
experiments use lotteries rather than general gambles, but
the theory is just about as easy to state for gambles as for
lotteries. Under the normative assumptions made, the struc-
ture of the gambles coupled with the ordering turned out to
be sufficient to yield interval scale representations of utility,
where the utility of a gamble is some form of expectation of
the utilities of its consequences.

In part as a result of repeated experimental challenges
(some are summarized by Schoemaker, 1982, 1990),
mostly mounted by psychologists, the models have grown
increasing complex and interesting. Summaries of and
references to this literature are Luce and von Winterfeldt
(1994), Quiggin (1993), and Wakker (1989). In particular,
it was increasingly acknowledged that something is wrong
with a theory whose structure had the uniqueness of an
interval scale��arbitrary zero and unit��because, as
everyone is aware, the separation of consequences into gains
and losses is significant and entails a special point, called the
status quo, that serves as a natural zero and so is, in some
sense, singular (see Section 4.5). Markowitz (1952) was
possibly the first to construct a mathematical theory in
which the status quo played an explicit role, but most
economists attempted to skirt around this difficulty by
saying that utility is always calculated over total wealth.
Edwards (1962) was the first psychologist to emphasize the
importance of the status quo. Of course, everyday evidence
suggests that although total wealth certainly affects
judgments, transactions are nonetheless usually cast as
gains and losses relative to the status quo or, sometimes,
relative to an aspiration level (Lopes, 1984, 1987), and gains
are treated quite differently from losses. It was also apparent
to many, although again not to some theoretical
economists, that the concept of risk centers not so much on
the shape of the utility function as on the different weights
assigned to the events giving rise to losses versus those
ending up with gains. For someone who is risk averse, a
small probability of a large loss looms far larger than the
same small probability of a gain. Lopes (1984, 1987) has
pressed this view most strongly, but it is implicit in a
number of recent developments. An axiomatic theory of risk
perception in which the focus was on the differential impact
of gains and losses was worked out by Luce and Weber
(1986) and tested there and in several papers by Weber and
her colleagues (Weber, 1984, 1988; Weber 6 Bottom, 1989,
1990).

Although Markowitz (1952) may have been the first to
take the distinction between gains and losses into serious

account, the paper that really put it on the intellectual map
was Kahneman's and Tversky's (1979) prospect theory.
This theory involved a somewhat ad hoc representation that
applied only to special lotteries and that required some
``editing'' of lotteries before applying the representation.
Toward the end of the 1980s both Kahneman and Tversky
and, independently, I considered the issue of generalizing
the theory to general gambles. Tversky and I both announced
substantially the same representation at the 1989 Santa
Cruz conference organized by Ward Edwards (see Edwards,
1992). My work appeared in Luce (1991) and Luce and
Fishhurn (1991) and theirs in Tversky and Kahneman
(1992) and Wakker and Tversky (1993). A summary of the
general ideas is provided by Luce and von Winterfeldt
(1994).

In these theories, the basic utility representation, U, that
preserves the preference order, �, over consequences and
binary gambles6 (x, E; y), where x, y � e= status quo, is
the rank-dependent one:

U(x, E; y)={
U(x) W+(E)+U( y)[1+W+(E)],

if x � y
U(x)[1&W+(cE)]+U( y) W+(cE),

if xO y.

(9)

Here U denotes the utility function and W+ the weighting
function used with gains. There is a similar expression for
losses using a weighting function W&. As Luce and Narens
(1985) (see Section 4.4) showed, there is an important sense
in which Eq. (9) is, up to isomorphism, the most general
representation for binary gambles that can hold when U is
an interval scale.7 For the mixed case of x+

� e � y&, the
following sign-dependent form arises:

U(x+, E; y&)=U(x+) W+(E)+U( y&) W&(cE). (10)

Note that in general W+(E)+W&(cE){1, which is
easily shown to force U(e)=0 and thereby makes utility a
ratio rather than an interval scale. This example partially
motivated the development of the theory of generalized con-
catenation structures with singular points that is discussed
in Section 4.5.

One task of theory is to understand what properties of
preference give rise to Eqs. (9) and (10). Wakker and
Tversky (1993) provide one axiom system based just on
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6 The symbol (x, E; y), which really abbreviates the notation
(x, E; y, D), is interpreted to mean that a chance device whose universal
event is E _ D determines whether the outcome is x or y, with x arising if
the event E occurs and y otherwise. The symbols x and y are generic out-
comes, not sums of money or other numerically scaled entities. In the text
I will write cE for D, but one should interpret this only to mean the com-
plement of E relative to the universal event of a particular chance device.

7 That is, U is unique up to positive affine transformations x � rx+s.
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gambles and preference orders. To me it is not very satisfac-
tory because the axioms are formulated in terms of proper-
ties that hold only within a region of gambles having the
same sign and rank order of consequences, which means
that one builds into the axioms one of the main, but odd,
features of the representation. In my opinion, this feature
should be explained, not assumed. I have approached the
task differently by adding a natural primitive that results
both in a plausible formulation of editing and arrives at
rank and sign dependence without assuming it in any
obvious way.

3.2. Joint Receipt

The new primitive8 is the concept of joint receipt (JR) of
two things. Symbolically, if g and h are two gambles or
pure consequences, g�h denotes receiving both of them.
Examples abound: purchases, gifts, both checks and bills in
the mail, etc.

Three underlying assumptions that we make are: � is
commutative, i.e., for all g and h, g�hth�g; � is
monotonic, i.e., for all f, g, h, g � h if and only if
f�g � f�h; and the status quo e leaves g unaffected, i.e.,
e�gtg�etg.

A basic behavioral axiom involving joint receipt of gains
is segregation, which was studied theoretically by Luce
(1991) and Luce and Fishburn (1991): For pure conse-
quences x, yoe,

(x, E; e)�yt(x�y, E; e�y)t(x�y, E; y). (11)

This property, in fact, formalizes one kind of ``editing'' used
in Kahneman and Tversky (1979).

In the presence of some structural assumptions con-
cerning the richness of the consequence and event spaces
and that U(x�x)�2U(x), Luce and Fishburn (1991,
1995) showed that Eqs. (9) and (11) imply for x � e, y � e,

U(x�y)=U(x)+U( y)&U(x) U( y)�C, (12)

where C>0. Note that from the monotonicity of � , U is a
bounded representation in which C is the least upper

bound. In fact, the strictly increasing transformation V=
&ln [1&U�C] leads to an additive representation,

V(x�y)=V(x)+V( y), (13)

and so � over gains forms an extensive structure. This, of
course, is a testable model.

As Tversky and Kahneman (1992) pointed out, it is
plausible to suppose that, for money consequences, x�y=
x+y. Thaler (1985) argued otherwise using an indirect
method of asking students how they thought hypothetical
people would react to certain more-or-less real world
scenarios. He found additivity sustained for losses but it
failed for gains and some mixed cases of gains and losses.
Cho and Luce (1995) have established directly that, for
money, � = + holds for both gains and losses (we did not
study the mixed case). This means that for gains and losses
separately, � is trivially an extensive structure, thereby
justifying Eqs. (12) and (13), and it is easy to see that
V(x)=kx and so U must have the following negative
exponential form for xoe:

U(x)={C(1&e&:x),
:x,

C<�, :>0
C=�.

(14)

A similar development, with different constants, holds for
losses. As we shall see the mixed case is different.

Assuming that segregation (Eq. 11) holds, which seems
to be reasonably well supported empirically (Cho 6 Luce,
1995; Cho, Luce, 6 von Winterfeldt, 1994), then we can
have either the additive representation V of joint receipt
(Eq. 13) or the usual weighted average representation of a
gambles (Eq. 9), but not both. This is somewhat analogous
to the case of relativistic velocity where one cannot have
both the additive representation of the concatenation
operation and the multiplicative one of the conjoint
distance�time structure. A notable difference is that there
does not seem to be any consequence, comparable to the
velocity of light, corresponding to the least upper bound C.
Put another way, one cannot achieve the maximum utility.

A utility function U on binary gambles of gains is said to
be separable if for some weighting function W +,

U(x, E; e)=U(x) W+(E). (15)

Obviously, U is separable if it is rank dependent (Eq. 9).
Note that separability simply means that the conjoint struc-
ture with factors the set C+ of gains and the set E of events
satisfies the Thomsen condition, Eq. (3), which property is
easily seen to amount to the following special case of what
is called event commutativity:

((x, E; e), D; e)t((x, D; e), E; e). (16)
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8 I say ``new'' because it was new in this theoretical literature. In fact,
Slovic and Lichtenstein (1968) used joint receipts��they called them duplex
gambles��in their experiments and Thaler (1985; Thaler 6 Johnson, 1990;
Linville 6 Fisher, 1991) studied empirically and, to a degree, theoretically
the joint receipt of sums of money. He suggested that if � denotes
joint receipt and U denotes utility, then for money U(x�y)=
max(U(x+y), U(x)+U( y)]. He discussed the nature of the boundary
between the two terms on the right and found data that he felt supported
this rule, which he called the hedonic rule. Fishburn and Luce (1995)
showed that his analysis about the boundary was incorrect and we
corrected it as well as axiomatized the representation. As we shall see, I am
now convinced that in the context of the usual laboratory experiments this
rule is invalid and that, in fact, for xy>0, x�y=x+y.
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Brothers (1990) and Chung, von Winterfeldt, and Luce
(1994) report data sustaining event commutativity,
although some earlier data did not (Ronen, 1973).

Luce and Fishburn (1991, 1995) showed, in a context of
adequately rich consequences and events, that segregation
(Eq. 11), the utility form given in Eq. (12), and separability
(Eq. 15) are equivalent to the rank-dependent form of
Eq. (9). In some ways, this result provides a nice account of
rank dependence except for one thing: How do we know
that Eqs. (12) and (15) both hold at once? It could be, for
example, that the V of Eq. (13) is separable, in which case U
is not. The following empirical condition follows from Eqs.
(12) and (15): for each x � e and each E # E there is an
event D=D(x, E) # E such that for all y � e

(x�y, E; e)t(x, E; e)� ( y, D; e) (17)

(Luce, submitted). Acze� l, Luce, and Maksa (submitted)
show that if Eqs. (12), (16), and (17) hold, then there is a U
satisfying both Eqs. (12) and (15). No experiments have yet
checked the adequacy of Eq. (17).

For mixed gains and losses, we have another empirical
property involving � which was first examined by Slovic
and Lichtenstein (1968) (see also Payne 6 Braunstein,
1971) who called it duplex decomposition. It says that people
treat a gamble of gains and losses as the joint receipt of the
gains aspect and, separately and independently evaluated,
the losses aspect. They found it was satisfied by their sub-
jects. Formally, for x+

� e � y&,

(x+, E; y&)t(x+, E$ ; e)� (e, E"; y&), (18)

where E$ and E" mean that E occurs in two independent
realizations of the chance event E _ cE. In a very real
sense, duplex decomposition is the only clearly nonrational
assumption in the theory because the ``bottom line'' of the
two sides of Eq. (18) differ: only x+ or y& can occur on the
left, whereas in addition x+ �y& and e can both occur on
the right.

Luce (submitted) shows that sign dependence (Eq. 10)
and duplex decomposition (Eq. 18) imply a simple additive
conjoint form for � :

U(x+ �y&)=U(x+)+U( y&). (19)

This testable substructure has not yet been studied empiri-
cally. I also show that, together, Eq. (19), separability
(Eq. 15), and duplex decomposition (Eq. 18) imply the sign-
dependent representation of Eq. (10). Again, we seek an
observable property that is equivalent to the U of Eq. (19)
being separable. It is this: For all x+

� e � y& and
x+ �y&

� e and for each E # E, there is an event
D=D(E) # E such that

(x+�y&, E; 0)t(x+, E; 0)� ( y&, D; 0), (20a)

and, similarly, when x+ �y&�e there is event D$=D$(E)
such that

(x+ �y&, E; 0)t(x+, D$; 0)� ( y&, E; 0). (20b)

Again, Eq. (20) is too new to have been examined empiri-
cally. Acze� l et al. (submitted) have proved, on the assump-
tion that U satisfies Eq. (19), that Eq. (20) is equivalent to U
being separable (Eq. 15).

Assuming that empirical support found for Eqs. (17)
and (20) and for the additive conjoint nature of
(C+_C&, � ) , then since event commutativity, segrega-
tion, and duplex decomposition have been sustained, we
have an account for the rank- and sign-dependent version of
binary utility (Eqs. 9 and 10). The extension of this theory
to non-binary gambles is worked out in Luce and Fishburn
(1991, 1995) and in a better fashion by Liu (1995).

3.3. The Role of Functional Equations

A major mathematical tool used in these theoretical
developments is the theory of functional equations (Acze� l,
1966, 1987). It is instructive to see how they come about. As
an example, consider the last problem where we want to
show that if U is a measure satisfying Eq. (19), then Eq. (20)
forces U to be separable. Let V be some order preserving
measure that is separable (Eq. 15), which amounts to
assuming event commutativity (Eq. 16). Since both measures
preserve the preference order, they must be related by a
strictly increasing function F, i.e., U=F(V ). Applying V to
Eq. (20a) we have for the left side

V(x+ �y&, E; e)

=V(x+ �y&) W +(E)
(Eq. 18)

=F &1[U(x+�y&)] W +(E)
Definition of F )

=F &1[U(x+)+U( y&)] W+(E)
(Eq. 19)

=F &1[F[V(x+)]+F[V(v&)]] W +(E)
(Definition of F ).

Applying V to the right side of Eq. (20a), by a similar sort
of argument

V[(x+, E; e)� ( y&, D; e)]

=F &1[F[V(x+) W+(E)]+F[V( y&) W&(D)]].

Note that in Eq. (20a), if we set x+=e, apply V, and use
its separability we see that W+(E)=W&(D). Equating
the two sides, and setting X=V(x+), &Y=V( y&),
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Z=W+(E)=W &(D), then F must satisfy the following
functional equation:

F &1[F(X)+F(&Y)] Z=F &1[(XZ)+F(&YZ)].

The problem is to show that a power function is the only
solution to this functional equation in which case U is
separable (Acze� l et al., submitted).

This example is quite typical of how functional equations
arise in measurement theory applications. Measurement
theory yields numerical representations, and any additional
behavioral constraint is recast as a functional equation
holding among the relevant measures. Then the methods of
that literature, which often are not obvious, are used to
solve the equation, thereby determining the implication of
the behavioral constraint on the measures themselves.
Indeed, functional equations seem to play a role in psycho-
logy somewhat analogous to differential equations in
physics. For additional examples, see Acze� l (1987).

3.4. Certainty Equivalents

In empirically examining some of the behavioral assump-
tions above, such as event commutativity, segregation, and
duplex decomposition, we (Cho, Luce, 6 von Winterfeldt,
1994; Chung, von Winterfeldt, 6 Luce, 1994; von Winter-
feldt, Chung, Luce, 6 Cho, submitted) followed this empiri-
cal strategy: For each lottery that would appear in the test
of a property we attempted to get a good estimate of its cer-
tainty equivalent (CE), which is defined to be the sum of
money, CE(g) or CE(g�h), such that choice indifference
holds with g and g�h, respectively, i.e.

gtCE(g) and g�htCE(g�h). (21)

Approximate indifference between gambles and joint receipt
of them was thereby reduced to verifying approximate
equality of CEs. We became convinced that simply asking a
subject to report CEs is not the same as determining them
by a true choice procedure, so we came to use a modified
up�down procedure called PEST.9 Although PEST is
tedious and time consuming, we know of no other reliable
way to estimate a choice CE, which is the only thing that is
appropriate if we are to replace gambles and joint receipts
by their CEs when testing choice theories.

This approach led me both to develop a CE version of the
rank- and sign-dependent utility theory and to a careful

study of the possible interplay of CEs and JRs of gambles
(Luce, l992b, 1995). I end this section with a description of
some of these theoretical results and the resulting empirical
findings of Cho and Luce (1995).

Five major questions were raised:

Q1. Is JR monotonic relative to the preference ordering
among gambles?

Under plausible assumptions, including that CE is order
preserving over both lotteries and their joint receipt,
monotonicity was shown to be equivalent to the following
property:

CE(g�h)=CE[CE(g)�CE(h)], (22)

which is substitutability in the sense that a gamble in a joint
receipt can be replaced by its certainty equivalent.

Q2. For money, does � = +?

That is, for money amounts x and y, does x�y=x+y?
Certainly this seems plausible, but as was mentioned earlier,
Thaler (1985) had reported data to the contrary, at least for
gains and mixed gains and losses.

Q3. Does some version of segregation hold?

Note that, depending upon the answers to Q1 and Q2,
potentially there are four different quantities at issue:

(a) (x�y, p; y)

(b) (x, p; 0)�y

(c) (x+y, p; y).

(d) CE(x, p; y)+y.

Indifference between (a) and (b) is the basic idea of
segregation. We call indifference of (c) and (d), additive
segregation. The pairings (b)t(c) and (b)t(d) were
studied by Cho, et al. (1994), and the former but not the lat-
ter appeared to be sustained. Note that if � is monotonic
and if � = +, then (a)t(b) implies that all four should be
equal.

One possible meaning for the joint receipt of independent
lotteries is their convolution, V, where lotteries are treated as
independent random variables. Indeed, � =+ for money
and additive segregation, which have both received empiri-
cal support, are special cases of convolution. A first ques-
tion, then, about convolution is:

Q4. Does joint receipt equal convolution, i.e., � = V ?

If the answers to Q1 and Q4 were both Yes, then we
would know that V is monotonic, but if either is No, then we
do not know whether or not V is monotonic. So we asked:

Q5. Is convolution V monotonic relative to �?
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9 We did not use the much faster procedure of judged certainty equiv-
alents because, as Bostic, Herrnstein, and Luce ( 1990 ) showed, it does not
provide a good estimate of choice-based certainty equivalents. Moreover,
as Birnbaum (1992) and Mellers, Weiss, and Birnbaum (1992) showed, the
judged certainty equivalents violate a basic monotonicity property when
one of the consequences is the status quo e. von Winterfeldt et al.
(submitted) argued that monotonicity holds using PEST, although the
data are sufficiently noisy that the case is not airtight.
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I proved, under fairly weak assumptions, that
monotonicity of V is equivalent to

CE(g V h)=CE(g)+CE(h). (23)

The following informal argument was offered to suggest
that the answers to Q4 and Q5 might well not both be Yes
for those people, whom I called ``gamblers,'' who regularly
accept lotteries with (small) negative expected values. If
such a person is monotonic in convolution and � =V, then
he or she should also find repeated convolutions of such
lotteries acceptable, which seems unlikely to be widespread
because the negative expected value grows in proportion to
the number of gambles convolved whereas the standard
deviation grows only as its square root.

Cho and Luce (1995) ran a suitable empirical study to
answer these questions. On the untested assumption that
CE, as estimated by PEST, is order preserving over joint
receipt,10 we provided evidence in support of the following
answers:

A1. � is not monotonic over gambles in the sense that
Eq. (22) was not sustained.

A2. Over money, � = + for gains and losses.

As noted above, it seemed important to attempt to parti-
tion the subjects into gamblers and nongamblers. To that
end, ten gambles with small expected values were presented
and we classed as gamblers those subjects who gave positive
CEs to 7 or more of them; the balance we called nongam-
blers.11 For A1 and A2 there was no distinction for the two
groups.

A3. For nongamblers all versions of segregation were
indifferent. For the gamblers (a)t(b) and (c)t(d), but the
other indifferences did not hold.

A4. For gamblers convolution V = � ; for nongamblers
V { � .

A5. For gamblers V was not monotonic; for non gamblers
it was.

The most disturbing finding is that � over gambles is
nonmonotonic. If this discovery is sustained in further
work, it creates some pretty serious theoretical headaches
because we know very little about representations of non-
monotonic operations.

A most intriguing result was the substantial differences
between the subjects empirically classed as gamblers and

nongamblers. These differences strongly suggest that we
must be very careful about analyzing group data, which are
often reported, when testing hypotheses in this domain. One
approach to take in studying individuals is that of a
psychophysicist who would estimate choice probabilities,
construct psychometric functions, and compare them.
However, with gambles as stimuli three concerns arise that
are more severe than in psychophysics: (1) a major sense of
fatigue and boredom resulting from pondering over very
many choices; (2) the possibility that subjects may remem-
ber specific stimulus pairs and their previous responses to
them, and (3) the possibility that to arrive at quick respon-
ses over many session subjects, either on their own or with
the help of others, will devise simple algorithms that they do
not normally use. Despite these fears, Cho, G. Fisher, and I
are currently working on collecting enough individual data
to study monotonicity of JR and the order preserving aspect
of CEs over JR.

If the above results are sustained. then the theoretical
development of Luce and Fishburn (1991, 1995) will have to
be reexamined. But before doing that, I feel I need to know
better than I now do the nature of the nonmonotonicity of
joint receipt. Although one can never be confident about
future progress, I hope we will have a more complete under-
standing of the nonmonotonicity issue in the near future.

4. CONTEMPORARY REPRESENTATIONAL
MEASUREMENT

I turn now to several nonclassical areas of represen-
tational measurement which have been successful in
broadening the scope and understanding of representa-
tional measurement. Two sources for some of the material
covered in this section are FM-3 and Narens (1985);
however, the area is active and so both volumes are to a
degree out of date.

4.1. Nonadditive Structures with Positive Operations

One of the first papers of this new era was Narens and
Luce (1976) in which we showed that one could drop the
associativity axiom of extensive structures and, changing
little else, continue to arrive at a numerical representation.
The interest for the behavioral and social sciences in pursu-
ing this direction arises, in part, because, unlike physics, we
may be forced to deal with nonadditive operations. We
would like to understand how they can be represented
numerically.

Although our proof was indirect, via the Cantor�Birkhoff
theorem for ordinal structures,12 a direct proof was subse-
quently found (FM-3). It is basically similar to that for
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10 Bostic et al. (1990) and von Winterfeldt et al. (submitted) provide
evidence that CE is order preserving for gambles, but the issue of whether
CE is order preserving for joint receipt has not been studied.

11 The data for a break at 8 and at 6 were also reported, and the results
are substantially the same. With the criterion at 7, we had 16 gamblers and
24 non-gamblers. A variety of questions aimed at eliciting self reports about
gambling behavior were not nearly as useful as this simple behavioral
classification.

12 This theorem states that a weakly ordered system has a numerical,
order-preserving representation, Eq. (1a), if and only if it has a countable,
order-dense subset.
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extensive measurement, but considerably more fussy.
Despite certain similarities, the nonadditive result differed
in two major respects from the earlier additive ones. First,
the representing, nonadditive, numerical mathematics was
certainly not provided a priori; rather, it was constructed
structure-by-structure, and it was rather arbitrary exactly
how that was done. Second, the uniqueness theorem was far
less satisfactory than those we have for extensive, conjoint,
and intensive measurement. We showed that once a number
was assigned to one element of the structure, then the entire
representation was completely determined. But this result
said nothing whatsoever about how two different represen-
tations of a single structure into the same operation are
related. We were a bit perplexed.

The situation became clearer during a seminar I taught at
Harvard in, if I recall correctly, the spring of 1977. Michael
A. Cohen, then a new graduate student in the psychology
department, submitted a term paper in which he claimed to
prove that the automorphism13 group of any nonadditive
concatenation structure of the type that Narens and I had
studied is Archimedean ordered and so, by Ho� lder, is
isomorphic to a subgroup of the multiplicative positive
reals. Despite my initial doubts��after all, these nonadditive
structures are rather irregular and at the time it seemed
unlikely to me that their automorphism groups could all be
so regular14��I became convinced he was correct. I com-
municated the result to Narens, who was working on closely
related matters, and soon the two of them were collaborat-
ing on what became an important paper, Cohen and Narens
(1979).

A second major idea of that joint paper, due to Narens,
was homogeneity. Intuitively, homogeneity means that
elements cannot be distinguished structurally one from
another. It is a major feature of those extensive structures
that have a representation onto the reals. The nonadditive
representation theorem covered numerous inhomogeneous
structures��ones for which elements could be structurally
quite different in the sense that for some pairs of elements
there was no automorphism mapping one into the other.
For example, the entire real numbers under addition fail
homogeneity because 0 has the distinctive property that
x+0=0+x=x, which is not true of any other number.
Cohen and Narens showed that the homogeneous positive
concatenation structures have a simple numerical represen-
tation onto (R+, �, � ) , where R+ denotes the positive
real numbers, � is ordinary numerical inequality, and �

is a binary numerical operation of the form

x�y=yf (x�y), (24)

for some function f such that f (z) is strictly increasing in z,
f (z)�z is strictly decreasing in z, and f (z)>max(1, z).
Moreover, in this representation the automorphisms simply
become multiplication by positive constants. Stated another
way, the homogeneous structures have a ratio scale
representation. Indeed, defining the n-copy operator induc-
tively by x(n)=x(n&1)�x, x(1)=x, it is fairly easy
to show that x(n) is an automorphism, specifically
x(n)=xf (n&1)(1). This is a rare case of a structure for which
an automorphism can be stated explicitly in terms of the
structure itself. We know of nothing comparable for inten-
sive structures although we know how to construct many
other automorphisms once one is in hand (Luce 6 Narens,
1985).

4.2. Scale Types

These discoveries opened up a wholly new approach to
measurement theory that among other things illuminated
the 1930's discussions between psychologists, led by
S. S. Stevens, and physicists and philosophers of physics, led
by N. R. Campbell, concerning the sources of representa-
tional measurement. The latter group contended that exten-
sive empirical operations with additive representations were
the sole source of fundamental measurement, and every-
thing else was derived. The former held that any system of
empirical laws15 that led to suitably unique representations
would be equally good, and subsequently Stevens (1946,
1951) classified measurement into the now famous scheme
according to degree of uniqueness: nominal (for classifica-
tion), ordinal (strictly increasing transformations), interval
(positive power transformations), and ratio (similarity
transformations).16 , 17 Unfortunately, the then lack of any
real examples of Stevens' contentions coupled with the
vagueness of the psychologists' discussions proved uncon-
vincing to the ad hoc committee of the British Association
for the Advancement of Science (Ferguson et al., 1940); they
pronounced extensive structures to be the soul source of
fundamental measurement. Supporting examples for
Stevens' view of structures with numerical representations
but no directly observable associative operation, such as
intensive and conjoint ones, were only subsequently dis-
covered.
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13 An automorphism of a structure is an isomorphism of the structure
onto itself.

14 In fact, as we shall see shortly, only the quite regular ones have non-
trivial automorphism groups.

15 Stevens often spoke of rules rather than laws, but that has a prescrip-
tive flavor which does not capture well the scientific enterprise which
speaks of ``laws of nature.''

16 These statements are correct when the representation is into the
positive reals. For representations into the entire reals, interval scales
involve positive affine transformations and ratio scales take the form of
difference transformations.

17 I heard it said in Cambridge that this classification arose from discus-
sions of an interdisciplinary faculty seminar on the philosophy of science
that involved some prominent Cambridge mathematicians, physicists,
and philosophers of the era. I am not sure there is any documentation
supporting this, certainly plausible, claim.
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Even so, it remained totally opaque as to why Stevens'
scheme of scale types was so limited. Was that an accident
of selection or did something deeper underlie it? Narens
(1981 a, b) addressed this question explicitly in the context
of any structure that can be mapped onto the reals. He
defined two concepts: M-point homogeneity18 for structures
whose automorphism group was sufficiently rich that any
ordered set of M distinct elements could be mapped by an
automorphism into any other such ordered set; and N-point
uniqueness, which is said to hold when any automorphism
with N or more fixed points must be the identity. In infinite
structures, M�N. The automorphism group (and some-
times the structure giving rise to that group) is said to be of
scale type (M, N) provided M is the maximum degree of
homogeneity and N is the minimum degree of uniqueness.
So, for example, extensive structures with ratio-scale,
additive representations are of scale type (1, 1), whereas
conjoint ones with interval-scale, additive representations
are of type (2, 2). He also defined an asymptotic order, �$,
on the automorphism group which, in the N-point unique
case, is a total order.

Under the restrictions that 1�M=N<� and that the
domain of the structure be the real continuum, Narens
proved that M=N�2. Theodore Alper, an undergraduate
major in mathematics at Harvard, encountered this work in
my seminar, and he completed under the direction of
Andrew Gleason an honors thesis on it that solved the
general case showing that the only possible scale types are
(1, 1), (1, 2), and (2, 2). Moreover, Alper established that
any such structure has a representation onto the positive
reals in which the automorphisms form a subgroup of the
group of positive powers. In particular, the ratio or (1, 1)
case consists of all transformations x � rx, r>0; the inter-
val or (2, 2) case, all positive power transformations
x � rxs, r>0, s>0; and the (1, 2) case is in between, e.g.,
the special power transformations with s restricted just to
numbers of the form kn, where k is fixed and positive and n
varies over the integers. This work appeared as Alper
(1987), for which he later was honored by the Young
Investigator Award of the Society for Mathematical
Psychology.

The basis of Alper's proof was to show that the transla-
tions��the identity plus all automorphisms with no fixed
point��form a homogeneous Archimedean ordered group.
Thus, by Ho� lder's theorem, they can be mapped onto the
multiplicative positive reals and, by homogeneity, the struc-
ture itself can be mapped into its automorphism group,
thereby inducing a map of the structure into the positive
reals in such a way that the translations appear as multi-
plication.

Freyd's comment about measurement theory being little
more than applications of Ho� lder's theorem continues to
hold, not at the structural level, but rather at the level of
automorphism groups. In this case, at least, the application
is decidedly nontrivial.

Subsequent work has focused on several issues: How does
the theorem change when other structural assumptions
replace the strong one that the structure is onto the reals? In
particular, exactly what lies behind each of the key proper-
ties of the translations? What happens when we examine
nonhomogeneous structures? What happens when struc-
tures are not finitely unique? How can the idea of dis-
tributive triples (Section 2.4) be modified to take into
account these more general, nonadditive structures? How
do these developments about scale type illuminate the issues
left unresolved in the foundations of dimensional analysis?
And can we apply any of this new understanding to concrete
behavioral science problems? Remarks on these issues form
the remainder of this article.

4.3. Properties of Translations

As was noted, the heart of Alper's result was to use
properties of the continuum, homogeneity, and finite
uniqueness to prove that the translations are homogeneous,
a group, and Archimedean ordered. A surprisingly difficult
part of his proof is in showing that they form a group, which
is equivalent to several things: (i) they are closed under
composition of functions; (ii) they are 1-point unique; (iii) if
T denotes the set of translations and D* denotes the set of
all other automorphisms��these have one or more fixed
points and are called dilations��then TD*�D*. One exer-
cise, to which I return every now and then, is to try to
understand as fully as possible just what underlies each of
the conditions on T. In particular, one would like to see
how much can be obtained without invoking Dedekind
completeness and to find possible structural substitutes for
homogeneity.

Recently, with important help from Alper in correcting
and improving the proof, the following result has been
obtained (Luce, in preparation). Consider the following
four properties of an ordered structure: the asymptotic
order of its automorphism group is connected, the structure
is homogeneous, the set of translations is Archimedean,
and the set of dilations is Archimedean relative to
all automorphisms. It is not difficult to show that if a
homogeneous structure has a real representation in which
the translations can be represented by multiplication by
positive constants, then the other three conditions are
satisfied. The converse is somewhat more difficult to show.
The proof, like Alper's, entails using homogeneity to
map the structure isomorphically into the translations,
then showing that the translations form a homogeneous,
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18 M-point homogeneity is very similar to the idea of M-transitivity in
the theory of permutation groups, the main (and important) difference
being that the former requires the order of elements to be preserved.
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Archimedean ordered group, which, using Ho� lder's
theorem, are mapped into the positive reals in such a way
that the automorphisms appear as positive power transfor-
mations. Thus, the structure has a numerical representation
and is, in fact, 2-point unique. Because experience with
additive structures has repeatedly shown that results based
on the continuum (Dedekind completeness) can be readily
reduced to theorems involving Archimedeaness, I had
hoped that this new result based not on the continuum but
only on Archimedeaness would lead to an easy proof of
Alper's sufficient condition. So far, that reduction has
eluded us.

4.4. Scale Types of Concatenation and Conjoint Structures

In studying general (i.e., nonadditive) concatenation and
conjoint structures, the first thing to note is that the reduc-
tion of intensive structures to conjoint ones via Eq. (8) in no
way depends on bisymmetry, and the reduction of conjoint
structures to that of concatenation structures via Eq. (4) in
no way depends on using the Thomsen condition (or double
cancellation) to establish associativity in the induced
concatenation structure.

Thus, to the degree we understand the induced con-
catenation structures, we also understand the intensive and
conjoint ones. Indeed, suppose C=(A_P, �) is a con-
joint structure and a0 # A, p0 # P are used to induce an
equivalent concatenation structure via Eq. (4), that (:, ') is
a (factorizable) order automorphism19 of C, and ? is the
mapping induced from A to P by Eq. (4a). Then, '?=?&1:,
and : (and so ') establishes an isomorphism between the
concatenation structure induced by (a0 , p0) and that
induced by (:, ')(a0 , p0)=(a$0 , p$0). So, in the homogeneous
case all the induced structures are isomorphic. Further, if :
is an automorphism of an intensive structure, then (:, :) is
a (factorizable) order automorphism of the induced con-
joint structure (A_A, �$) and for the induced concatena-
tion structure, Eq. (4), two cases arise: If : is a translation,
then the concatenation structure induced by (a0 , a0) is
isomorphic to that induced by (:(a0), :(a0)). If : is an
automorphism with a fixed point a0 ��a dilation��then : is
an automorphism of the concatenation structure induced by
(a0 , a0). Moreover, all of the automorphisms of the induced
structure have a0 as a fixed point. Note that the latter struc-
ture is not homogeneous because of a0 , but it is
homogeneous on either side of a0 if the conjoint structure is
suitably homogeneous. This type of structure is taken up in
Section 4.5. Some of these developments just mentioned are
in Luce and Cohen (1983) and others are in Luce and
Narens (1985).

Luce and Narens (1985) also explored in detail
homogeneous, finitely unique concatenation structures. We
showed that such structures must be at most 2-point unique;
that they have the representation of Eq. (24); that the (1, 2)
and (2, 2) cases must be idempotent (a b ata); and that
these cases impose constraints on the function f of the
representation. Indeed, in the case of the continuum, the
(2, 2) or interval case is of the form

x� y={xcy1&c,
xdy1&d,

x� y,
x< y,

(25)

with the two parameters c, d # (0, 1). This representation,
when transformed logarithmically onto the reals, is the
same as the rank dependent one of utility, Eq. (9). This form
was first suggested in a psychological context by Birnbaum,
Parducci, and Gifford (1971), who called it a range model.

It is worth noting that many social scientists believe that
it is easier to work with ordinal scales rather than interval
ones and with interval scales rather than ratio ones because
the sequence of scales is increasingly restrictive: ratio is a
``stronger'' measurement than interval which in turn is
``stronger'' than ordinal. It certainly is easier to collect
ordinal data than interval, and it may be easier to collect
interval data than ratio. But for theory construction exactly
the opposite order of strength is the case. The theory is more
constrained, not less, by the ``weaker'' of two scales. For
example, the condition of being a ratio scale admits any
suitably monotonic function f in Eq. (24) whereas the
weaker interval scale reduces it to the 2-parameter case of
Eq. (25), which is a far more restrictive theory.

So far no one has looked seriously at the possible
generalizations of the utility theory of gambles and their
joint receipt using the general form of Eq. (24) rather than
the quite restrictive Eq. (25).

4.5. Structures with Singular Points

Alper (1987) characterized not only the automorphism
groups of homogeneous, finitely unique structures, but also
those of nonhomogeneous, finitely unique ones. The latter
groups are, in most cases, exceedingly complex, and to my
knowledge no one has used his results. The problem is that
nonhomogeneity stands to homogeneity as nonlinearity
does to linearity: highly nonspecific to highly specific. As
was noted above, some nonhomogeneous structures arise
naturally in reducing conjoint structures to concatenation
ones. Happily, however, they are nearly homogeneous; the
trouble is limited to one point. There are other examples. If
one does not leave out the null object in an extensive struc-
ture, it too becomes nonhomogeneous, but just at that null
point. Another example is relativistic velocity which is also
homogeneous everywhere except at velocity 0, which has the
unique property that u�0=u, and at the speed of light, c,
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19 Technically, such an automorphism is called factorizable because it
entails separate transformations of the two components. In general there
are order automorphisms that are not factorizable in this sense.
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which has the unique property that u�c=c [see Eq. (2)].
And Section 3 examined in some detail utility structures
that are homogeneous on either side of the status quo.

Motivated by such examples I explored the following
types of structures (Luce, 1992a). There is a general opera-
tion, i.e., function into the domain, involving finitely many
arguments from the domain, and the structure is finitely
unique. A point is said to be singular if it is fixed under
all automorphisms. The structure is assumed to be
homogeneous between any pair of adjacent singular points,
and the operation is assumed to be monotonic in the normal
fashion at nonsingular points and in a slightly modified
fashion at singular ones. One then shows that there can be
at most three singular points: minimal, maximal, and inte-
rior. Their possible properties are established; in particular,
the interior one acts somewhat like a multiplicative unit in
the nonnegative, multiplicative reals, the maximum some-
what like infinity, and the minimum somewhat like zero.
One uses the known representations for homogeneous
structures on the continuum to patch together a representa-
tion in which the translations��now generalized to be
automorphisms with no fixed points other than the singular
ones��take the following form: There is a constant c of the
structure such that each translation corresponds to some
r>0 with x � rx, for x above the interior point, and x � rcx
for x below the interior point.

4.6. Nonfinitely Unique Structures

As with nonhomogeneity, very little is understood in
general about structures that are not finitely unique. The
most obvious case is continuous, homogeneous ordinal
structures in which strictly increasing functions form the
automorphisms. For any positive integer N, it is possible to
find two increasing functions that agree at N points. More
interesting is the question of structures with more structure
than ordinal that still are not finitely unique. A case in point,
studied by Narens (1994), are dense threshold structures.
Perhaps the simplest case is (R, �, T) where R denotes
the real numbers and T is defined by T(x)=x+1, x # R.
The interpretation is that y is seen as ``discriminably larger''
than x when y>T(x) and x and y are ``indiscriminable''
when |x&y|�1.

Consider the following transformations. Let A denote all
strictly increasing functions from (0, 1] onto (0, 1]. For
each r # R, : # A, integer m, and each x # (m, m+1), define

:r(x)=m+r+:(x&m).

Let G denote the set of all these transformations generated
from r # R and : # A. Narens (1994) proved, among
many other things, that G is the automorphism group
of (R, �, T) . Quite clearly, G is at least 1-point
homogeneous and it is not N-point unique for any finite N.

No general results are known about the class (M, �) of
structures. We do not even know if examples exist for every
positive integer M. Presumably these classes are too diverse
to expect simple characterizations, but there may well be a
number of interesting subclasses, much as there is for non-
homogeneity.

4.7. Generalized Distributive Triples

Because distributive triples lie at the basis of dimensional
analysis, a natural question to ask is whether more general
ratio scale structures can substitute for extensive structures
in constructing the space of attributes. If so, then the scope
of physical-like measures can, in principle at least, be
extended to nonextensive, ratio scales. This possibility
seems potentially significant for the biological and
behavioral sciences.

The question, then, was how to generalize the concept of
distribution to structures with no concatenation operation.
This turned out not to be difficult (Luce, 1987). Suppose
C=(A_P, �) is a conjoint structure. Two n-tuples
(a1 , ..., an) and (b1 , ..., bn) from A are said to be similar if for
some p, q # P, (ai , p)t(bi , q) for i=1, ..., n. A relational
structure A=(A, �A , S1 , ..., Sk) , where �A is the order
on A induced by � when the P component is held fixed, is
said to distribute in C if, for each j, whenever two n-tuples
are similar and one is in Sj , then so is the other. Distribution
of an extensive structure in an additive conjoint one (Eq. 5)
is a special case of this definition. Suppose that a general
structure A distributes in the concatenation structure C;
that the automorphism group of A is homogeneous and
Archimedean ordered, and so has a unit representation20

,A ; and that solvability holds in C. Then one can show that
there is a mapping ,P from P to the reals, such that ,A,P

represents C. Note that the ``additivity'' of C is not assumed;
it is a consequence of the other conditions.

One conclusion from this line of work is that dimensional
analysis can be extended to incorporate any structure that
has a ratio scale representation and that distributes in a
suitable conjoint structure.

In passing it is worth noting that the distribution result
just mentioned rests very much upon the fact that each
automorphism of A forms one factor of a factorizable
automorphism of the conjoint structure C. I suspect that for
the nondistributive interlock that some bounded concatena-
tion representations exhibit with conjoint structures, the
nonfactorizable order automorphisms of C play a critical
role. That is certainly the case in relativistic velocity where
the Lorentz transformations are the appropriate ones, and
they are not factorizable. This observation has not yet been
successfully pursued in a general fashion.
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20 A unit representation is defined to be one whose automorphisms are
multiplication by positive constants.



File: 480J 110816 . By:CV . Date:18:01:00 . Time:13:03 LOP8M. V8.0. Page 01:01
Codes: 6370 Signs: 5749 . Length: 56 pic 0 pts, 236 mm

4.8 Meaningfulness and Dimensional Analysis

As was noted in Section 2.5, the FM-1 presentation of
dimensional analysis in 1971 was incomplete because it
provided no real explanation as to why physical laws should
satisfy the condition known as dimensional invariance,
which says that a physical law is invariant under the class
of numerical transformations called similarities. The
arguments provided for accepting dimensional invariance
were not, in our opinion, very convincing. Luce (1978) (see
also Section 22.7 of FM-3) showed that if one carries out the
construction of the space of ``physical'' attributes using
distributive triples, then the similarities are nothing but the
factorizable automorphisms of the structure. And it had
long been argued that if a relation, which is what a physical
law is, is definable in any reasonable sense within a struc-
ture, then it must be invariant under the automorphisms of
the structure. This was the stance of Klein (1878�1893)
concerning the concept of geometric object, and it is a
reasonable interpretation of Stevens' (1946, 1951) strictures
on admissible statistics. Mundy (1986) explored these issues
very carefully in an effort to place the whole discussion on
a sounder philosophical footing.

Dzhafarov (1995) has criticized this view of dimensional
invariance, arguing that traditional treatments, such as
Sedov's (1956�1959), are quite satisfactory and that one
need only invoke the concept of truth, not invariance under
automorphisms. Despite numerous lengthy conversations
and much correspondence, neither of us has persuaded the
other of his position.

Although such invariance is a necessary condition for
definability, which in the present context has come to be
called the meaningfulness of a relation within a relational
system, it has bite only when the automorphism group is
very rich, i.e., when the structure exhibits a good deal of
homogeneity or, as the physicists say, symmetry. It becomes
trivially unrestrictive and so uninteresting in cases where the
identity is the only automorphism, as is true in highly
inhomogeneous structures. In addition to Mundy (1986),
Narens (in preparation) accepted the very deep challenge
involved in understanding this problem and he has treated
it in a fully axiomatic, logical fashion by extending the
Zermelo�Fraenkel axiom system for set theory in two ways:
adding a primitive of meaningfulness and a partition of the
underlying domain into purely mathematical objects and
nonmathematical ones. He has explored a complex set of
interlocking axioms that greatly illuminate the relation
between the concept of meaningfulness and invariance
under various groups of transformations.

I have read large portions of his manuscript and I believe
that it will come to be considered one of the landmarks of
late 20th century philosophical thought when it finally
appears.

5. APPLICATIONS OF CONTEMPORARY
MEASUREMENT IDEAS

The ideas described in Section 4 are relatively new and
only a few applications have yet been published. Part of the
reason for so few is that many of the new results simply
clarify what is possible in the way of measurement. But
some are far more specific. For example, Eq. (24) for a
general ratio scale concatenation structure is quite specific,
but to my knowledge it has yet to be used. Most of the
applications involve the concept of meaningfulness and
transformations under automorphisms. A number of such
applications are incorporated in Narens book, but since
they are not generally available, I will not attempt to
describe them in any detail. A good published source for
many earlier theoretical applications to psychophysics of
both classical and contemporary measurement is
Falmagne's 1985 book Psychophysical Theory. There one
finds illustrated some of the major themes of such theoreti-
cal work: the use of invariance and meaningfulness
arguments to limit the form of laws and the widespread use
of the mathematical technique of functional equations
which I mentioned in Section 3.3. Here I shall limit myself to
two issues: the form of psychophysical laws and the merging
of scales from different sources.

5.1. Psychophysical Laws

Consider cross-modal matching where to each stimulus in
one ordered domain the subject assigns a stimulus from
another ordered domain, e.g., sound intensity to light inten-
sity. In a sense, matching also encompasses magnitude
estimation and production where one of the domains is the
real numbers. These three empirical methods were intro-
duced by S. S. Stevens and used extensively by him and
others (Stevens, 1975). Stevens' major conclusion from his
data on matching was that the functional relation estab-
lished between the two modalities is, when formulated in the
usual ratio-scale physical measures, a power function. True,
there were all sorts of caveats, but this was a major thrust
of his position. When I first learned of this from him and
gradually overcame my skepticism about the experimental
method itself, which indeed is peculiar, I sensed that the
finding was somewhat similar to the products of powers
relations one encountered in dimensional analysis. Not
having at the time a very deep understanding of dimensional
analysis��that did not come until the work leading up to
FM-1��I argued (Luce, 1959b) that the empirical result
followed from the kind of invariance principle used in
dimensional analysis. I was uneasy about the resulting
conclusions, which were perfectly correct mathematically,
because they seemed to say there was no content in the
empirical finding beyond that of the physical units, which
did not seem quite right. Rozeboom (1962) criticized what
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I had done and in Luce (1962) I pretty much acknowledged
that there was something wrong with my interpretation.
Despite that, a follow-up literature developed that pursued
and generalized the idea (Acze� l, Roberts, 6 Rosenbaum,
1986; Falmagne 6 Narens, 1983, Krantz, 1972)

With the insights we had obtained about ratio scales, I
returned to the problem in Luce (1990) where I made the
following observation. Let M denote the matching relation
between two modalities, so that if s is a stimulus in modality
2 that a subject matches to stimulus x in modality 1, we
write xMs. The observation was that the psychophysical
law M is, in a sense, compatible with the physics of the two
attributes being matched if the following holds: for each
translation { of modality 1 there is a translation _{ of
modality 2 such that for all x in modality 1 and all s in
modality 2

xMs if and only if {(x) M_{(s). (26)

It is not difficult to show that this holds if and only if for
the ratio scale representation ,1 of modality 1 and ,2 of
modality 2, there are positive constants : and \ such that

,2(s)=:,\
1(x). (27)

This is a far more satisfactory formulation than that of
Luce (1959b) in that Eq. (26) is clearly a substantive
assumption, one that can be proved wrong, whereas the
earlier argument had a certain tautological quality about it.
The reason is that, as dimensional analysis was then
formulated by the physics and engineering communities,
the notation did not distinguish very clearly between
automorphisms and changes of unit��both being repre-
sented by multiplication by a positive constant. There is, of
course, an enormous difference. The unit is a convention
of the scientist about representing the dimension, and
changing it is merely a numerical matter; whereas an auto-
morphic change, as in Eq. (26), is a systematic shift in the
stimuli themselves, not in their representation. This con-
founding has plagued many otherwise good discussions of
dimensional analysis, and for a long time blurred the real
meaning of the concept of scale type.

Narens and Mausfeld (1992) have pursued these issues
further, asking in such situations which parameters of
laws, e.g., the exponent of Stevens' power law or Weber's
constant, can be viewed as meaningful when alternative,
equally good, axiomatizations of the physics using different
primitives are considered. This leads to such conclusions as
the following: If ,(a1) and ,(a2) are the usual physical
measures of a pair of stimuli that are ``just noticeably dif-
ferent'', then the Weber fraction (,(a2)&,(a1)�,(a1) is not
really suitable to be compared across modalities because of
a lack of suitable invariance under alternative physical
representations; whereas the closely related ,(a2)�,(a1) is.

And Narens (in press) has given a subtle analysis of
magnitude estimation in which he considers very carefully
the role and meaning of the numbers arising from the
method. This is generalized in his book as an abstract for-
mulation of the cognitive situation faced by subjects, and he
shows why power functions arise in a very natural fashion.
It is difficult to describe these interesting contributions
briefly, and I do not attempt to do so here.

5.2. Merging Functions

A second problem, related to, but significantly different
from, the preceding one can be traced back, in part, to
Arrow (1951) and to Luce (1959b, 1964). It is the familiar
normative social issue of merging the views of a number of
people into some sort of a social consensus. The social
choice literature stemming from Arrow's work typically
assumes that each individual provides a simple ordering of
a set of alternatives and the goal is find a function (rule) that
maps these into a social ordering or into a set of socially
acceptable choices. Imposed on the rule are properties that
are viewed as normative conditions of social fairness. This
can be viewed as an ordinal version of the social consensus
problem. Arrow's striking result was that a set of conditions,
each of which seems eminently fair, is in fact inconsistent.
This disturbing result has resulted in extensive work con-
cerning alternative formulations that in some sense avoid
the dilemma.

A second literature, stimulated by somewhat different
considerations, has arisen independently of the social choice
problem. Typically, it begins with numerically scaled
inputs��ratings of some sort��from the individuals and asks
questions about how best to merge them into a social rating
for each of the alternatives. Here one works with numbers
and not just orderings. We may describe the problem as
follows: Suppose f1 , f2 , ..., fn are the individual rating func-
tions, i.e., from a domain A of entities being rated into the
real numbers. Thus, for a # A, f1(a) is the rating individual
i assigns to entity a. Then a merging rule F is such that for
a # A,

F( f1 , f2 , ..., fn)(a)=F[ f1(a), f2(a), ..., fn(a)]. (28)

Two very well known and important merging functions are,
of course, the arithmetic mean

A( f1 , f2 , ..., fn)(a)=
1
n

:
n

i=1

fi (a), (29)

and the geometric mean

G( f1 , f2 , ..., fn)(a)=\`
n

i=1

fi (a)+
1�n

. (30)
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The question is when to apply which and what others
should be considered. Here, the predominant issue is which
merging functions F are meaningful (in the technical sense of
invariance, Section 4.8) given the scale types of the inputs to
F and the scale type of its output.

The basic functional equation can be formulated as
follows. Suppose that Ti is a transformation of the data fi

from individual i that is admissible under its scale type, then
we expect these changes to give rise to an admissible trans-
formation D(T1 , T2 , ..., Tn) so that Eq. (28) yields the
invariance condition:

F[T1( f1), T2( f2), ..., Tn( fn)]

=D(T1 , T2 , ..., Tn)[F( f1 , f2 , ..., fn)]. (31)

The literature explores the numerous possible special cases
depending upon the scale types involved. Of course, as
Alper's theorem (Section 4.2) makes clear, for many pur-
poses we can restrict ourselves to ratio, interval, and ordinal
types. (The possibilities involving (1, 2) scale types have
been ignored in large part because we do not have any
serious examples of them.) Even so, there are many
possibilities, some of which are: the Ti 's are of the same
type, but are independent; for all i, j, Ti=Tj ; the Ti are
interval scales with the same unit but different zeros; some
of the Ti are of one scale type and others are of a different
one; etc. Very many of these cases have been worked out in
mathematical detail by Acze� l and Roberts (1989), Acze� l,
Roberts, and Rosenbaum (1986), Luce (1964), and
Osborne (1970). I will summarize only a few of the simpler,
but possibly more useful, results.

We say that F is idempotent21 if for each x in the domain
of F, F(x, x, ..., x)=x. This says if everyone agrees on the
evaluation x, then the merged evaluation should be x. We
say that F is symmetric if it is invariant under any permuta-
tion of the arguments. This says that the individuals are
indistinguishable and their roles can be interchanged
without affecting the consequence. Although both proper-
ties seem plausible, one can wonder if they really are when,
for example, different scale types apply to different people.

Acze� l and Roberts (1989, Corollary 3.1, p. 236) show
among many other things that if the fi are all ratio scales
with independent units and F is symmetric and idempotent,
then the assertion, for any entities a and b and any number
:>0,

F[ f1(a), f2(a), ..., fn(a)]=:F[ f1(b), f2(b), ..., fn(b)] (32)

is meaningful (invariant under ratio scale transformation) if
and only if F=G, the geometric mean (Eq. 30). On the other
hand, if the fi are all interval scales and F is idempotent,
then Eq. (32) is never meaningful (Corollary 3.5, p. 238).

Consider the following type of assertion: for any :>0
and any a, b, c, d # A,

F[ f1(a), f2(a), ..., fn(a)]&F[ f1(b), f2(b), ..., fn(b)]

=:(F[ f1(c), f2(c), ..., fn(c)]&F[ f1(d ), f2(d ), ..., fn(d )]),

(33)

and

F[ f1(a), f2(a), ..., fn(a)]>F[ f1(b), f2(b), ..., fn(b)]. (34)

If the fi are ratio scales with independent units and F is
idempotent and symmetric, then Eqs. (33) and (34) are
meaningful if and only if F=G (Corollary 3.3, p. 238). In the
interval case with F idempotent and symmetric, Eqs. (33)
and (34) are never meaningful if the fi are independent inter-
val scales, but when these interval scales have the same unit
but independent zeros these equations are meaningful if and
only if F=A, the arithmetic mean (Eq. 29) (Corollary 3.6,
p. 238).

When we turn to the ordinal cases, we begin to have some
overlap with the social choice literature. I will mention only
one result here, due to Ovchinnikov (in press), from the
meaningfulness approach. A merging function is called a
mean value if it is symmetric and

min[x1 , x2 , ..., xn]�F(x1 , x2 , ..., xn)

�max[x1 , x2 , ..., xn]. (35)

Clearly F is idempotent. Examples are the minimum, maxi-
mum, and median. If the Ti are all the same ordinal trans-
formation T and if D in Eq. (31) is also T, one calls F
ordinally stable. Ovchinnikov shows that if the domain of
arguments has no gaps and the ordinal transformations are
homogeneous (Section 4.2), then any continuous F that is
ordinally stable is an order statistic.

6. CONCLUDING REMARKS

Although the representational theory of measurement
began largely as a way to understand the source of physical
measurement, as described in Sections 2.1�2.3, in the second
half of this century it has increasingly served two additional
roles. It has greatly generalized our understanding of the
scope of measurement possibilities (see Sections 2.4�2.6 and
4) and it has, increasingly, provided useful applications to
the behavioral and social sciences (Sections 2.3, 2.6, 3, and
5). I believe that as the newer ideas and results become
better known, additional contributions to substantive areas
in the behavioral sciences will increase substantially. To the
degree that behavioral theory entails both measurement
and interlocking laws, such developments are inevitable��the
only question is the speed with which they are carried out.
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