
Chapter 2 Construction of Numerical 
Functions 

2.1 REAL-VALUE!) FUNCfIONS ON SIMPLY ORDERED SETS 

In Chapter 1, we defined a simple order to consist of a set with a transitive, 
connected, antisymmetric binary relation. Theorem 1.1 established that 
any finite simple order can be represented by a finite set of real numbers 
together with their natural ordering. Such a representation is unique up to 
strictly increasing transformations of Re onto itself (ordinal scale). Here 
we prove similar representation and uniqueness theorems for certain infinite 
simple orders. The corresponding results for weak orders follow immediately 
from those for simple orders, factoring out equivalence classes of a weak 
order to obtain its associated simple order. 

It is easy to show that not every simple order can be represented in <Re, ~). 
Let A = Re X Re, and define :<: on A by 

(x, y) :<: (x', y') 

if and only if either 

(i) x >x' or 

(ii) x = x' and y:;;' y'. 

Suppose that 1> is an isomorphism of (A, :<:) into (Re, :;;'). For x in Re, 
let 1>,(x) = 1>(x, I) and let 1>O<x) = 1>(x,O). Since (x, I) >- (x, 0) and 1> is 
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order preserving, 1>,(x) > 1>o(x). Since every open interval of Re contains 
a rational number, there is a rational .p(x) such that 1>,(x) > .p(x) > 1>o(x). 
Thus, tjJ is a function from Re into the set of rational numbers, denoted Ra. 
Moreover, tjJ is one to one, since if x> x', (x, 0) >- (x', 1), so 

.p(x) > 1>o(x) > 1>,(x') > .p(x'). 

However, it is wen known that the rational numbers are countable (i.e., 
can be put into one-to-one correspondence with the set 1+ of positive integers) 
and the reats are not countable; therefore, a one-to-one mapping such as 
if; cannot exist, which implies that the isomorphism 1> also cannot exist. 

The previous example shows that some additional condition must be 
imposed on a simple order to obtain an isomorphism into <Re, ~>. We 
already know that the (structural) assumption of finiteness suffices, We next 
prove that it is also sufficient for the set A to be countable. 

THEOREM I. Let (A, :<:) be a simple order. If A is countable, then there 
exists a real-valuedfunction 1> on A such that for all a, b E A, 

iff 1>(a) :;;, 1>(b). 

Theorem I was proved by Cantor (1895). 
Since Theorem I is merelY a step toward a necessary and sufficient 

axiomatization, we do not formulate the corresponding uniqueness theorem 
at this point. The method of proof involves constructing 1> precisely as 
was outlined in Section 1.1.1; after the values of 1> have been found for 
any finite subset of A, we find the value for a new element of A by locating 
the new element between its nearest neighbors in the finite set already 
considered and assigning a number between the numbers assigned to 
those neighbors. Since A is countable, we construct the value of 1> for the nth 
element of A at the nth step; eventually, any given element of A is 
reached. The function 1> is thus considered to be defined over the whole of A, 
since given any particular element a in A we know precisely how to construct 
the number 1>(a). (The function 1> is said to be defined by induction.) 

PROOF OF THEOREM I. Let an denote the element of A that corre
sponds to n in the given one-to-one correspondence between A and 1+. 

Define 1>(a,) = O. If 1>(a,), ... , 1>(an) have been defined, where n:;;' I, 
define 1>(ao+') as follows: 

(i) If an+1 >- ak for all k, I '" k '" n, let 1>(an+1) = n. 

(ii) If an +1 -< ak for all k, I '" k '" n, let 1>(an+,) = -no 
(iii) If neither (i) nor (ii) applies, then there exist i, j, with I '" i, j '" n, 
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such that af. > an+l > aj and for any k, 1 ~ k < n, either ak;Z: ai or 
a,:2:; a •. Let 1>(an+1) = H1>(a,) + 1>(a,)]. 

By induction, 1> is defined on all of A. To prove that 1> is order preserving, 
use mathematical induction: it is obviously order preservmg on {all, and if 
it is order preserving on {al ".,' an}, then, by the constru~tion, of 4>(an+1) 
just given, it is order preserving on {al ,"" aMl}' (See ExercIse 1.) 0 

There is a countable subset of the real numbers-the rationals-that is 
thoroughly interspersed in the feals in the sense that between every two 
reals there is a rational. If an uncountable simple order is to be represented 
in (Re, ;;», then one anticipates that it will exhibit the analogous propert~. 

\ 

In fact, the trouble in the example at the begmnmg of the chapter IS 

'\ precisely that there are uncountably many intervals of form (x, I) >- (x, 0); 
therefore no countable set can be found such that it has a representative 
in every such interval. Conversely, if an uncountable set does have a countable 
subset thoroughly interspersed, then by Theorem I we can find a representa
tion for that subset in <Re, ~>. We can then expect to extend the representa-
tion to the whole uncountable set by considering each element of the latter 
as a limit of elements in the countable subset. This suggests the feasibility 
of there being a simple necessary and sufficient condition for a simple 
order to be representable in <Re, ~>. . 

To make precise the meaning of "thoroughly interspersed" we tntroduce 
the following technical concept of order dense: 

DEFINITION l. Let (A, :2:;) be a simple arder and let B be a subset of A. 
Then B is order dense in A iff for all a, c E A such that a>- c, there exists 
bE B such that a :2:; b :2:; c. 

THEOREM 2. If (A, :2:;) is a simple order, then the following two condi

tions are equivalent: 

(i) There is a finite or countable order-dense subset of A. 

~1 (ii) There is an isomorphism of (A, :2:;) into (Re, ;;». 

.i This theorem seems first to have been stated in this generality by Birkhoff 
,,0"!''''''(1948, pp. 31-32), although a result almost as strong was proved by Cantor 

(1895). The proof sketched by Birkhoff is incomplete. Debreu (1954, 
Lemma II) proved that (i) implies (ii). 

For the proof of this theorem, we remind the reader of three elementary 
facts about countable sets: 

1. Any infinite subset of a countable set is itself countable. 

2. If A is countable and B is finite or countable, then A u B is countable. 
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3. The Cartesian product offinitely many countable sets Is countable. 

(Since the rationals can be regarded as a subset of the Cartesian product 
I X I, they are countable.) 

If (A, :2:;) is a simple order and if a, a' E A are such that a' >- a and, 
for any bE A, either b :2:; a' or a :2:; b, then we say that (a, a') is a gap and 
that a, a' are endpoints of a gap. With this definition, we can formulate 
the following lemma. 

LEMMA 1. Let (A,:2:;) be a simple order and let A* be the set of all 
endpOints of gaps. If either (i) or (ii) of Theorem 2 holds, then A * is either 
finite or countable. 

PROOF. Let A,* be the set of upper endpoints of gaps and A,* be the 
set of lower endpoints. ~ 

Suppose that (i) holds, and let B be a finite or countable, order-dense CD 
subset of A. By Definition I, if (a, a') is a gap, then either a E B or a' E B. 
Hence, Al * - B is in one-to-one correspondence with a subset of B (each 
upper endpoint not in B corresponds to its lower endpoint which is in B). 
Therefore, Al * - B is finite or countable. Similarly, A2 * - B is finite or 
countable, and we know that A * () B is finite or countable. So A * 
= (A, * - B) U (A, * - B) U (A * n B) is finite or countable. 

Suppose that (ii) holds, and let 1> be an isomorphism of <A, :2:;) into@ 
(Re, ;;». If (a, a') is a gap, then there exists a rational p such that ,(. , 
1>(a') > p > 1>(a). This leads to a one-to-one correspondence between A, *.r F 

'$"",,,,0' 

and a subset of Ra and to one between A2 * and a subset of Ra, so A * is 1.). t 

finite or countable. .. . 02 
PROOF OF THEOREM 2. Suppose that B is a finite or countabl~ 

order-dense subset of A. Adjoin the greatest and least elements of A (if such 
exist) to B. LetA* be the set of endpoints of gaps. By Lemma I,B* = B u A* 
is tinite or countable. By either Theorem 1.1 or 1, there exists an order
preserving function ¢/ from B* to Re. 

For a E A, let 1>(a) be the least upper bound of the set of numbers 
{1>'(b) I bE B* and a:2:; b). For a E B*, obviously 1>(a) exists and equals 
1>'(a). To show that 1>(a) exists for a ¢ B*, note that there exist a, ,a, with 
a1 >- a>- a2 . By order density, there exist b1 , b2 E B such that 

a,:2:;b,>-a>-b,:2:;a,. 

The set {1>'(b) I bE B* and a:2:; b) is nonempty [it contains 1>'(b,)] and is 
bounded above [by 1>'(b,)], so its least upper bound 1>(a) exists. 

We show that 1> is order preserving. Suppose that a' >- a. By the construc
tion of B*, there exist b, b' E B* such that a' :2:; b' >- b :2:; a. (If a, a' E B*, 
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let b ~. a, b' ~ a'. If a ¢ B*, then by order density there exists b' E B with 
a' ;;; b' >- a. Since (a, b') is not a gap, there exists a" with b' >- a" >- a and 
hence b E B with a" ;;; b >- a. A similar argument holds if a' ¢ B*.) Thus, 
¢(a') ~ ¢'(b') > ¢'(b) ~ ¢(a), as required. 

Conversely, suppose that ¢ is an isomorphism of (A, ;;;) into (Re, ~). 
Let J be the set of pairs of rational numbers (r, r') such that for some a E A, 
r' > ¢(a) > r. For each (r, r') E J, choose exactly one a E A such that 
r' > 4>(a) > r, and let Bl be the set of elements so chosen.1 Since Bl is in 
one-to-one correspondence with a subset of Ra X Ra, B1 is finite or 
countable. Let A * be the set of endpoints of gaps. By Lemma I, B ~ A * U B, 
is finite or countable. 

We show that B is order dense in A. Suppose that a >- c. If (c, a) is a gap, 
then c, a E A * and we can take either of them as b. Otherwise, choose hi 
with a>- b' >- c and rationals r, r' with ¢(a) > r' > ¢(b') > r > ¢(c). 
Thus, (r, r') E J, so for some bE B, ,r' > ¢(b) > r. It follows that a >- b >- c, 
u~~. • 

We next turn to the uniqueness theorem for ordinal measurement, which 
is very simple. 

THEOREM 3. Let (A, ;;;) be a simple order and let ¢, ¢' be two functions 
satisfying (ii) of Theorem 2. Let R, R' be the respective ranges of ¢, ¢". 
Then there exists a strictly increasing function h from R to R', such that for all 
a E A, h[¢(a)] ~ ¢'(a). Moreover, if h is any strictly increasing function on 
the range R of a representation ¢ of (A, ;;;), then ¢'(a) ~ h[¢(a)] defines 
another such representation. 

The proof is trivial, e.g., define h on R by h[¢(a)] ~ ¢'(a), and then 
show h is well defined and strictly increasing. 

Note that the class of permissible transformations includes all strictly 
increasing functions from ~e, but includes other~~<:t~~_~ell. For 

I example, there are some strictly increasing functions on' subs~.~' of Re 
that cannot be extended to strictly increasing functions on Re-:-rF~ 
sets A, any permissible transformation on R can be extended to one from 
Re onto Re. 

In the proof of Theorem 2, the definition of ¢ on A (Le., as the least 
upper bound of ¢'(b), for bE B* and a;;; b) differs in an important way 
from the definition of ¢' on B* (or of ¢ on a countable set, as in Theorem I). 
Since B* is finite or countable, there is a method of obtaining the value of ¢' 
for any given element of B~ in a finite number of steps. But in order to 

1 Note the use of the Axiom of Choice. We try to point out its use, or the use of equiva. 
lents, throughout the book; we avoid using it when we ~ow how. 
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obtain the value of ¢ for an element of A - B*, one must first construct ¢' 
for every element of B*, which in the countable case requires infinitely 
many steps. In Section 2.2, we also use a limiting process to define 4>, but 
there we nave the possibility of obtaining an approximation to the value of cp, 
with any specified degree of accuracy, in a finite number of steps. The ratio~ 
scale uniqueness theorem of Section 2.2 leads to a well-defined notion of 
accuracy of approximation (percentage error). With only the ordinal 
uniqueness of Theorem 3, however, there is no suitable notion of approxima~ 
tion, and so the definition of </> is not very satisfactory. 

Finally, we note that Debreu (1954, Lemma II) has shown that the order
preserving function cf> of Theorem 2 can always be constructed so as to 
be continuous in every natural topology on the simple order <A, :<:). This 
is easy to prove once all the required definitions are given. but we shall 
not do so since the ideas involved are not used elsewhere in this book. The 
essence of the matter is simply this. The function 4> will be discontinuous if 
there are gaps in its range, so that, for instance, a E A is the least upper 
bound of A, C A, with respect to ;;;, but ¢(a) is greater than the least upper 
bound of {¢(a') I a' E A,}, Such gaps can be closed simply by modifying ¢ 
to close them; for example, if there were only one gap at a, one would 
simply subtract the appropriate constant from all values of ¢(o") for a" ;;; a. 
Since the set of gaps can only be finite or countable, one can easily arrange 
to close them all at once by' subtracting appropriate sums (with a finite 
or countable number of terms) of constants. 

Because of the relatively non unique measurement for simple orders, we 
make little use of the results of this section in the .remainder of the book. 
Theorem 2 is used in Chapters 7 and 13. 

2.2 ADDITIVE FUNCTIONS ON ORDERED ALGEBRAIC 
STRUCTURES 

We next formulate and prove several extensions of a classical theorem 
of HOlder (1901). The first four subsections deal with the main isomorphism 
theorem, Theorem 4, due to Krantz (1968), which underlies the construction 
of real-valued functions throughout the book. We use the weakest structural 
conditions now known; the cost is some slight complications in the statement 
of the theorem. For example, we assume that the binary operation 0 is 
defined only for a certain set B of pairs (a, b). Intuitively, B should be 
thought of as the set of concatenable pairs. We do not assume that any 
equation can be solved, but only that if a >- b then for some c, a ;c: b 0 c. 

Sections 2.2.5 and 2.2.7 deal with the special cases of Archimedean simply 
ordered groups and rings, respectiv,ely; Section 2 .. 2.6 presents a brief 
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comparison with other versions of Holder's Theorem. A much more detailed 
treatment of the type of ordered algebraic structures considered here can be 
found in Fuchs (1963) and in a later survey by Vinogradov (1969). 

2.2.1 Archimedean Ordered Semigroups 

We start with the basic definition. 

DEFINITION 2. Let A be a nonempty set, Band.<:; nontrivial binary 
relations on A, and 0 a binary operation from B into A. The quadruple (A, 
<:;, B, 0) is an ordered local semigroup iff, for all a, b, c, d EA, the following 
five axioms are satisfied: 

1. <A, <:;> is a simple order. 

@ If (a, b) E B, a <:; c, and b <:; d, then (c, d) E B. 

3. If (c, aj E B and a <:; b, then c 0 a <:; c 0 h. 

4. {f (a, c) E B and a <:; b, then a 0 c <:; b 0 c. 

© (a, b) E B and (a 0 b, c) E B iff (b, c) E B and (a, b 0 c) E B; and when 
both conditions hold (a 0 b) 0 c = a 0 (b 0 c). 

For the rest of this definition, assume that (A, ~, B, 0) is an ordered local 
semigroup (Axioms 1-5 haiti). 

<A, <:;, B, 0> is called positive iff,Jor all a, b E A, 

6. If (a, b) E B, then a 0 b>- a. 

A positive semigroup <A, <:;, B, 0> is called regular iff, Jar all a, b E A, 

('i) If a >- b, then there exists c E A such that (b, c) E B and a <:; b 0 c. 

For any a E A, we define inductively a subset Na of P, and we define na 

Jar each n E N, by: 

(i) 1 EN, and la = a; 
(ii) if n - lEN, and «n - I) a, a) E B, then n E N, and na is defined 

to be «n - I) a) 0 a; 

(iii) ifn - 1 EN, and «n - I) a, a) $ B, then Jar all m;;' n, m $ N,. 

(Thus, Na is precisely the set of consecutive positive integers for which na is 

defined.) 
<A, <:;, B, 0> is called Archimedean iff Jar all a, b E A: 

8. {n I n E N, and b >- na} is afinite set. 

An example of a structure satisfying Axioms 1-8 is provided by 
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<Re+, ~. Ro , +), where ~ is the usual order relation and + the usual 
addition operation on Re+. and 

Rn = {(x, y) I x, Y E Re+ and x + y <; Q}, 

where 0 < Q « + co. That is, + is defined for all pairs of positive reals 
whose usual sum is less than Q. By contrast, we do not obtain an Archimedean, 
regular, positive, ordered local semigroup if we define + for just those pairs 
satisfying x 2 + y2 < Q. In such a case, Axiom 5 is violated. For example, 
let Q = 1, x = y = 0.2, and z = 0.9. Then x' + y2 = 0.08, so (x,y) is 
in Rn; and (x + y)2 + Z2 = 0.97, so (x + y, z) is again in Rn; but 
x' + (y + Z)2 = 1.25, so (x, y + z) is not in Rn , violating part of the 
conclusion to Axiom 5. This example shows clearly that Axiom 5 has a 
strong structural significance. 

The other structural axioms are 2 and 7, whereas 1,3,4,6,8, and part of 5 
[(a 0 b) 0 c = a 0 (b 0 c)] are deducible from the representation (Theorem 4 
below). 

We remark also that the axiom system used here has two solvability 
conditions. One is regularity (Axiom 7), :vhich requires solvability of the 
inequality a ;C; b 0 C, for c, given a > h. The other solvability condition 
is Axiom 2, which requires solvability of the equation, cod = e, for e, 
whenever a <:; c, b <:; d, and (a, b) E B. [The assertion (c, ti) E B is equivalent 
to the assertion that the required e exists.] 

We state two versions of the representation and uniqueness theorem. 
Theorem 4 gives the essential existence and uniqueness statements. A slight 
modification, Theorem 4', asserts that any structure (A, ;?:;, B, 0) satisfying 
Axioms 1-8 can be mapped isomorphically into a structure (Re+, ~,Rg, +), 
where Rg is defined as above. 

THEOREM 4. Let (A, <:;, B, 0> be an Archimedean, regular, positive, 
ordered local semigroup (Axioms 1-8 oj Definition 2 all hold). Then there is a 
Junction</> Jrom A to Re+ such that Jar all a, b E A, 

(i) a <:; b iff </>(a) ;;, </>(b); 

(ii) if (a, b) E B, then </>(a 0 b) = </>(a) + </>(b). 

Moreover, if cP and cP' are any two functions/rom A to Re+ satisfying conditions 
(i) and (ii), then there exists" > 0 such that Jar any nonmaximal a E A, 

</>'(a) = ,,</>(a). 

The isomorphism version runs as follows: 

THEOREM 4'. Let the hypotheses oJ Theorem 4 hold and let</> be aJunction 
from A to Re+ satisfying (i) and (ii) oj that thevrem. Let Q be the least upper 
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bound of {4>(a) I a E A}. Let A' be the set of nonmaximal elements of A and 
let B' = {(a, b) E B I a 0 bE A'}. Then 4> is an isomorphism qf (A', ;C, B', 0) 
into <Re+, ~,Ro, + >. 

The point of Theorem 4' is that tP not only carries ;C; into ~ and 0 into +, 
but also carries B' into Rn , in the sense that 

(a,b)EB' iff (4)(a), 4>(b» E Rn. 

If there is no maximal element in A, then A' = A and B' = B. If there is 
a maximal element of form a 0 b, then the uniqueness $tatement of Theorem 4 
and the isomorphism statement in Theorem 4' can easily be extended to it. 
The only case where the restriction to non maximal elements matters is 
when the maximal element is not of the form a o,b for any (a, b) E B. 

2,2,2 Proof of Theorem 4 (Outline) 

Because of the importance of this theorem and because the construction 
of the function <p embodies the basic processes of additive measurement, 
we first give a detailed sketch of the proof and then a full proof. 

To approximate 4>(b)l4>(c), we take a small a and see how many copies 
of a are required to approximate b and how many to approximate c. If 
ma "" band na"" c ("" means approximates), then min"" 4>(b)N(c). This 
idea is justified by the desired properties of 4> [(i) and (ii) of the theorem], 
since ma "" b should imply m4>(a) "" 4>(b). Similarly, n4>(a) "" 4>(c), so 
min"" 4>(b)f4>(c). Thus, the first step of the proof is to define, for any a, b 
such that b ;C a, an integer N(a, b) such that N(a, b) a"" b. Specifically, 
N(a, b) is the largest integer such that [N(a, b) - I]a is defined and 
[N(a, b) - I] a -< b. The Archimedean property guarantees that such a 
largest integer exists. 

Two cases must now be distinguished. If there is a smallest element 
a in A, then for every b, N(a, b) a = b. For if this were not true, we could 
use regularity (Axiom 7) to construct a' such that b ;C [N(a, b) - I] a 0 a', 
and it would follow that a' -< a, contrary to minimality of a. In this case, 
4>(b) = N(a, b) gives the required isomorphism into (Re+, ;;" Rn , +); 

In the second case, there is no least element of A, and the proof consists 
of showing that as a is taken smaller and smaller, N(a, b)IN(a, c) converges, 
for every b, c, to a limit in Re+. This limit is defined to be 4>(b)l4>(c). The limit 
exists because, for a"much smaller than a, N(a', b) "" N(a', a) N(a, b). This 
is intuitively obvious. If N(a', a) copies of a' approximate a, and N(a, b) 
copies of a approximate b, then N(a', a) N(a, b) copies of a' approximate b. 
Thus, N(a', b)IN(a', c) "" N(a, b)fN(a, c), since the common factor N(a', a) 
drops out when the approximation of b is divided by that of c. For example, 
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if the gradation is changed from feet (a) to millimeters (a'), then all approxi
mate measurements will be multiplied approximately by N(a', a), the number 
of millimeters per foot, and ratios remain approximately the same. 

Another important feature of the proof is the method for taking a' 
sufficiently smaller than a. The trick is simple: take any a' -< a, and then 
take a" with a ;C a' 0 a" (regularity). The smaller of a' and a" is then less 
than "half" of a. 

Once 4> is constructed, the rest of the proof [that properties (i) and (ii) 
and uniqueness hold] is easy. Additivity of 4>, for example, follows using 
Axioms 3 and 4 to show that if N(a, b) a "" band N(a, c) a"" c, then. 
[N(a, b) + N(a, e)] a "" b 0 c. Ordering follows, using additivity. For if 
b>- c, then for some a, b ;C c 0 a. By construction of 4>, 4>(b) ;;, 4>(c) + 4>(a), 
where 4>(a) > 0; thus, 4>(b) > 4>(c). 

Note the role played by each axiom of Definition 2. Axioms 2 and 5 
characterize the local semigroup: the operation 0 is defined and associative 
for all sufficiently small a, b. We can thus generate na from a, being uncon
cerned about the way that copies of a are associated in forming na. Axiom 6 
guarantees that the standard sequence a,2a, ... increases steadily, while 
Axiom 8 guarantees that eventually, such a sequence will approximate any h. 
The "increasing" and "approximate" notions are based on the ordering 
(Axiom I). Regularity (Axiom 7) plays several roles, as was pointed out 
in the above sketch. Finally, Axioms 3 and 4 play an important role in 
additivity. 

Note that the axioms do not explicitly assume commutativity, a 0 b = 

boa. Since this property is implied by Theorem 4, it must follow from the 
axioms, but it is not used in the course of the proof. 

2.2.3 Preliminary Lemmas 

In this section we collect a group of simple results concerning ordered 
local semigroups. The hypothesis common to all the lemmas is that 
(A, ;C, B, 0) is an ordered local semigroup (Axioms 1-5 of Definition 2). 
Also, Na and na are defined as in Definition 2. 

LEMMA 2. m, n E N, and (ma, na) E B iff m + n E No; and when both 
conditions hold (rna) 0 (na) = (m + n)a. 

PROOF. Exercise 3. 

LEMMA 3. If a;C a', b ;C b', and (a, b) E B, then a 0 b ;C a' 0 b'. 

PROOF. Axioms 1-4. o 
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LEMMA 4. If a ;::; band n E N, , then n E N, and na ;::; nb. 

PROOF. From Lemma 3, by induction. o 
LEMMA 5. Let Axiom 6 hold. If rn, n E N, , then rna ;::; na iff m ;;" n. 

PROOF. Obvious. 0 

LEMMA 6. If rn E N" then n E Nm , iff nm E N, ; in which case n(ma) = 
(nm)a. 

PROOF. The result is trivial for n = I, mEI+·.·Suppose it holds for 
some n ~ 1, for all mE 1+, If n -I- 1 E Nma , then 

(n + l)(rna) = [n(ma)] 0 (rna) 

= [(nm)a] 0 (rna) 
(Definition 2) 
(inductive hypothesis). 

By Lemma 2, nm + m = (n + I) mEN" and [(nm) a] 0 (rna) = [en + I) m]a. 
Therefore, if n + I E Nm" then (n + I) mEN, and (n + I)(ma) = 
[(n + I) m]a. 

Conversely, if (n + I) mEN" then by applying Lemma 2 we have 
«nm)a, ma) E B. By the inductive hypothesis, n E Nm , and (nm) a = n(ma). 
Hence, (n(ma), rna) E B. It follows from Definition 2 that n + lEN m, , 
as required. 

By induction, the result holds for all n. 0 

2.2.4 Proof of Theorems 4 and 4' (Details) 

If b >- a, then by Axiom 8, there exists a largest positive integer, denoted 
N(a, b), such that N(a, b) - lEN, and b>- (N(a, b) - I)a. We can let 
N(a, a) = I by definition. 

First, suppose that there exists a minimal element a E A. We show that 
for every b E A, N(a, b) E Na and N(a, b) a = b. By Axiom 7, for any b >- a 
there exists c such that «N(a, b) - I) a, c) E Band b ;::; [(N(a, b) - I) a] 0 c. 
By minimality of a, c ;::; a. By Axioms 1-3, we know that N(a, b) E Na and 
b;::; N(a, b)a. But then by maximality of N(a, b), we cannot have b >- N(a, b)a, 
hence, b = N(a, b)a. The same formula follows trivially if b = a. 

Let .p(b) = N(a, b). We show that .p satisfies (1) and (ii) of Theorem 4. 
To prove (i), note that by Lemma 5, N(a, b)a;::; N(a, c)a iff N(a, b) ;;" N(a, c). 
Hence, b ;::; c iff .p(b) ;;" .p(c). For (ii), note that 

N(a, b 0 c) a = b 0 c 

= [N(a, b) a] 0 [N(a, c) a] 

= [N(a, b) + N(a, c)]a (Lemma 2). 
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By Lemma 5, N(a, b 0 c) = N(a, b) + N(a, c), or .p(b 0 c) = .p(b) + .p(c). 
Finally, jf f is any other function satisfying (i) and (ii), then for any b in A, 

feb) = .p'(N(a, b) a) 

= N(a, b)1>'(a) 

= ",.p(b), 

[property (ii)] 

where", = .p'(a) > O. This completes the proof of Theorem 4 for the case 
where a minimal element .exists. 

Next, suppose that A has no minimal element. We shall construct a 
sequence aI"." am •... in A which converges to zero in the sense that for 
every b E A, N(Um, b) is defined for sufficiently large m and diverges to +00. 
We then show that for any such sequence, lim",·,oo N(am , b)jN(am , c) exists 
in Re+ for every b. C E A. The limit is obviously independent of the sequence 
am, since any two sequences can be interleaved to form a third sequence 
with the saine properties. 

Let al be arbitrary, and define the sequence inductively as follows. If am 
has been defined, choose am' -< am. By Axiom 7, choos~ a~ such that 
(am', a~) E B and am ?:.: am' 0 a~ . Define a"lI+l = min{llm', a~} (the minimum 
is taken with respect to the ordering ;::;). By Lemma 3, for m ;;" I, 

Since am+l ?:.: 2am+2 , we can apply Lemma 3 again to obtain 

By Lemma 2, am ~ 4Om+2 . Continuing this argument, we have by inductipn 

m ;<: 1, n;<: O. 

It goes without saying that the inductive argument, as developed above, 
includes the proof that 211 E No, , m ~ 1, n ~ O. 

Having defined the sequen~~" am and established the basic property 
that am ~ 211.am+1I. , we now show that N(am ,b) is defined for sufficiently 
large m and approaches + 00. Suppo~e first that a, >- b. By definition, 
a, >- [N(b, a,) - I]b. Since (a, , a,) E B, by Axiom 2, «N(b, a,) - I) b, b) E B, 
so . N(b, a,) E N,. By definition, N(b, a,) b ;::; a,. Now choose m so large 
th.at 2m > N(b, a,). We show that the supposition that Um+, ;::; b leads to a 
contradiction. In fact, if am+2 ;?:; b, then by Lemma 4, 2m E Nt; and we have 

N(b, a,) b ;::; a, ;::; 2mam+, ;::; 2mb. 

But by Lemma 5, 2m > N(b, a,) implies 2mb >- N(b, a,)b, a contradiction. 
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Thus, we have b>- a111>1-2' We established this formula assuming a2>- b; 
but otherwise, the same formula holds with m = 1. Thus, for every b, 
there exists m ~ 1 such that for all n ~ O~ b >- am+n+2 • We now have 

b> [N(am+2' b) - I] am+2 
;::; [N(am+2' b) - 1](2nam+n..J 
= (2n[N(am+2' b) - I]) am+n+' 

(definition) 
(Lemma 4) 

(Lemma 6). 

By definition, therefore, N(am+n+2 ,b) > 2n[N(am+2' b) - I]. It follows that 
N(I1m+n+2. b) -+ +00 as n -+ 00, as required. 

To evaluate N(am, b)/N(am ,c), as m - 00, we need the following 
inequality: 

!f(a, a') EB and b;::; a;::; a', then 

N(a', a) N(a, b) > N(a', b) - I ~ [N(a', a) - I][N(a, b) - I]. 

For simplicity in proving this inequality, we denote N(a', a) by m + I and 
N(a, b) by n + 1. Note that if b = a or a = a' (or both), the inequality 
is trivial; so we'can assume b >- a >- a', hence, m, n )! 1. We have a >- ma' 
and (a, a') E B, so m + I E No, and (m + 1) a' ;::; a. Suppose that 
(n + I)(m + I) E No" By Lemma 6, n + I E N(m+1)a' ; thus by Lemma 4, 
n + lEN,. By definition, (n + I) a;::; b, hence (n + I)(m + I) a' ;::; b. 
This shows that either (n + I)(m + I) 4 N,' , or else (n + I)(m -I- I) a' ;::; b; 
in either case, we have (n -I- I)(m -I- J) ~ N(a', b), which gives the left 
half of the inequality. From b > na and a > rna' we have nm E No, and 
b> nma' (Lemmas 4 and 6). Thus, N(a', b) - I ~ nm, which is the right 
half of the inequality. 

From this inequality, it follows that for any b, c, for all sufficiently large 
values of m, and for all n ~ m, 

[[~i::: ~~ ::: :l < N(a" am) N(am, b) 
[N(an, am) I][N(am, c) I]' 

(Use the upper bound for the numerator and the lower bound for the 
denominator.) The first consequence of this is that for all n ~ m, 

[N(an, b) - I] ,,:: 2 N(am, b) 
[N(a" c) - I] '" [N(am, c) I]' 

Thus, the sequence [N(an , b) - I]/[N(an , c) - I] is bounded above for 
arbitrary b, e. By interchanging the roles of band e, we prove that the 
sequence of inverses has a finite upper bound and, hence, the sequence 
itself has a positive lower bound. Let L * and L* be, respectively, the greatest 
and least limit points of the sequence; then 0 < L* ,;;; L * < 00. Holding m 
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fixed and letting n _ 00 in our inequality, and noting that N(a" am)/ 
[N(a. , am) - I] converges to I, we o.btain 

L* ,;;; N(am, b)/[N(a .. , c) - I]. 

Now letting m"""" 00 in this last inequality, we see that L * ~ L*, i.e., 
L* = L* and the sequence [N(a., b) - I]/[N(a" c) - I], hence also the 
sequence N(a., b)/N(a., c) converges to a limit in Re+. 

For any b E A, define 

q,(b) = lim N(am, b)/N(am, a,), 
• m-><x> 

Since q,(a,) = I, a, has been taken as the unit of measurement; this choice 
is arbitrary. 

We show that q, is additive (ii) and order preserving (i). Suppose that 
(b, c) E B. For m such that b, e > am, we have b> [N(a .. , b) - I] am, 
e> [N(am., c) - I] am, hence, b 0 e ;::; [N(am , b) + N(am , c) - 2] am 
(Lemmas 2 and 3). If N(am, b) + N(am , c) E Nam , then clearly 

[N(am, b) + N(am, c)] Om ;::; b 0 e. 

Thus we have the inequality 

N(a,. , b) + N(am ,c) ~ N(am ,b 0 c) > N(am ,b) + N(a .. , c) - 2. 

Dividing through by N(am, a,) and letting m -, 00 yields q,(b) -I- q,(e) = 

q,(b 0 c). Thus, (ii) holds. 
Suppose that b> e. By Axiom 7, there exists e' with (e, e') in Band 

b ;C; C 0 c' . For each m, N(am , b) )-: N(am , c 0 c'); hence, 

q,(b) ;. q,(e 0 e') 

d" q,(e) + q,(e') 

> q,(e) 

[by (ii)] 

[q,(e') > 0]. 

It follows from this that b ;::; e if and only if q,(b) ;. q,(e), as required for (i). 
Finally, we establish uniqueness. Suppose that if>' is any other function 

from A to Re+ satisfying (i) and (ii). If b is nonmaximal in A, then by 
Axiom 7, there exists c with (b, c) E B. For am ;$ c, N(am , b) E Nam and 
N(a .. , b) am ;::; b. By (i) and (ii), 

N(am, b) q,'(am) ;. q,'(b) > [N(am, b) -I] q,'(am). 
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Since a2 is nonmaximal, we have for m > 2 

N(am ,a,) ,p'(am) :;;, ,p'(a,) > [N(am ,a,) - I] ,p'(am). 

Dividing these inequalities yields 

N(am , b)/[N(am, a,) - I] > ,p'(b)f4>'(a,) > [N(am, b) - 1]IN(am , a,). 

Letting m _ co yields ,p'(b)/4>'(a,) = ,p(b)f4>(a,), or ,p'(b) = ~,p(b), where 
~ = ,p'(a,)f4>(a,) > 0. 

Note that the uniqueness statement can be extended to a maximal element 
a E A (if any) only if a = b 0 c for some b, c. This is necessarily the case 
if there is a minimal element in A, but need not hold otherwise. 

To prove Theorem 4', let Q and Ra be defined as in that theorem. To 
show that 4> is an isomorphism, it suffices to establish that 

(a, b) E B' iff (,p(a), ,pCb)) E Ra. 

One direction is obvious: if (a, b) E B', then a 0 b E A', and so 
,pea) + ,pCb) < Q. Conversely, suppose that ,pea) + ,pCb) < Q. Since Q is 
a least upper bound, there exists c E A such that ,pea) + ,pCb) < ,p(c). If there 
·is a minimal element a, E A, then N(a" a) + N(a

" 
b) E Na" hence, by 

an application of Lemma 2, (N(a
" 

a) a, , N(a, ,b) a,) E B', or (a, b) E B'. 
If there is no minimal element in A, we know that cp(am) -~ 0, where am 
is the sequence constructed in the proof of Theorem 4. Choose am with 
,pram) < H,p(c) - ,pea) - ,pCb)]. It follows readily that 

N(am, a) + N(a .. , b) E Na
m

, 

and hence, that (N(am ,a) am , N(am ,b) am) E B. Thus, (a, b) E B'. 0 
From the proof of the uniqueness theorem, we have a good idea of the 

precision of approximations to ,pCb). In fact, the inequality used to prove 
uniqueness can be rewri:ten as follows. 

N(am , b) 
N(am, a,) 

N(am , a,) > ,pCb) > N(am, b) - 1 . N(am , b) 
N(am, a,) - I ,p(a,) N(am , b) N(am , a,) . 

Hence, the proportion of err orin estimating ,p(b)N(a,) by N(am ,b)IN(am , a,) 
is not greater than the larger of IIN(a .. ,a,) and IIN(am, b). These error 
limits are known, and approach zero at least as fast as 2-m (by construction 
of the sequence am). Hence, we can specify precisely the finite observations 
required to obtain any preassigned accuracy. In this way, our proof does 
not have the undesirable nonconstructive features of the definition of cfo 
in the proof of Theorem 2 (Section 2.1). 
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2.2.5 Arcblmedean Ordered Groups 

As a corollary to Theorem 4, we obtain an isomorphism for the case of 

groups. 

DEFINITION 3. Let <A, ;::;> be a simple order and 0 a binary operation on 
A such that <A, 0> is a group. The triple <A, ;::;, 0> is called a simply ordered 
group provided that for all a, b, c E A, if a ;::; b, then a 0 c ;::; b 0 C and 
c 0 a ;::; cob. Let the group identity be denoted e. The group is Archimedean 
provided that if a >- e and b E A, then na >' b for some n El +. 

THEOREM 5. Let <A,;::;, 0> be an Archimedean simply ordered group. 
Then <A, ;::;, 0> is isomorphic to a subgroup of <Re, :;;" +), and if ,p, ,p' are 
any two isomorphisms, cfo' = excfo for some ex > 0. 

PROOF. Let A+ = {a I a >- ej, where e is the identity. Let B = A+ X A+, 
and let ;::;+ be the restriction of ;::; to A+. If a, b E A+, then a 0 b ;::; a 0 e = 
a>- e, so a 0 bE A+. Thus, 0 induces a function 0+ from B into A+. We 
show that (A+, ;?:;+, B, 0+) satisfies Axioms 1-8 of Definition 2. In fact, 
Axioms 1-5 and 8 are immediate. To show positivity (Axiom 6), suppose 
that cEA+ and a;::; a 0 c. Then 

e = a-1 0 a ;;:: a-1 0 (a 0 c) = c, 

contradicting C E A+. Thus, a 0 c>- a, as required. For regularity (Axiom 7), 
suppose that c >- a and let b = co a-1, where a-1 is the inverse of a. If e;?:; b, 
then 

a = e 0 a ;;: boa = c, 

a contradiction, so bE A+; and c = boa. 
We let,p+ be a function from A+ to Re+ satisfying (i) and (ii) of Theorem 4, 

and extend it to A by noting that if e >- a, then a-I E A+ (by the same 
argument as for regularity, above). Therefore, define ,p by 

\

,p+(a), 
,pea) = 0, 

_,p+(cr' ), 

a EA+, 
a = e, 
e>-a. 

The remainder of the theorem is easy to verify. 

2.2.6 Note on Holder's Theorem 

o 

Holder (1901) presented a set of seven axioms that are necessary and 
sufficient for an isomorphism onto (Re+, ;;<:., +). Thus, he also dealt with 
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the case of an ordered semigroup. He used much stronger structural assump~ 
tions, including (in our notation) B = A X A, no minimal element. solvability 
of c = a 0 b for a given c >- b and for b given c >- a, and the Dedekind 
property (if A = C V D, where C, Dare nonempty, enD = "', and c E C, 
dE Dimply c -< d, then either sup C or inf D exists). These are, of course, 
all necessary for an isomorphism onto Re+. With these structur~l properties 
and a slightly stronger positivity assumption, he did not need our Axioms 2-4 
and 8. Since the axioms follow easily from his assumptions, it is straight~ 
forward to prove his result as a corollary to Theorem 4. 

The proofs given by Birkhoff (1967, p. 300) and Fuchs (1963, p. 45) 
of Theorem 5, which is now often caUed Holder"s theorem, are essentially 
the same as Holder's proof. They all suffer from the disadvantage that 
the method of constructing cp could not be used in actual measurement, 
because it requires that na be defined for every n. This means that the proof 
does not generalize to the case of more realistic structural assumptions. 

2.2.7 ArcWmedean Ordered Semirings 

Suppose that (A, ~) is a simple order, B, B* are two subsets of A X A, 
and (8, * are two binary operations from B to A and from B* to A, respec
tively, such that (A,;::;, B, ®) and (A,;::;, B*, *) are both ordered local 
semigroups. If they are both Archimedean, regular, and positive, then two, 
possibly unrelated, isomorphisms ~ and ~* can be constructed into Re+. 
If the two operations are linked, however, by the distributive laws of multi
plication over addition, i.e., 

(a ® b) * c = (a *C) ® (b * c), 
C* (a ® b) = (C* a) ® (C* b), 

then it is desirable to construct a single isomorphism 1> that is both additive 
and multiplicative. That is, in addition to satisfying (i) and (ii) of Theorem 4, 
</> must satISfy </>(a * b) = </>(a) </>(b), and thus yield an isomorphism of 
(A, ~,B, B*, (8, *) into (Re+, ~,Rn, Rn*, +, .). where +,' are ordinary 
addition and multiplication in Re+. 

The requirement that ~ be order preserving and additive already determines 
it up to ratio-scale transformations (Theorem 4). If A has a multiplicative 
identity e, then fr0111 a = a * e we have 

</>(a) = </>(a * e) = </>(a) </>(e), 

whence </>(e) = l. Thus, the additional requirement that </> be mUltiplicative 
determines the unit of measurement. We show below that even if A has no 
multiplicative identity. there exists nevertheless one and only one additive 
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representation that is also multiplicative. In most applications of this 
theorem, however, one still obtains ratio-scale, rather than absolute, measure~ 
ment; the reason becomes clear in Chapter 7. 

DEFINITION 4. Suppose that A is a set, ;::;, B., and B* are three binary 
relations on A, (8 is a function from B into A, and * is a function from B* 
into A. The sextuple (A, ;::;, B, B*, ®, *) is an ordered local semiring iff the 
following four axioms are satisfied: 

I. <A,;::;, B, ®) is an ordered local semigroup (Definition 2, Axioms 1-5). 

2. (A,;::;, B*, *) satisfies Axioms 1-4 of Definition 2 and the following 
modified version of Axiom 5: 

5'. If (a, b), (b, c) E B*, then (a * b, c) E B* iff (a, b * c) E B*; and if 
both conditions hold, then (a * b) * c = a * (b * c). 

3. (i) If (b, c) E B and (a, b ® c) E B*, then (a, b), (a, c) E B*, 
(a * b, a * c) E B, and a * (b ® c) = (a * b) ® (a * c). 
(ii) If (a, b) E B and (a ® b, c) E B*, then (a, c), (b, c) E B*, 
(a * c, b * c) E B, and (a ® b) * c = (a * c) ® (b *0). 

4. For any a E A, there exists (b, c) E B such that (a, b ® cJ E B*. 

The local semigroup mentioned in Axiom 1 is termed the additive (EF» semigroup; 
the semiring is defined to be positive, regular, or Archimedean according to 
whether these properties are satisfied by the additive semigroup (see Definition 2, 
Axioms 6-8). 

The numerical ordered local semigroup described in Section 2.2.1 can 
be made into an ordered local semiring by putting 

Rg* = (x,y) I X,YE Re+ and X· Y < Q}. 

It is easy to verify that <Re+, ;;" Rg , Rg*, +, .) satisfies Axioms 1-4 of 
Definition 4. Note that the replacement of Axiom 5 of Definition 2 by 5', 
in Axiom 2 of this definition, is necessary, since x . y < Q and x . y . z < Q 

do not entail that y . z < Q. 
The representation and uniqueness theorem is given by the following: 

THEOREM 6. Let (A,;::;, B, B*, Ef), *) be an Archimedean, regular, 
positive, ordered local semiring (see axioms of Definitions 4 and 2). Then there 
is a unique function </> from A to Re+ such that,!or all a, b E A: 

(i) a;::; b iff </>(a) ;;, </>(b); 
(ii) if (a, b) E B, then </>(a ® b) = </>(a) + </>(b); 

(iii) if(a, b) E B*, then </>(a * b) = </>(a) </>(b). 
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PROOF. The proof is based on the method followed by Fuchs (1963, 
p. 126) to treat Archimedean ordered rings. A less abstract proof is sketched 
in Exercises 4-13. The actual construction of an isomorphism is probably 
better based on those exercises, although it could be carried out using the 
proof given here. 

For any a E A, let A,,= (b I (a, b) E B*} and B, = (b, c) I (b,c) E Band 
bEt> c E A.}. Let Et>, and ~, be Et> and ~ restricted to B, and to A" 
respectively. Then it is easy to show that (A"~,, B, ,Et>,) is an 
Archimedean, regular, positive, ordered local semigroup. 

First, note that Axiom 4 is precisely the statement that Aa and Ba are 
nonempty for any a E A. Obviously, <:Do, is a function from Ba to Aa . 

Axioms 1,3,4,6, and 8 of Definition 2 are immediate, since they hold for 
<A, <:;. B, EB) and are true a Jorteriori for any subsets. 

If (b, c) E B., b ~ b', and e ~ c', then b Et> c ~ b' Et> c'. Hence, by 
Axiom 2 of Definition 2, applied to (A, ~,B*, *), (a, b' Et> c') E B*, i.e., 
(b', e') E B, . This establishes Axiom 2 of Definition 2 for (A, , ~, , Bo , Et>,). 

Axiom 5 of Definition 2 follows readily from the same axiom applied 
to (A, ~,B, Et»: If (b, b') and (b Et> b', b") E B" then we have (b', b") and 
(b, b' Et> b") E B, and (b Et> b') Et> b" = bEt> (b' Et> b"). Thus, 

(a, b Et> (b' Et> b")) E B*, 

so (b, b' Et> b") E B, . By Axiom 6, b Et> (b' Et> b") >- b' Et> b", so 

(a, b' Et> b") E B*, 

hence (b', b") E Bo . 
Finally, we show that Axiom 7 of Definition 2 holds. Suppose that b, e E A. 

and b >- c. We can find e' E A such that b ~ c Et> e'. Since (a, e Et> c') E B*, 
(c, c') E Ea. as required. 

Note that, so far, Axiom 3 of Definition 4 has not been used. 
By Theorem 4, there exists a function .p from A to Re+ satisfying (i) 

and (ii) for (A,~, B, Et». A forleriori, .p satisfies (i) and (ii) for each 
<Aa, ;;::a , Ba , EBa>. However, we can define a new representation for the 
latter semigroup by 

.p.(b) = .p(a * b). 

To prove that .p. satisfies (ii), take (b, cJ E B,. Then (a, bEt> c) E B*, 
so by Axiom 3 of Definition 4, (a, b) and (a, c) E B*, (a * b, a * c) E B, and 
a * (b Et> c) = (a * b) Et> (a * c). Hence, 

.p.(b Et> c) = .p[a * (b Et> c)] 
= .p[(a * b) Et> (a * c)] 
= .p(a * bJ + .p(a * c) 
= .p,(b) + .p,(c). 
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To prove that .p, satisfies (i), suppose that b, c E A. and b >- c. Choose 
e' E A, such that b ~ e Et> e'. Then a * b ~ a * (e Et> c'). Hence, 

.p.(b) = .p(a * b) 
;;;, .p[a * (c Et> c')] 

= .p,(c Et> e') 

= .p,(e) + .p.(c') 

> .p.(c), 

as required. 
By the uniqueness part of Theorem 4, there is a positive constant, denoted 

.p(a), such that for all nonmaximaI b E A, , 

.p.(b) = .p(a) .p(b). 

We now show that .p satisfies conditions (i)-(iii). 
Suppose that (a, 0') E B. By Axiom 4 of Definition 4, we can choose a 

nonmaximal bE Aa$Il' . Clearly, b is also a nonmaximal element of All and 
of A,' . We have 

.p(a Et> a') .p(b) = .p,,,,,,(b) 

= .p[(a Et> a') * b] 

= .p[(a * b) Et> (a' * b)] 

= .p(a * b) + .p(a' * b) 

= .p.(b) + .p.{b) 

= .p(a) .p(b) + .p(a') .p(b) 

= [.p(a) + .p(a')] .p(b). 

Hence, .p satisfies (ii). 
Suppose that a>- a'; let a ~ a' Et> a". Choose nonmaximal bE A, and 

AIl'$Il'" ; then 

.p(a) .p(b) = .p,(b) 

= .p(a * b) 

;;;, .p[(a' Et> a") * b] 

= .p(a' Et> a') .p(b) 

= [.p(a') + .p(a")].p(b) . 

Hence, <p(a) > <p(a'). 
Finally, we prove (iii). Take (a, a') E B*. Choose nonmaximal b' E Aa • a' 

and nonmaximal b' E A,. Let b = min{b', b"}. Then b is nonmaximal in 
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both A a•a , and Aa' , and clearly, a' * b is nonmaximal in Aa. We therefore 
have 

.p(a * a') .p(b) = .pa.a,(b) 

Thus, .p(a * a') = .p(a) .p(a'), 

= .p[(a * a') * b] 

= .p[a * (a' * b)] 

= .pia' * b) 

= .p(a) .p(a' * b) 

= .p(a) .pa,(b) , 

= .p(a) .p(a') .p(b), 

For uniqueness, note that if ",.p satisfies (i)-(iii) of Theorem 6, then by (iii), 
",.p(a * b) = [",.p(a)] ,[",.p(b)], whence '" = ",' or '" = I. This argument 
applies except possibly for maximal elements. But if a is maximal in A, 
we can choose b such that (a, b) is in B* and such that b, a * b are non~ 
maximal. We now have .p(a) = .p(a * b)N(b), giving uniqueness of.p at a, <> 

We next establish a corollary to Theorem 6 which is the classic result 
in this area (see Fuchs, 1963, p, 126); it stands to Theorem 6 as Holder's 
Theorem 5 does to Theorem 4, 

DEFINITION 5, Suppose that A is a set, ;C; a binary rdation on A, and 
EE> and * binary operations on A. Then <A. ~, Ef), *) is an Archimedean 
ordered ring provided that: 

(i) (A, Ef), *) is a ring with zero element B; 
(ii) (A,;C;, Ef» is an Archimedean ordered group; 

(iii) if a > Band b > c, then a * b > a * c and b * a > c * a, 

COROLLARY TO THEOREM 6, An Archimedean ordered ring is uniquely 
isomorphic to a suhring of (Re, ):, +. -). 

PROOF. By Theorem 5, there is an isomorphism .p' of (A, ;C;, Ef» into 
a subgroup of (Re, ~, +), LetA+ = {a I a> B), According to Exercise 14, the 
restriction of ;:;::, (8, and * to A+ forms an Archimedean, regular, positive, 
ordered, local semiring (with B B* = A+ X A+), Let .p be the unique 
isomorphism of Theorem 6. By the uniqueness assertion of Theorem 5, 
there exists", > 0 such that over A+, .p = ",.p', Extend .p to all of A by 
defining .p = ",.p', For all a <- B, .pCa) = ",.p'(a) = -",.p'( -a) = -.p( -a). 
From this and the fact ~hat 1> preserves * over A+, it is trivial to show 
that it preserves * over all of A, <> 
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2.3 FINITE SETS OF HOMOGENEOUS LINEAR INEQUALITIES 

The general problem of this section is to find solutions to families of 
inequalities and equations of the form 

• L CXijXi > 0, i = 1, ... ,m', 
j=1 

(1) 
o 

L f3"x, = 0, 
1=1 

Such a family of inequalities and equations arises in measurement contexts 
when the Xl"'" Xn are pnknown values of qua~tities to be measured, and 
each inequality or equation of System (1) is entailed, via a linear measurement 
model, by a corresponding observation of order or equality between two 
objects (see Section Ll~3 for examples), Any solution to System (1) provides 
a measurement scale compatible with the given observations of prqer and 
equality, In all applications of System (1) in this book, the coefficients 
Ct.ij , fJij are integers (see Chapter 9). 

2,3,1 Intuitive Explanation of the Solution Criterion 

We shall analyze the System (1) using vector methods, The desired solution 
to System (1), (Xl"'" X n), is a vector, and the coefficients of any inequality 
or equation of the system also form a vector, e.g., «(Xi! •... , Ct.in). For conven~ 
ience, we abbreviate (Xl, •• " Xn) by X, (CXil , •••• CXin) by (Xi, and (flil , ••• , (3in) 

by f3i . Other abbreviations of the same sort are introduced later. 
The angle between two vectors X and y is the angle whose vertex is the 

origin 0 = (0, ... , 0), or (0, 0, 0) in three dimensions, and whose sides are 
the lines from 0 through each vector. The scalar product of two vectors 
x = (x, "'" x.) and y = (y, ,"', Yo) is simply the sum of the products of 
their respective components, i.e., I:f ... l XiYi' The reader can easily verify 
(in the two~dimensional case, for example) that the angle between x and Y 
is acute, obtuse, or right depending on whether their scalar product is, 
respectively, positive, negative, or zero. In terms of these concepts, System (1) 
can be restated as 

x makes an acute angle with each CXi, 

x makes a right angle with each f3i' 

i = 1, ... ,m'. 
(1 'j 

Suppose that n = 3, that m" = 2, and that f3, ,f3, are distinct from 0 
and have a nonzero angle betwe~n them. The three points, 0, f31 , f32 lie in a 
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unique plane, and if x solves (Fl, then the line from 0 through x must be 
at right angles to that plane. Thus, the direction of x from 0 is completely 
determined except for the choice of which side of the plane x is on. If we 
choose x on one side of the plane, then it makes an acute angle with any 
other point on the same side, a right angle with any point in the plane, 
and an obtuse angle with any point on the opposit~ side. Hence,- it is obvious 
that in this case, a solution to System (1 ') can be found if.! all the points a, 
lie on the same side of the plane determined by 0, f3, , f3, . 

Let us keep n = 3 and consider values of mil a'ther than 2. If mil > 3, 
there are two possibilities. If all the f3, lie in a sipgle plane (determined by 
two of them with 0), then we take x on a line perpendicular to this plane at 0, 
and the situation is as before. Otherwise, they do not lie in a single plane, 
and so no x can be found which forms a right angle with all the f3, . Hence 
the only vector x which satisfies the equations is 0, and this does not satisfy 
the striet inequalities. Thus, System (l ') has no solution (unless there afe no 
inequalities). 

If m" = 1, then 0 and f3, can be part of an infinite number of different 
planes. If all the a, lie on the same side of just one of these planes, then an 
x perpendicular to that plane solves System (1 'J. 

The extreme case is mil = 0 in which there are no equalities. This case is 
common in the practice of measurement-it means that no two objects 
were accepted as exactly equal. Here, it suffices that there be any plane 
through 0 such that all the ai lie on the same side of it; there are no f3, to 
constrain the position of the plane. 

The anaiysis is identical for n ~ 3, except that the equivalent of a plane-a 
hyperplane-is determined by 0 plus n - 1 independent f3, , if such exist. 

And so we reduce the problem of solving System (1) or (I ') to finding 
a plane (or a hyperplane) through 0 and through all the f3, (if any), such 
that all the Oti lie on the same side of it. A solution x is just a vector such 
that the line through 0 and x is perpendicular to the plane and x is on the 
same side as the Oti • 

To advance the problem further, we begin with the case m" = O. Is there 
a plane through 0 such that all Oti are on one side of it? If so, consider the 
points Oti as the vertices of a polyhedron. This polyhedron lies all on one 
side of the plane, and so, in particular, 0 is outside it. Conversely, if 0 is 
not in the polyhedron with the Oti as vertices, then we can pass a plane 
through 0 such that the whole polyhedron is on one side of it. It turns out 
that this is precisely the criterion for solvability of System (1 ') if m" = 0: 
o must be exterior to the polyhedron generated by the lXi • In fact, in this case, 
one way to obtain a solution is to choose the point on the polyhedron that 
is closest to O. This point is a solution x. For through this point, we can 
pass a plane tangent to the polyhedron (in the sense that it does not enter it), 
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and the parallel plane through 0 has the polyhedron on one side of it The 
line from 0 to x is perpendicular to both planes. This is illustrated, in a 
twowdimensional cross section, in Figure 1. 

Tongent Plone 

Porollel Plone through Origin 

FIGURE 1. Polyhedron (shaded area) generated by five inequality vectors, 0:1 ••••• 0:5 • 

and the solution x with planes perpendicular to x (twooodimensional cross section). 

The analysis for m" > 0 is similar. If the plane through 0 is constrained 
to contain f3, (m" = 1), then we must require that the a-polyhedron not 
intersect the (infinite) line through 0 and f3, . If the plane through 0 is deter
mined by f3, , f32 , then the a-polyhedron must not intersect this plane. 

For n > 3, the analysis is analogous to the one just given. The only 
difference is that there are more possibilities for the number of independent 
f3, , other than 0, 1, or 2. If there are n - 1 independent equality vectors f3, , 
then they determine an n - 1 dimensional hyperplane, to which the solution 
x must be perpendicular. All a, must lie on the same side of this hyperplane. 
In general, any number of independent fJi , not exceeding n - 1, generate a 
subspace, and this subspace partially constrains the position for a hyperplane 
with the polyhedron of inequality vectors lying to one side of it. The general 
theorem we shall prove, then, is the following: 

THEOREM 7 (Intuitive version). System (1 ') has a solution if.! the poly
hedron generated by the vectors lXi does not intersect the subspace generated 
by the vectors f3i (when mil = 0, the subspace in question is taken equal to 0). 

2.3.2 Vector Formulation and Preliminary Lemmas 

We now use vector concepts to give a precise formulation of Theorem 7. 
and as a preliminary to its proof, we state and prove a fundamental lemma 
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of linear programming theory. Our treatment closely follows Gale (1960). 
Readers whose background in linear algebra is insufficient for them to 
follow this section can easily substitute pp. 28-47 of Gale's book for this 
section. 

The subspace generated by vectors fJ, , ... , fJ" where fJ, = (J3,. ,"" fJ,.), 
is the set of all vectors of form 

where .1.1 , ... , Ar are arbitrary real numbers. 
The convex hull of vectors IXl ,.'" IXs, where (Xi = (otil , ...• O!in), is the set 

of all vectors of form 

where A, , ... , A, are restricted to be greater than or equal to 0 and 2d_, A,' = 1. 
This concept replaces the intuitive concept of polyhedron used above. 
We denote the scalar product of vectors x, y by x . Y = L7=1 XiYi' We can 
now restate Theorem 7 as follows. 

THEOREM 7 (Formal version). The system 

i = 1, ... , m', 

i = 1, ... ,m" 
(1 ") 

has a solution iff the convex hull of <Xl , ... , ctm' does not intersect the subspace 
generated by 0, fJ, , ... , fJm"' That is, System (1) has a solution iff there is no 
solution A1 ,"', \n' , /1-1 ""J /km" to the system 

m' m 

L Ai~" = L /kifJ" , j = 1,o .. ,n, 
i=1 i_1 

i = 1 •... ,m'. (2) 

The importance of this result depends partly o.n its constructive nature. 
One can start out to construct a solution to System (I "), but the procedure 
will eventually terminate in failure if and only if there is a solution to 
System (2). 
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An additional point is that the proof holds whether the numbers involved 
are real numbers or rationals. That is, if the (Xii , f3i:} in System (1) are rational, 
then there is a rational solution to System (I) if and only if there is no 
rational solution to System (2). In System (2), the constraint LA, = I 
can just as well be replaced by L A, > 0, for then we could divide each 
value of A, and of /k, by L A, to obtain L Ai = I. Let the revised system, 
with L Ai > 0, be numbered (2'). Note that a rational solution to System (2) 
yields, by multiplying through by .. common denominator, an integer 
solution to System (2'). The actual criterion thus amounts to the nonexistence 
of integer solutions to System (2'). This is the basis for measurement 
axiomatizations (see Chapter 9). 

The proof is based solely on the following well-known result of linear 
algebra, which we formulate as Lemma 7, but do not prove (see Gale, 1960). 

LEMMA 7. Let ott = (ail , ... , ~fI)' and suppose that 0:':1 ••.. ' <Xm are linearly 
independent (no one of them lies in the subspace generated by the other m - 1). 
Then for any numbers /1 "." 1m the equations 

OI:i'X=ti , i = l, ... ,m 

have a solution x = (Xl"'" xn)' 
That is, it is always possible to solve m linear equations (Xi • X = Ii in n 
unknowns Xl"." Xn , provided that the m linear expressions L OliiXt are 
independent of one another and so, in particular, m .:( n. Of course, the 
claim that the rest of the proof of Theorem 7 is constructive is based on 
the existence of a constructive proof to Lemma 7. The construction of a 
solution (Xl"'" xll) is well known however. One merely uses the first equation 
to express one of the Xi in terms of the other n - 1, substituting the expression 
for Xi in the other m - 1 equations. reducing the problem to m - 1 equations 
in n - 1 unknowns. This process continues until either there are no equations 
left-in which case one can assign arbitrary values to the remaining 
unknowns-or until one of the substitutions results in a contradiction, 
in which case the process stops and it can be shown that the original exi were 
not independent. 

The next theorem belongs to the theory of linear inequalities, and since 
it serves as a basis for measurement axiomatizations we present its proof 
in detail. 

LEMMA 8. Let {exti I i = 1, ... , m,j = 1, ... , n} be an m X n matrix, 
(Xi = (exil , ... , C(in), a(i) = (a11 , ...• C'tmj), and Z = (Zl , ... , zn). The system of 
inequalities 

i = 1, ... , m, 
(3) 
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"has a solution x = (Xl,"" X lI) iff the system 

y . aW = Zj , 

Yt ~ 0, 

has no solution y = (Yt " .. , Ym). 

j = I,o .. ,n, 
i = l •... ,m 

(4) 

PROOF. Suppose that x is a solution to System (3) and Y is a solution 
to System (4). Then 

n 

o > z . x = I z,x, 
'~1 

= f [y . '" (j)] Xi 
j=1 

m 

= I y'["" . X] ;;, 0, 
i-1 

since Yi , (Xi • X ~ 0, i = 1" .. , m. This is impossible. 
Suppose that System (4) has no solution. We show that System (3) has a 

solution. First, suppose that the equations y . a(j) = Zj have no solution 
at all, i.e., z is not in the subspace generated by 0:1 , •••• am . Reindex the at 
SO that al ..... aT are an independent set and ct,.+! , .... am are in the subspace 
generated by them. Then al " •• , 0:,. ,z are independent. By Lemma 7, we can 
find x such that ext' . X = 0, i = 1, ... , rand z' x < O. Since this implies 
(Xi' X = 0, i = r + 1, ... , m, x is a solution to (3). 

Second, suppose that y . IX{;) = Z; ,j 1, ... , n, but that Yi <: 0 for at 
least one i. We proceed by induction on m. If m = 1, then YlO:li = Z{, 

j = 1"", n, and Y1 < O. Let x = 0:1' Now 0:1 =F 0, otherwise z = 0, and 
y, = 0 would solve (4). Thus, "'1 . x > 0, z· X = Y,("'1 • x) < 0, and x 
is a solution to System (3). Suppose now that Lemma 8 holds for m « k, 
where k ~ 1, and consider the case m = k + 1. Let f3(j) = (O:li •.•. , O:ki)' 

There can be no solution to System (4) with {3(;) substituted for "'''', for if 
there were, we would let Yk+1 = 0, obtaining a solution to the original 
system. By the inductive hypothesis, there is a vector x' = (Xl', ... , x n') with 
O:i • X' ~ 0, i = 1, .. " k and z . x' < O. If O:k+1 • x' ~ 0, then let X = x' and 
we are done. So suppose that O:k+1 • x' < 0. Define 

0:/ = (O:i • x') O:k+1 - (O:k+1 • x') O:i , 

z' = (z . x') O:k+1 - (O:k+1 • x')z. 

i = 1, ... ,k, 
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Consider the system 

y" a'U) = z/. j = 1, ... , n, 

y/ ~ 0, i = 1" .. , k 

65 

(4') 

where a'(j) = (c4 j " .. , O:~i)' 0:/ = (0:~1 " .. , O:~n)' Ify' is a solution to System (4'), 
define y by 

Yi = Y/, i = 1, ... , k 

, 
Y'+1 = -("'.H· X')-l [I y«",' x') - (Z· x')j. ,-1 

We show that y is a solution to System (4). In fact, y, = y( ;;, 0, i = 1, ... , k, 
and Yk+1 ~ ° since -(O:k+1' X')-1 > 0, Y/ ~ 0, O:.j' x' ~ 0, and 
-(z . x') > 0. Moreover, for j = 1, ... , n, 

Zi = -(""H' X')-l [z/ - (z . x') "'.H.j] 

= -("',+1 . X')-1 [y' . ",'(il - (z . x') "'.H.j] 

, 
= -(O:k+1 • X')-1 l~ Yi O:~:i - (z . x') O:k+l,.1] 

, 
= -(""H' X')-1 [I Y«"" . x') ""+l.i 

i=1 

• - L Y/(O:k+1 • X') 0:£1 - (z . Xl) O:k+U] 
i=1 

k 

= L Y/O:ij + Yk+10:k+1,j 
i=1 

= Y' aU). 

Thus, Y is a solution to System (4), contrary to hypothesis. We conclude 
that there exists no solution y' to System (4'). By the inductive hypothesis, 
there exists a solution x" = (x~ ,'''' x~) to the system 

0:/ • x" ~ 0, i = 1" .. , k 
(3') 

Z'· x" < 0. 

Define 

x = (O:k+1 • xj x' - (0:11:+1 • x') x~. 
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We show that)( is a solution to System (3). In fact, it is easy to verify, from 
the definition of (x/, z', and x, that 

(Xi'x=a/'x" ~O, 

tYk+l: X = 0, 

·z· x = z'· x" < O. 

By induction, the theorem follows for any m. 

i = I, .. o,k, 

o 
The preceding proof allows us to construct the solution to a system of 

inequalities (3) whenever the solution exists. First, obtain a solution X(l) to 
(Xl • X ~ 0, Z • x < O. If the equations 0::1' X = 0, Z' x = -1 have a 
simultaneous solution, then it will serve as x(l). If they do not, then z = A0:.1 

for some A. If A ~ 0, then no solution is possible, since ot1 • x )!: 0 implies 
z . x ~ O. If .\ < 0, then choose. X(l) = 0:.1' Now check the solution x{l) 
in successive inequalities 0::2 • X >- 0, ... until, for some k ~ 1, O:k+1 • x{l) < O. 
At this point, x(1) solves the first k inequalities IXi • X ~ 0, as well as z . x < 0, 
so relabel xU) as X(k). To construct X(k+1), proceed as in the inductive step 
to the above proof~ defining (x/, i = 1, ... , k and Zl, and solving the system 
a.,' . x" ~ 0, z'· x" < 0. Since this system has fewer inequalities than 
System (3), a genuine reduction is achieved, although the method here 
described may have to be applied in full panoply to this lesser system. lfthe 
reduced system has no solution, thl!n, as the lemma shows, the full system 
also has no solution. If x" solves the reduced system. define X<k+1l from 
x' = X(k) and x" as in the lemma. Now check X(k+1l in successive inequalities 
Oi, . )( ;;, 0, i ;;, k + 2, until it fails; then apply the method of the inductive 
step over again, etc. (see Exercise 15). 

2.3.3 Proof of Theorem 7 

First we show that Systems (l ") and (2) cannot both have solutions. For 
if they did, we would have 

m. mN 

o < L AlOi, . )() = L fL,(f3i . x) = O. 
i_I i=l 

Next, suppose that System (1") has no solution. Define vectors /'i in Re1!.+1 by 

/'1 = (ail ... ·• O::in, 1). i = I .... , m', 

I'm' +i = (f3i1 , .... (lin. 0), i = 1 .... , m", 

/'m'+m .. +1='(-fJ.a' .... -{lin'0)' . i= 1, ... , mil. 
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Let Zj = 0, j == 1, ... , n, zn+1 = 1. If System (1 ") has no solution, then neither 
does the system 

Yi' X ~ 0, i = 1, ... , m' + 2m", 

Z'x < O. 
(5) 

For if System (5) had a solution x = ()(, "'" )(0+1)' Z • x < 0 would imply 
Xn+1 < 0. Thus, setting x = (Xl'"'' Xn), we have from /'i . X ~ ° the results 

O::i' X + Xn+1 ~O. 
f3, . )( ;;, 0, 

-f3i' X ~ 0, 

i = l, ... ,m', 
i = l, ... ,m", 

i = 1, ... ,m". 

Thus, (Xi • X > 0, fJi • X = 0 as required in System (1"). Let y<jl = (Y1i , ... , Ymi), 
where m = m' + 2m". By Lemma 8, the system 

Y . y(j) = Zj , 

has a solution. Let 1\ = Yi, i = 1, ... , m' and let f'i = -Ym'+i + Ym'+m"+i, 
i = I, ... , mil., Then 

and 

m m' 
'22 Aiaii - L l'-if3ii = Y . y(j) 
i",1 i",,1 

= Zj 

= 0, j = 1 .... , n, 

m' 
",._y.y{n+1}_z -I 
~ I\z - - n+l - • 
£=1 

Thus, there is a solution to System (2). o 
Note that this proof Ieads,to a construction of solutions to (I), by solving 

the associated System (5) using the methOd of Lemtna 8. More efficient 
computational methods for solving System (5) are available, however, 
via linear programming (see Gale, 1960). 

2.3.4 Topological Proof of Theorem 7 

In this section, we give a shorter ~ more intuitive, but nonconstructive 
proof of Theorem 7, which fails if the base field is Ra rather than Re. 

First, consider the case where there are no equalities in System (I), i.e., 
m" = O. In this case, the theorem states that a. solution to System (I) exists 
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if and only ifihe convex hull K of {'" , ... , "m'} does not intersect O. The set K 
is closed and bounded in Re", hence, it is compact. For y E K, y . y (the 
squared distance of y from 0) is a continuous function of y, and thus is 
minimal for some x E K. By convexity, x is unique, but this result is not 
needed. (See Rudin, 1964, Sections 2.41, 4.11, 4.16 for the details of the 
argument just given.) We claim that x is a solution to System (I). If not, 
then for some i, (ti . X ~ O. For A ERe, define 

/(A) = [A", + (l - A) xl . [A", + (l - A) xl. 

Differentiating / with respect to A and setting the 'derivative equal to zero 
yields that / is minimum at 

Ao = (x' x - "i . X)/("i - x) . ('" - x). 

Since X· x and (Cii - x) . (Cii - x) are greater than 0 and -ai' X ~ 0, 
Ao > O. It is easily checked that I > Ao. Let y = Ao'" + (I - Ao)X. Then 
y EK, Y oF x, and 

y' y =/(Ao) </(0) = X· x, 

contradicting minirnality of x . x. Therefore, lXi • x > 0 for i = 1"." m'. 
Next, suppose that m" > O. Let B be the subspace generated by 13, , ... , 13m" 

and let C be its orthogonal complement (see MacLane & Birkhoff, 1967, 
p. 240). Let C be generated by vectors y, , ... , Yk' Define new vectors "i by 

i = 1, ... , m', j = 1, ... , k. 

If x is any solution to System (I), then x E C, so X = :L:=l X/Yi , for some 
x' = (Xl'" .. , Xk'). Thus, 

k 

ct/ . x' = L «(Xi' Y;) x/ 
;=1 

= eli' x> 0, i = l, ... ,m'. 

Conversely, if x' is a solution of the system 

ex/'x'>o, i = 1, ... ,m', (6) 

then x = :1;j., x/y, is a solution to System (I). Thus we can apply the 
criterion derived above for m" = 0 to the reduced System (6). In fact~ 
the convex hull of the "i intersects the origin (of Rek

) if and only if there 
exist AI,"" Am' ~ 0, with L~~1 Ai = 1, such that. for j = 1 •... , k, 
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m' 

= IA;(",'Y,) 
i-I 

But this last equation means that II:::, A,,,,] . x = 0 for every x E C. A well
known result on orthogonal complements implies that L~~l Aicxi E B, and 
this is precisely the criterion for nonsolution of System (1). 0 

EXERCISES 

1. Carry out the inductive step in the proof of Theorem 1, showing iliat 
if c/> is order preserving on {al •••• , an}, then it is also order preserving on 
{a, , ... , anH}. (2.1) 

2. If you did not do Exercise 1.5, this would be a good time to do it. 

3. Prove Lemma 2. (2.2.3) 

In the following nine exercises, <A, <:;, ®, *) is an Archimedean ordered 
ring " (Definition 5) with additive identity (zero) 6. Let (n - 1) a E!) a = no, 
an-1 * a = an, and let -a be the additive inverse of a. (2.2.7) 

4. Prove ilie following. If '" is order preserving and multiplicative, then 
for any a > 6, the following are equivalent: 

(i) "'(a) < I, 
(it) a> a'. 

5. Prove that if c/> is order preserving, additive, and multiplicative, then 
for any a > 6 and any m, n > 0, the following are equivalent: 

(i) "'(0) < min, 
(ii) ma > na'. 

6. Prove that for any a > 6, the set of m, n > 0 such that rna > na' 
is nonempty. 

Now define", for a > 6 by using Exercises 5 and 6: 

"'(a) = inf{m/n I m, n > 0 and ma > na'}. 
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The 'next six exercises show that 1> is order preserving, additive, and 
multiplicative On A+ = (a I a >- OJ, and hence, that q, yields an isomorphism 
into the ordered ring a/real numbers. All a, b, c below are understood to be >fJ. 

7. m(a * b) = (rna) * b = a * (mb). 

8. If rna >- na', then for all b, 

(i) mb >- na * b, 
(ii) mb >- nb * a. 

9. Suppose a ~ b. If ma>- na', then mb>- /lb'; hence, q,(a);;' q,(b). 

10. If ma>- na', m'b >- n'b', then (mn' + m'n)(a EEl b) >- nn'(a EEl b)'. 
Hence, q,(a EEl b) ,;; q,(a) + q,(b). 

11. Ifmjn < q,(a), thenma -< na'. Hence, 0 < q,(a) = sup{mjn Ima -< na'}, 
q,(a EEl b) = q,(a) + q,(b), and a>- b implies q,(a) > q,(b). 

12. Prove that q, is multiplicative. 

13. Modify Exercises 4--12 so as to generate a proof of Theorem 6 for 
ordered semirings. (2.2.7) 

14. In the proof of the corollary to Theorem 6 prove that the restriction 
of ;:::, EB, * to A+ forms an Archimedean, pqsitive, regular, ordered, local 
semiring. (2.2.7) 

15. Use the method of Section 2.3.2 to solve the system 

Xl+ X2>O, 

2Xl + 3xz ~ 0, 

2x, + 5x, < O. 

Chapter 3 Extensive Measurement 

o 3.1 INTRODUCTION 

Extensive attributes such as length and mass have been measured success~ 
fully since antiquity. The modern theory of extensive measurement, however, 
originated less than a century ago when Helmholtz (1887) and HOlder (1901) 
developed the first axiomatic analysis of extensive attributes. Generally 
speaking, a theory of extensive measurement is a set of assumptions, or 
axioms, formulate'd in terms of an ordering ;C (of objects with respect to 
some property) and a concatenation operation 0 (between objects) that 
permit the construction of a scale q, satisfying 

(i) a ~ b iff q,(a) ;;, q,(b), 
(ii) q,(a 0 b) = q,(a) + q,(b). 

Since the additive representation of mass, length. ~nd time duration 
have become a part of our daily experience we tend to take for granted the 
qualitative laws (e.g., a ~ b whenever a 0 c ~ b 0 c) that underlie the 
numerical representation. Indeed, under the natural interpretations of ~ 
and 0, these laws tYpically reduce to common physical truths. Nevertheless, 
the formulation of a set of axioms that are sufficient for the representation 
and acceptable from an empirical standpoint poses several problems to 
which the present chapter is devoted. 

Several attempts to improve Holder's (1901) theory have been made. 
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