
Chapter 1 Introduction 

1.1 THREE BASIC PROCEDURES OF FUNDAMENTAL 
MEASUREMENT 

Wheri measuring some attribute of a class of objects or events, we) 
associate numbers (or other familiar mathematical entities, such as vectors) 
with the objects in such a way that the properties of the attribute are faithfully 
represented as numerical properties. In this book we investigate various 
systems of formal properties of attributes that lead to measurement in this 
sense. Some commentators on physical measurement have claimed that an 
attribute must exhibit a more or less unique set of formal properties in 
order for it to have a "fundamental" measure-one that does not require 
the prior measurement of other quantities. For example, length can be 
measured fundamentally (see below), whereas density = mass/volume 
depends on the prior measurement of mass and volume. Not only is the 
intuitive distinction between fundamental and oth~r sorts of measurement 
an elusive one (see Chapter 10), but whatever it may be, it is surely wrong 
to think that there is only one fundamental system of properties adequate 
to lead to numerical measurement. We present many quite different systems 
that are all fundamental by the intuitive criterion of independence of 
other measurement. 

Despite the variety of systems that may lead to measurement) only a few 
basic procedures are known for assigning numbers to objects or events on 
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the basis of qualitative observations of attributes. In the rest of this section 
we sketch the three procedures that underlie the systems in Chapters 2-13. 
To make the discussion concrete, we formulate the ideas in terms of length 
measurement. 

Suppose. that we have a set of straight, rigid rods whose lengths are to be 
measured. If we place the rods a ana~bside by side and adjust them so that 
one is entirely beside the other and they coincide at one end, then either a 
extends beyond b at the other end, or b beyond a, or they appear to coincide 
at that end aiso. We say, respectively, that a is longer than b, b is longer 
than a, or that a and b are equivalent in length. F!Jf brevity, we write, 
respectively, a >- b, b >- a, or a r-..J h. Two or more rods can be concatenated 
by laying them end to end in a straight line, and so we can compare the 
qualitative length of one set of concatenated rods with that of another by 
placing them side by side, just as with single rods. The concatenation of a 
and b is denoted a 0 b, and the observation that c is longer than a 0 b 
is denoted c>- a 0 b, etc. Many empirical properties of length comparison 
and of concatenation of rods can be formulated and listed, e.g., >- is 
transitive; 0 is associative; if a >- b, then a 0 c>- b; etc. Although we do 
not systematically list these properties now, we will use them freely in the 
intuitive discussion that follows. 

1.1.1 Ordinal Measurement 

In measuring length ordinally, we confine our observations to comparisons 
between simple, unconcatenated rods, and we are concerned only 
with assigning numbers </>(a), </>(b), etc. to rods a, b, etc. so as to reflect the 
results of these comparisons. That is to say, we require the numbers be assigned 
so that a >- b if and only if </>(a) > </>(b). Information arising from concatena
tion is not used at all. 

A natural procedure for assigning numbers -is this. We assign to the 
first rod selected any number whatsoever. If the second rod chosen exceeds 
the first, we assign it any larger number, whereas if the first exceeds the 
second, we assign the second rod any smaller number. We deal with the 
third rod similarly except if it is between the first two. Then we assign it 
any number between the numbers selected for the first two. This procedure 
can be continued indefinitely. The assignments of numbers already made 
need not be affected by subsequent observations because between any two 
distinct numbers others always exist. 

The only difficulty that can arise in carrying out the above procedure 
is .the existence of rods a and b such that neither a >- b nor b >- a, i.e., a ,...., h. 
If the comparison does not establish an order, we may be tempted to conclude 
that the lengths are actually equal and so we assign the same number to a 
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and b. Howev'er, if the comparison process for establishing relations is 
insensitive to very small disparities in length we may then find that b ,...., c, 
c ,...., d, and b >- d. But to represent these relations by numbers, we require 
</>(b) = </>(c), </>(c) = </>(d), and </>(b) > </>(d), which is impossible. Thus, this 
procedure for ordinal measurement is suitable only when the sensitivity of 
the comparison process exceeds the disparities among the rods under 
consideration. In the ideal case either a >- b or b >- a for any two rods a 
and b, except for carefully prepared "perfect copies" (e.g., meter sticks or 
intervals on a meter stick); for the latter, ,...., holds between any two copies 
and thus is transitive. 

Of course, really perfect copies cannot be prepared. Whenever physi<.?al 
differences become sufficiently small, any method for observing them 
ultimately deteriorates. In some cases, and perhaps in all, observations of 
two sufficiently similar entities are inconsistent when the same comparison 
is repeated several times. And when inconsistencies can occur, violations of 
transitivity may arise. But the ideal case described above can still be achieved 
if copies are prepared by "standard" methods that are much more sensitive 
than the "working" methods used to establish >- and if the set of rods is 
restricted so that either a >- b or b >- a except for stanqardized copies. 
Chapter 15 discusses the case where ""' is not transitive, but >- is 
transitive: 

Clearly, the above procedure of ordinal measurement can be applied 
to any attribute of objects-not just length of rods-provided that a suitable 
comparison process leads to relations >- and,...., with the requisite properties 
and that the set of objects is finite. The same procedure can be used for an 
inductive definition of a scale 'P on a countable ordered set (see Section 2.1). 
What is less obvious is how to construct the scale when there are pairs of 
objects that cannot be compared directly. An interesting case, in which 
an ordering >- is inferred from "revealed preference" observations, has been 
treated in the economic literature (Arrow, 1959; Hansson, 1968b; Houthakker, 
1950, 1965; Richter, 1966; Samuelson, 1938, 1947; and Uzawa, 1960). 
We do not deal with this problem; instead, this book is mainly about the 
ramifications and extensions of another procedure, to which we now turn. 

1.1.2 Counting of Units 

If we take into account the concatenation of rods as well as their ordering, 
then further constraints on the numerical assignments arise quite naturally. 
Suppose, for example, that a',a",d", ... are perfect copies of the rod a 
(see Section 1.1.1). If a 0 a' >- band b >- a, then we not only want to assign 
numbers such that </>(a 0 a') > </>(b) > </>(a) = </>(a'), but we also want to 
represent that a 0 a' is twice as long· as a, i.e., </>(a 0 a') = 2</>(a). Henoe 
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we make the assignment 4>(b) so that it is between 4>(a) and 24>(a). Similarly, 
if a 0 a' 0 a" 0 d" >- band b>- a 0 a' 0 a", we place 4>(b) between 34>(a) 
and 44>(0). And so on. 

The sequence a, 2a = a 0 a', 3a = (2a) 0 all, 4a, Sa, ... is called a standard 
sequence based on a. A meter stick graded in millimeters provides, in 
convenient form, the first 1000 members of a standard sequence constructed 
from a one-millimeter rod. If we observe that rod b falls between na and 
(n + l)a, say, between 480 and 481 mm, then we assign it a length between 
n4>(a) and (n + 1) 4>(a) (in the present example, between 4804>(a) and 48 1 4>(a), 
where 4>(a) is the number assigned to a one-millimeter rod and its copies). 
The vahle of 4>(a) depends on the selection of a particular rod (say, e) to 
have unit length. If e ~ rna, then 4>(a) = 11m. Thus, if e is the meter stick, 
then m = 1000 and the length assigned to b must be between 0.480 and 
0.481 meters; if e is a centimeter rod, then m = 10 and 4>(b) must be between 
48.0 and 48.1 cm. 

By choosing finer and finer standard sequences, keeping the unit of 
measurement fixed, of course, the value of 4>(b) can be placed within an 
interval as small as we like. In Section 2.2 we prove a theorem establishing 
the convergence of these estimates as the standard sequence becomes 
arbitrarily fine. 

Note that for purposes of ordinal measurement we could have disposed 
of the problem of transitivity of ~ by restricting the set of rods so that 
either a >- b or b >- a for all rods a and b, but for standard sequences copies 
are essential, and the discussion in Section 1.1.1 of perfect copies applies 
here as well. . 

Three remarks should be made about the procedure of counting using 
standard sequences. 

1. The numbers obtained form a satisfactory ordinal measure (Section 
1.1.1): If b >- c, then for some sufficiently fine-grained standard sequence 
based on some a, we have b>- na and na>- c, so 4>(b) > n4>(a) > 4>(c). 
It follows that b >- c if and only if 4>(b) ;> 4>(c). 

2. The numbers aS~igned are additive with respect to concatenation: 
4>(b 0 c) ~ 4>(b) + 4>(c). The reason is that if n copies of a must be concate
nated to approximate band n' copies to approximate c, then the concatenation 
of n + n' copies of a will approximate the concatenation of b with c. The 
additivity equation holds only approximately for coarse standard sequences 
and approaches exactness for finer and finer sequences, 

3. Regardless of the choice of unit, ratios of numerical assignments are 
uniquely determined by the procedure: For if n copies of a must be concate
nated to approximate band n' copies to approximate c, then n/n' approxi~ 
mates 4>(b)l4>(c) more closely the finer the. standard sequence. 

+ 
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The technique we have sketched is obviously applicable to any similar 
situation where the relation >- and the concatenation 0 are both defined 
empirically. Whenever it is applied, we say that the attribute in question 
has been extensively measured (see Chapter 3). It turns out, however, that 
the same basic technique actually can be applied in many other, much less 
obvious ways (see Section 1.3.2 for an illustration and Chapters 4-8, 12, 
and 13 for the detailed exploitation of this idea). 

1.1.3 Solving Inequalities 

Suppose that five rods denoted a1 , a2 "'" as , are found to satisfy 

.al 0 a5 >- a3 0 a4 >- al 0 a2 >- as >- a4>- a3 >- il2 >- a1 ' (I) 

Data such as these can arise whenever a limited set of preselected objects 
and concatenations are compared and where it is impractical to go through 
the elaborate process of constructing standard sequences, Denote by Xi the 
unknown value of the length of ai, i.e., Xi = "'(at), i = 1, ... ,5. From the 
above observations, the unknown lengths Xi must satisfy the following 
system of simultaneous linear inequalities. 

Xl +XS -X3 -X4 >0, 

X3 + X4 - Xl - X2 > 0, 

Xl + X2 - Xs > 0, 

Xs - X 4 > 0, 

X4- X3>0, 
X3 - X2 > 0, 

X 2 -Xl>O, 

(2) 

Any solution to this set of seven inequalities in five unknowns gives a 
possible set of values for the lengths of a1 ,,.., as. One can thus measure 
the five rods by finding a solution, if one exists. Alternatively, one can 
obtain bounds on certain ratios of numerical assignments from the inequali~ 
ties; for example, it can be shown (with some manipulation) that the ratio 
x,lx2 , or 4>(a,)I4>(a,), is between 1 and! for any solution to the above 
inequalities (Exercise 1). 

In setting up the inequalities in Equation (2) on the basis of the observations 
that are given by Equation (l), the concatenation operation 0 is translated 
into addition + of real numbers, and the observational order >- is translated 
into the order > of real numbers. Thus, for example, al 0 a2>- as is 
represented as Xl + X2 > Xs ' This translation uses properties 1 and 2 of 
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the previous section. In other words, measurement of length by counting 
units in a standard sequence is a procedure which assigns the sum ¢(b) + ¢(c) 
to the concatenation b 0 c, and which assigns numbers whose numerical order 

I 
preserves the observational order. To measure by solving inequalities, 
one assumes that these two properties are to be satisfied by the numerical 
assignment; this assumption allows one to set up the inequalities to b.e solved. 

Solving inequalities to obtain numerical assignments has many applications 
other than the measurement of length. These are discussed in Chapter 9. 
In some cases more complicated numerical operations than simple addition 
are assumed to correspond to empirically defined no~ions, and this results 
in nonlinear inequalities. 

1.2 THE PROBLEM OF FOUNDATIONS 

1.2.1 Qualitative Assumptions: Axioms 

When measuring the lengths of ordinary (as opposed to atomic-sized or 
interstellar) objects, the standard-sequence procedure of ;leetion 1.1.2 is 
obviously the one of most interest. In analyzing its foun/dations, one is led 
to the following question: What basic assumptions must be satisfied by >
and 0 in order that the standard-sequence procedure can be carried through 
in a self-consistent manner? In Section 1.1 some basic properties of 0 and >, 
e.g., if a >- b, then a 0 c>- b, were cited, and in describing the counting-of
units procedure we tacitly invoked others. For example, we used the one 
just mentioned as follows: In finding elements na and (n + I)a, in the 
standard sequence based on a, such that (n + I) a >- band b>- na, we 
need to be assured that the integer n is unique. We infer this, because if 
(n + I) a >- b, then (n + 2) a 0 a is also longer than b, etc., so that all 
subsequent members of the sequence are longer than h. The critical step, 
inferring that (n + I) a 0 a >- b on the basis of (n + I) a >- b, depends 
on the truth of the above property (and on the transitivity of >-). Similarly, 
another property tacitly assumed is the existence of some integer n such 
that (n + I) a >- b; i.e., we need to know that a is not "infinitesimally small" 
compared to b. For no really good reason, except mathematical tradition, 
this is called an Archimedean assumption. 

To put our understanding of the counting-of-units procedure in good 
order, we must make all of these assumptions explicit. A measurement 
procedure certainly is not adequately understood if it depends on properties 
that are not explicitly recognized. Once they are explicit, deeiding whether 
or not the same measurement procedure is applicable in a ~ew domain 
reduces to testing whether or not the requisite properties are satisfied. 
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Still more orderly foundations are obtained if we can deduce most 
properties as theorems from a few basic properties. Applicability to a 
new situation is then judged according to whether those few properties 
are satisfied. This logical step is called the axiomatization of the measurement 
procedure. The few explicit properties from which all others are deduced are 
called the axioms. Axiomatization of any body of propositions can always 
be achieved in more than one way; some criteria for "good" axiomatizations 
are discussed later. 

Geometry is a beautiful and far-reaching example of a foundational 
treatment of measurement. The science of geometry (i.e., earth measurement) 
was probably first developed as a set of practical procedures, either for 
the direct measurement of lengths and areas on the earth's surface or in 
connection with the astronomy devised to serve astrology. Eventually, 
the tacit assumptions of practice were formulated explicitly as theorems 
of geometry, and these were systematicaHy organized and deduced from a 
few axioms and postulates by Euclid. Certain additional tacit assumptions, 
unrecognized by Euclid, were discovered later, and an orderly axiomatization 
of Euclidean geometry was finally devised by Hilbert (1899) and others. 
These axiomatic studies are known as the foundations of geometry. For 
further discussion of geometry as measurement, see Chapters 11-13. 

Although it seems quite natural to view the task of the foundations of 
measurement to be the explication and systematization of the assumptions 
required by particular interesting procedures of measurement, doing so 
has actually led to some serious misunderstandings. These stem from the 
easy supposition that an empirical concatenation operation is sine qua non 
for the standard-sequence procedure. Campbell (1920, 1928), in his influential 
books on measurement, and some later philosophers (e.g., Cohen & Nagel, 
1934; Ellis, 1966) treated fundamental measurement as practically synony
mous with procedures involving empirically defined concatenation operations. 
(One of Campbell's remarks, p. 327 of the 1957 edition of 1920, makes clear 
that he was aware of a potential distinction: "Of course there may possibly 
be some other way of assigning numerals to represent properties differing. 
in first principles from that described in Chapter X [which is devoted to 
the procedure of Section 1.1.2J; but until somebody s~ggests such a way, 
it is hardly worthwhile to discuss the possibility; it is certainly not employed 
in the actual physics of today. ") The absence of appropriate, empirically 
defined, concatenation operations in psychology has even led some serious 
students of measurement to conclude that fundamental measurement is not 
possible there in the same sense that it is possible in physics (Guild, 1938). 
Reese (1943) discussed this in detail and attempted to provide psychological 
examples of scales based on concatenation. Many examples given in this 
book show that Campbell's viewpoint is untenable. 
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1.2.2 Homomorphisms of Relational Structures: Representation 
Theorems 

We may view the foundations of measurement in a slightly different 
way by focusing on properties of the numerical assignment, rather than 

[

lon the procedure for making the assignme~t. Specifically, for the standard
sequence procedure, we may pose the followmg q~estIOn: GIven a set of r~ds, 
a comparison relation >, and a concatenatlO~ 0, what assumptIons 
concerning >- and 0 are necessary and/or sufficle~~ to ~onstruct a :ealM 

valued function 1> that is order prese:ving a?d a~dltl~e-1.e., tha~ satls,fies 
properties 1 and 2 of Section 1.1.2? ThIS questIon stdl.asks for an axlOmat1~a~ 
tion-the listing of certain properties of>- and a-however, the concluslOn 
aimed for is not that a certain procedure is possible, but rather that a 
numerical function 4> satisfying certain properties exists. ~he ~roced~re 
to be used in assignjng numbers (constructing 4» is not specIfied In posmg 
the problem; thus, quite distinct axiomatizations,. wh~ch op~r~te through 
different procedures-say, counting units and solvmg mequalitIes-may be 
expected. .. 

The next step, a small but important one, recognizes that the numen.cal 
assignment 1>, satisfying properties I and 2 of Sectio:, 1.1.2 (0.rder preservmg 
and additive), is a homomorphism of an empIrIcal re!atlOnal structure 
into a numerical relational structure. To make our meanmg clear we must 
first say what we mean by a relational structure and then what we mean 
by a homomorphism between two relational structures. 

A relational structure is a set together with one or more relations on that 
set. If we denote the set of all the rods and all the finite concatenations of 
rods under consideration by A, then the empirical relational structure for 
the procedures of Sections 1.1.2 and 1.1.3 is denoted <A,)-, 0). (The 
concatenation operation is a ternary relation on A, holding an:ong a, b, ~nd 
c = a a h, whereas >- is a binary relation on A.) An appropnate numencal 
relational structure is (Re, >. +), where Re is the set of real numbers. 
> is the usual greater than relation. and + is the ordinary operation of 
addition. (Angle brackets < ) rather than parentheses are used in giving 
an explicit listing of a relational structure.) The .numerIcal a,sslgnment ~ 
is a homomorphism1 in the sense that it sends A mto Re, > mto >, and 
o into + in such a way that> preserves the properties of )- (property I, 
Section 1.1.2) and + the properties of 0 (property 2, Section 1.1.2). 

This formulation generalizes naturally to other relational structures. 
Given an empirical relation R on a set A and a numerical relation S on Re, 

1 We speak of a homomorphism (rather than an isomorphism) because .p i.s not. usually 
one to one' in general rfo(a) = .p(b) does not mean that the rods a and b are Identical, but 
merely of ~ual length. A one~to-one homomorphism is called an isomorphism. 
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a function 4> from A into Re takes R into 8 provided that the elements 
a. b .... in A stand in relation R if and only if the corresponding numbers 
1>(a), 1>(b), ... stand in relation S. More generally, if <A, RI , ... , Rm> is an 
empirical relational structure and <Re, Sl , .... , 8m ) is a numerical relational 
structure, a real-valued function 4> on A is a homomorphism if it takes each 
Ri into Si , i = 1 •... , m. Still more generally, we may have n sets A1 ..... An, 
m relations R1 , .... Rm on A1 X ... X An, and a vector-valued homo
morphism cp, whose components consist of n real-valued flmctions cp1 ,"', c?n 
with 1>i defined on Ai' such that 1> takes each Ri into relation S, on Ren. 

A representation theorem asserts that if a given relational structure satiSfieD i 
certain axioms, then a homomorphism into a certain numerical relational I 
structure can be constructed. A homomorphism into the real numbers is I 
often referred to as a scale in the psychological measurement literat~::: 

From this standpoint, measurement may be regarded as the constructIOn 
of homomorphisms (scales) from empirical relational structures of interest 
into numerical relational structures that are useful. Foundational analysis 
consists, in part, of clarifying (in the sense of ax iomati zing) assumptions of 
such constructions. 

This view of measurement would be entirely too abstract were it not for 
the fact that interesting examples of measurement exist that involve relational 
structures quite different from <A,)-, 0). The development of such addi
tional examples of measurement spurred the formulation of this abstract 
viewpoint. Among the key examples were the axiomatizations of utility 
measurement by von Neumann and Morgenstern (1947), Savage (1954), 
Suppes and Winet (1955), and Davidson, Suppes, and Siegel (1957), and 
the axiomatization of semiorders by Luce (1956), An explicit statement, 
of the relational structure viewpoint was first given by Scott and Suppes 
(1958); also see Ducamp and Falmagne (1969) and Suppes and Zinnes (1963). 

Despite the proliferation of measurement axiomatizations, the procedures 
for constructing numerical assignments remain about the same; the most 
important ones are those described in Section 1.1. One of our goals in this 
book is to show clearly just how the assignments of numbers in what are 
quite disparate represe-ntation theorems all reduce to one or another of 
these three basic proced ures, 

1.2.3 Uniqueness Theorems 

In discussing the measurement of length based on the counting of units 
(Section 1.1.2), we pointed out that the number 1>(a) assigned to rod a 
depends on which rod e is chosen as unit, i.e .• epee) = 1. This choice is 
entirely arbitrary. Moreover, as we noted, the ratio, 1>(a)!1>(e) is uniquely 
determined independent of whether e or some other rod e' is chosen as the 
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unit. Thus, if ~ is the numerical function constructed with e as unit and if 4>' 
is constructed with e' as unit, we have 

4>(a)/4>(e) = 4>'(a)J4>'(e), 

or, substituting 4>(e) = 1 and 4>'(e) = ", 

4>'(a) = "4>(a). (3) 

Conversely, starting with 4> based on e as unit, we can select e' with 4>(e') = 
Ij", and obtain a new scale (homomorphism) 4>' satisfying Equation (3). 
These facts are usually expressed by saying that the similarity transformations 

(4) 

are permissible transformations of the scale cp. A scale whose permissible 
transformations are only those of Equation (4) is called a ratio scale. 

The term "ratio scale" comes from the fact that if cp -- cxcp are the only 
permissible transformations. then the ratios of scale values are determined 
uniquely. 

Other families of measurement procedures are related by different sets 
of admissible transformations. For example, Celsius temperature is related 
to Fahrenheit by C = (5j9)(F - 32). Observe that in any ordinary tempera
ture measurement, two arbitrary choices are made, the zero point and the 
unit. Varying these leads to the affine transformations which are of the form 

4> -> ,,4> + fl, ,,> O. (5) 

A scale whose permissible transformations are only those of Equation (5) 
is called an interval scale because ratios of intervals are invariant: 

4>'(a) - 4>'(b) [,,4>(a) + fll - [rx4>(b) + fll 
4>'(e) 4>'(d) = ["4>(e) + fll ["4>(d) + fll 

4>(a) - 4>(b) 
4>(e) - 4>(d) 

Two other classes of transformations play a key role in measurement. 
The power transformations are of the form 

(6) 

and a scale whose pennissible transformations are those of Equation (6) is 
called a log-interval scale because a logarithmic transformation of such 
a scale results in an interval scale. As we shall ar&ue in Chapter 10, many of 

b 
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the common physical scales that are usually said to be ratio scales are, 
in fact, log~interval scales. Density is an example. 

Finally, the monoto.nic increasing transformations are of the form 

(7) 

whe.re f is any strictly increasing real-valued function of a real variable, 
and a scale whose permissible transformations are those of Equation (7) 
is called an ordinal scale. The reason is that only order is preserved under 
these transformations. 

Stevens (1946, 1951) was the first to recognize and emphasize the 
importance of the type of uniqueness exhibited by a measurement homo
morphism and he isolated these four types-ratio, interval, log-interval, 
and ordinal.2 

A classification of measurement in terms of permissible transformations 
is clear cut only so long as it is certain which transformations are permissible. 
Little ambiguity exists for length: there is a family of closely related proce
dures, described in Section 1.1.2, which differ from one another only in 
the rather trivial and arbitrary matter of which size rod is chosen as unit. 
Permissible transformations are precisely those produced' by variations in 
this matter of procedure. On closer examination, however, it becomes less 
clear which other choices in a measurement procedure are arbitrary and 
which are not. For example, in measuring length, we choose not only the 
unit, but we choose to count and record the number of copies of a (say, n) 
that are needed to approximate b, rather than to record. for example, 
the square or exponential of that number. n2 or en. Is this also an arbitrary 
choice? Would a procedure that recorded n2 be closely related to one 
that recorded n, with the consequence that the transformation cf> __ cp2 
is also permissible? If not, why not? 

Z Surprisingly, he later (Stevens, 1957, 1968) generated an ambiguity in the use of these 
terms by describing his magnitude estimation scale as a "ratio scale" of measurement. 
In this experimental procedure, observers are asked to assign numbers to stimuli "in 
proportion to the sensations evoked," and the resulting numbers are taken to be scale 
values. In the sense that subjects are asked to produce numbers that preserve subjective 
"ratios," one sees why this scale might be described as a ratio scale-except for the fact 
that he earlier introduced the term to refer to those theories in which any two homomor~ 
phisms are related by a similarity transformation. Stevens has not provided any argument 
showing that the procedure of magnitude estimation can be axiomatized so as to result 
in a ratioAscale representation; he has neither described the empirical relational structure, 
the numerical relational structure, nor the axioms which permit the construction of a 
homomorphism. In Chapter 4, we provide a set of plausible axioms for families of matching 
experiments (which generalize magnitude estimation) and, if the axioms are empirically 
valid, we have nearly justified Stevens' claim. 
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The r~ason for rejecting the n'l. or en procedures is easily given: the result~ng 
scales, related to the normal one by cp2 or e<l>, are not additive. Instead, 
they satisfy other fules, namely, 

q,2(a 0 b) = q,'(a) + 2[q,2(a) q,'(b)]'/' + q,'(b), 

e>(a 0 b) = e>(a) e>(b). 

Hence, they do not yield homomorphisms of (A, >,0) into <Re, >, +); 
instead, they yield homomorphisms of (A, >. 0) into numerical structures 
<Re, >, *), where. * is a binary op~ration differingJrom addi~~n. In the 
above examples * IS defined, respectlvely, by x * y = x + 2(xy) / + y and 
x *y = xy. , 

The concept of permissible transformations is much clearer from the 
standpoint of homomorphisms between, relational structures than from the 
standpoint of arbitrary choices in measurement procedures. A transforma

(A, -<), tion q, _ q,' is !li'IJllis~iQlejLancl . ."."!YE' '" and q,' are both homomorphisms 
of <A, Rl , ... , R rl) into the same numerical structure (Re, S1 ,.;., Sn)· T~us, 

'f ,«0,1.)<l\f q, is order preserving and additive-a homomorphism of <A, >,0) mto 
(Re > + )-the same is true for acp, provided that a > 0; moreover, 

1'{R!, ~)if q,; i;any homomorphism of <A, >, 0) into <Re, >, +), then</>' = aq, 
for some O! > O. The latter result, which is the substance of what IS proved 

<;;\11' ;;,\ 

in a uniqueness theorem, is not obvious. , 
,,) We conclude, then, that an analysis into the foundations of measurem~nt 

,'1
v/", '-""<j:"'involves, for any particular empirical relational structure, the for~ulat1on 

0,,- -:;') / of a set of axioms that is sufficient to establish two types of tHeorems: a 
! --- j representation theorem, which asserts the existence of a homomorphism rp 

into a particular numerical relational structure, and a uniqueness theor~m, 
which sets forth the permissible transformations q, - q,' that also Yield 
homomorphisms into the same n,umerical relational structure. A measurem~nt 
procedure corresponds to the construction of a cp in the representatlOn 
theorem. 

It is important to note that e:ver~ __ pa~t: oJ .rep.!:.~~_I1,~_~~9~~_I.!~~iquenes~ 
theorems involves a choice of a numerical relational structure. This choice 
is essenHally- a-matter~of"co;~.e~tion;-aTthoui1ht'heconventions are strongly 
affected by considerations of computational convenience. For example, 
either of the * operations proposed above is clumsy compared with addition. 
The subject of alternative numerical structures is considered in more detail 
in Sections 3.9, 4.4.2, 6.5.2, 7,2, 7.4.2, and in Chapter 19. 

For an interesting attempt to treat the mathematics of measurement in 
an elementary way by focusing mostly on the uniqueness properties of 
various representations without, however, going deeply into the question 
of the existence of representations, see Blakers (1967). 

1.3. ILLUSTRATIONS OF MEA:SUREMENT STRUCTURES 13 

1.2.4 Measurement Axioms as Empirical Laws 

We have just emphasized that the numerical scales of measurement are 
subject to arbitrary conventions. There are permissible transformations, 
corresponding to arbitrary choices of unit, and the very representation 
and uniqueness theorems themselves depend on the conventional choice 
of a numerical relational structure. What is invariant. and so is not a matter 
of convention, is the empirical relational structure and its empirical proper
ties, some of which are formulated as axioms. A set of axioms leading to 
representation and uniqueness theorems of fundamental measurement may 
be regarded as' a set of qualitative (that is, nonnumerical) empirical laws. 
In some cases, as in the measurement of length, these laws are rather trivial, 
i.e., not intrinsically very interesting. In other empirical contexts, the axioms 
can be quite interesting and nonobvious. In such cases, the development 
of measurement scales is closely linked to the formulation and testing of 
appropriate qualitative laws. This viewpoint has been discussed by Krantz 
(1971). 

We shall make an effort to point out the status of various axioms or classes 
of axioms as empirical laws. The type of consideration that arises is illustrated 
in Sections 1.3, 1.4.5, and 1.5. 

1,2.5 Other Aspects of the Problem of Foundations 

In analyzing the foundations of measurement, one of the main concerns 
is formalization: the choice of an empirical relational structure as an abstracR 

tion from the available data. the choice of an appropriate numerical relational 
structure, the discovery of suitable axioms, and the construction of numerical 
homomorphisms, i.e., proving the representation theorem and uniqueness 
theorem. However, this formalization process does not exhaust the problem 
of foundations by any means. The most important omission is an analysis 
of error of measurement. This involves difficult conceptual problems 
concerning the relation between detailed, inconsistent data and the abstrac
tion derived from them, the empirical relational structure. We discuss these 
aspects of the foundations of measurement, which are poorly understood, 
as well as we can in Chapters 15-17. 

1.3 ILLUSTRATIONS OF MEASUREMENT STRUCTURES 

In the previous section, we presented a general statement of what is 
involved in a foundational analysis of measurement. Nevertheless, we 
refrained from trying to hammer out an acceptable definition of the concept 
of a formal theory of measurement. Ex.perience suggests that after some 
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exposure to paradigmatic theories of measurement, students have little 
difficulty in recognizing other examples. It is similar to recognizing grammati~ 
cainess of English sentences: with some borderline exceptions, sequences 
of words are readily identified as grammatical or not grammatical, even 
though no general definition is yet available. In this section, then, we try 
to make our previous generalities about relational structures, axioms, etc. 
more comprehensible by presenting two examples. These examples also 
motivate the discussion of axiom types in Section 1.4 and provide the material 
for a set of exercises. 

1.3.1 Finite Weak Orders 

It is useful to begin with a consideration of ordinal measurement. Most 
of the relational structures we shall consider involve an ordering relation, 
and the concepts needed to handle the ordering relation in the more compli
cated structures can be developed and presented in isolation here. Moreover, 
weak orders provide the simplest illustration of the ideas presented above. 

DEFINITION I. Let A be a set and :2:; be a binary relation on A, i.e., 
:2:; is a subset of A X A. The relational structure <A, :2:;> is a weak order iff,s 
for all a, b, c E A, the following two axioms are satisfied: 

1. Connectedness: Either a ~ b or b ;;:: a. 

2. Transitivity: If a :2:; band b :2:; c, then a :2:; c. 

Definition 1 is typical of our format: we single out and name a class of 
relational structures that satisfy a particular set of axioms. In this case, 
the name "weak order" is well establiShed, although "pre-order" is sometimes 
used. 

A weak order is always refleXive since Axiom 1 implies a ~ a for all a. 
Note that the numerical relational structure <Re, ;;:::.), where Re denotes 

the set of all real numbers and;;:::' is the usual ordering (Le., x )-: y if and 
only if x is greater than or equal to y), is a weak order. However, this weak 
order is special in that it is antisymmetric: if both x ;;:::. y and y ~ x, then 
x = y. Such an anti-symmetric weak order is called a simple or total order. 
In general, a weak order is distinguished from a simple order because it is 
possible that a ;::; band b ;::; a, for distinct elements a, b of A. As we shall see, 
every weak order is associated in a natural way with a simple order. Most 
empirical ordering operations yield weak orders, in the sense that there exist 
distinct elements that are equivalent, i.e., a ~ band b ;C; a hold. 

3 In all formal definitions, theorems, and proofs, we use "iff" to stand for "if and only 
if." 
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THEOREM I. Suppose that A is a finite nonempty set. If <A,:2:;> is a 
weak order, then there exists a real-valued function 4> on A such that for all 
a,beA, 

iff 4>(0) ;;. ¢(b). 

Moreover, cp' is another rea/~va/ued function on A with the same property iff 
U ,...there is a strictly increasing function j, with domain and range equal to Re, 

l-\\ A "') 

V such that for all a E A 

4>'(a) = f[4>(a)], 

Le., cp is an ordinal scale. 

Theorem 1 formulates the representation and uniqueness results for 
ordinal measurement in finite sets. It asserts that if a relational structure 
<A, ;::;> satisfies Axioms 1 and 2 of Definition l, then there is a homo
morphism 4> into the numerical structure <Re, ;;.>, and the permissible 
transformations consist of all strictly increasing functions from Re onto Re. 
We shall usually state representation and uniqueness theorems in the format 
of Theorem 1; the appropriate numerical structure and the properties 
corresponding to a homomorphism (in this case, rP carries ;C; into;;:::') will be 
apparent. 

The proof of Theorem 1 is well worth presenting in detail here; it intro~ 
duces concepts and notations that are essential in dealing with weak orders 
throughout the book (Definition 2 below) and it illustrates the relation 
between axioms and measurement procedures. A proof of. Theorem 1 
should provide two things: a definite method for constructing the order~ 
preserving function 4>, and a method for constructing the functionf, given 4> 
and cp'. The method of constructing cp is precisely the measurement procedure. 
This will be true in all our representation theorems. 

DEFINITION 2. If:2:; is a binary relation on A, two new relations ~ and 
> are defined on A as follows: 

a>b 
iff 
iff 

a;::;b and b;::;a, 

a :2:; b and not (b;::; aJ. 

These are referred to as the symmetric and asymmetric parts of~, respectively. 
If <A, ;C;) is a weak order, it is easy to prove (Exercise 4) that", is an equiva
lence relation on A (i.e., it is reflexive, symmetric, and transitive) and that >
is transitive and asymmetric [i.e., if a> b, then not (b> a)]. The set 

a = {b I bE A, b ~ aj 
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is called the equivalence class determined by a. It is well known that a n b 
is nonnull iff b e 8, in which case a = b (Le., c ........ a iff c ........ b); hence, the 
distinct equivalence classes form a partition 0/ A (i.e., they form a family of 
pairwise disjoint subsets whose union is A). The set of equivalence classes is 
denoted Afr--.,;, The weak order :<: induces a new ordering relation #: on AI"", 

if.! a~b. 

It is easy to show that ~ is a simple order (Exercise 4). 

Definition 2 gives a brief review of several basic concepts used throughout 
the book. If you are unfamiliar with these ideas,' you should study some 
elementary theory of sets and relations found in, e.g., Kershner and Wilcox 
(1950) or Suppes (1957). 

The concepts of Definition 2 are important for the following reason. 
If,p has been constructed as specified in Theorem I and if a ~ b, then both 
,pea) '" ,pCb) and ,pCb) '" ,pea) must hold. By the antisymmetric property of 
(Re, "'>, we have ,pea) ~ ,pCb). In short, two .elements of A that lie in the 
same equivalence class must have the same scale value; clearly, the converse 
is also true. The proof of Theorem 1 thus reduces to constructing scale 
values that preserve the order between different equivalence c1asses. That is, 
it suffices to construct a real-valued function</> on (A/~, ;:;>, such that 

8::b iff </>(a) '" </>(b). 

We then obtain ,p on A by setting ,pea) ~ </>(a). 
In short, we have reduced the conditions of the representation theorem 

to the case where the weak order is a simple order. The uniqueness theorem 
also reduces to this case, because cp and 4> have the same range in Re; 
therefore, the function/will be exactly the same: ,p'(a) ~ /[,p(a)] iff </>'(a) ~ 
/[</>(a)]. 

We now complete the proof of the representation theorem. For each 
a E A/~, let </>(a) be the number of distinct equivalence classes b such that 
a ;:; b. (Note that this counting process assigns the number I to the lowest 
equivalence class, 2 to the next lowest, etc.) If a ;:; b then for every c, if 
b ;:; c, then a ;:; c (transitivity), so if c is counted for </>(b), it is also counted 
for </>(a). Thus </>(a) '" </>(b). Conversely, if not (a;:; b), then b ;:; a (connected
ness), and also b>- a. Thus, there is at least one c (namely, b) counted in 
</>(b) but not in </>(a), and we have </>(b) > </>(a). This completes the proof of 
the representation theorem. 

The proof of the uniqueness theorem is easy and not particularly instruc~ . 
tive; so we omit it (but see Exercise 7). 

Note that the procedure used to construct hounting the number 

t 
b 
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of equivalence c1asse~ below a given one-on~y ,",:orks ~or finite sets. A 
different proof of the representation theoreI? can be ~lven US1~g the procedure 
outlined in Section 1.1.1 (see also ExerCISe 6) which applies to countable 
sets (those in one-to~o~e correspondence with the positive integers). See 
Theorem 2.1 for the details. 

Finally, we remark that the axioms of transitivity and c?nnectedness 
were essential in the above construction: their uses were noted m the course 
of the proof. Both of these qualitative laws have been challeng~d on 
empirical grounds in, social~science appI~cations. For example,. consl~~r a 
binary relation;::: that reflects an individual's prefere?ces for vaflou~ obje~ts. 
He may decide a > band b > c by concentratIng on one dlmenslOn 
(say, quality) and ignoring small differences in another (say, price); but the 
price difference between a and c may be more sallent, leadmg to c;C; a. 
Similarly, there may be some pairs for which there is neither strict pref,er~~ce 
(a>- b or b >- a) nor indifference (a ~ b). Thus, these laws can be nontrlVlal 
from an empirical standpoint. ' 

1.3.2 Finite, Equally Spaced, Additive Conjoint Sjructures 

In the simplest relational structure, (A, ;:::). consid~red above, we cannot 
count units because there is no way of identifying which element of A is the 
"sum" of two others and, hence, no way of deciding what constitutes two 
units. In order to count units, the structure must have some additional 
features. One of the simplest possibilities is for the set A to be a cartesian 
product, A ~ A, X A,. Empirically, this amounts simply to saying that 
two factors determine the ordering ;C;. A given objeQt a corresponds to a 
level a1 of the A1-factor and a level a2 of the A2-factor. Such objects are 
denoted a ~ (a, , a,), b ~ (b, , b,), etc. 

As an ex~mple, let the A1-factor be temperature, the A2-,ractor humidity. 
and the relation ~ be discomfort. Thus, (a, , a,) > (b, , b,) If temperature a, 
together with -humidity a2 is less comfortable than. temperature b1 together 
with humidity b,. This example suggests an attribute such as discomfort 
induces an ordering on each component separately-in this case, the orde~ing 
by temperature and by humidity. Formally, we mean the order!ng obtained 
when the value of the other component is held fixed. Thus, we have ~, 
on A, defined by 

a, ~, b, iff (a, , c,) ~ (b, , c,) for all c, in A, ; 

and ~, on A, defined by 
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Observe that, at the moment, we cannot assert that either ;;::1 or ;C;2 is a 
weak order because we cannot be sure that they are connected; it may 
happen, for all we know. that for some ez in All we have (a1 • ez) >- (hI' ez) 
and for some d, in A, (b

" 
d,) > (a, , d,). We suppose, however, in the 

following discussion that "both ;;::1 and ;::::2 are weak orders. 
With a product structure of this sort, the entities that can be concatenated 

are intervals within one factor. By an interval in At , we simply mean the 
formal entity denoted a1b1 • where a1 • hI are in At and are caned the "end 
points" of the interval. It will prove convenient to adhere to the convention 
that when a1 ;C;l hI we write the interval as al b1 , not as blal' Since the 
intervals albl and b1et are adjacent, aIel can be regarded as their "sum." 
Two intervals albl and cldl can be regarded as equal if they are matched 
by the same interval a2b2 on the second factor, where by albl matching a2b2 
we simply mean that (ai, b2) ,....., (bl ,a2). This assumes additivity in the 
effects of the two factors: if the sum of a1 and b2 effects equals the sum of bl 

and a2 effects, then the difference between a l and hI effects· must equal the 
difference between a2 and b2 effects. The method of forming equal intervals 
and concatenating them to obtain a standard sequence (Section 1.1.2) 
on the AI-factor is illustrated in Figure 1. In short, the presence of a second 

A, ::I:::sss:s:.~~-_-: 
t. . _.--e-

el d l ci hi 01 

A, 

FIGURE 1. Use of an interval Q2b2 in A2 to layoff equal adjacent intervals 01b1 • 

blel •..• , d1el of a standard sequence on Al . The points joined by straight Jines are observed 
equivalences in the ordering,?:: on Al X A2 • Thus, (ai, b2) ....... (b1 • 02) implies 01bl matches 
02b2 ; ••• ; and (dt , b2) ,...",. (e1 • 02) implieS dlel matches 02b2 • 

factor together with the assumption of additivity of the effects of the two 
factors allows us both to calibrate equal units on the first factor and to 
combine adjacent equal units to form a standard .sequence. This permits us 
to use a counting-of-units process formally the same as that of Section 1.1.2. 

DEFINITION 3. Let A, and A, be nonempty sets and let:::: be a binary 
relation on A = Al X A2 • The relational structure <AI X A2 , ;?:) is called 
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an independent conjoint structure iff, for all a, b, c E A and all ai • bi , Ci, 

di E Ai , i = 1, 2, the follOWing four axioms are satisfied: 

l'~I'?rhJI'''1 1. Eithera::::borb::::a. 

2. Ifa:::: band b:::: c, then a:::: c. 

3. If (a, , c,) :::: (b, , C2), then (a, , d,) :::: (b, , d,). 

4. If(c
" 

a,) :::: (c
" 

b,), then (d
" 

a2):::: (d
" 

b,). 

C" .... J'OlY-j· 

S if,d,{? 

Note that Axioms 1 and 2 can be combined into the statement ihat (A, ::::> 
is a weak order. 

DEFINITION 4. Let (A, X A2, ::::> be an independent co~ioint structure: 
Define relations .?::l on Al and ;:::£ on A2 by: 

al .?::l hI iff there exists C2 in A£ with (al ) C2) ;::: (bl ,cz); 

a, ::::, b2 iff there exists c, in A, with (C, , a2) :::: (C, , b2)· 

l! is easy to show (using Axioms 1-4) that (A" ::::,> is a weak order, 
i = 1,:2 (Exercise 11). Axiom 3 is precisely what is needed in order to prove 
that ;:::1 on Al is a weak order, and Axiom 4 plays the parallel role in proving 
> on A is a weak order. The term "independent" in Definition 3 refers 
~2 2 h h' to the fact that the induced order ";?:i on Ai does not depend on t e c Olce 
of Cj or d; in the other factor Ai . 

DEFINITION 5. Define a relation J, on A, , i = 1, 2, by a, J, bi iff, for all 
Ci E Ai , exactly one of the following holds: Ci ;:::i ai or hi ;:::i Ci • The structure 
(A , X A,,::::> is called an equally spaced, additive conjoint structure, 
if in addition to Axioms 1-4, the following axiom holds for all ai ,hi E Ai • 
i = 1,2: 

5. If a, J, b, and b, J, a, , then (a, , a,) ~ (b, , b,). 

The Ji relation means that ai is strictly larger than hi (with respect to ;?':;i) 
and nothing lies between the two elements; thus, any Ci is either ;?:i ai or 
<. b· but not boih: Axiom 5 asserts that objects are equally spaced, 
;~a~i~g that any two J-intervals are equal in the intuitive sense of calibration 
of Arintervals against A2-intervals as discussed above (Figure 1). The 
representation and uniqueness theorems are formulated as follows: 

THEOREM 2. Suppose that A, and A, are finite nonempty sets. If 
<AI X Az , .?::) is an equally spaced, additive conjoint structure, then there 
exist real-valued functions 4>i on Ai' i = 1,2. such that. for all a = (ai, a0, 
b = (b, , b,) E A, 

iff 
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Moreover, assuming that each Ail,.....,; contains at least two equivalence classes 
then if .p,',.p, are any other pair of real-valued functions with the abov~ 
property there exist constants a, f3, , f3, , with a > 0 such that .p! = a.p. + f3. 
i = 1,2. ' 1 ~ 1, 

The proof of this theorem is left as Exercises 12-14. All of the essential 
ideas for the proof were sketched above: the intervals in each factor form 
a finite standard sequence. Note that the representation theorem consists 
of a two-component vector homomorphism, namely (4)1' 4>2), between 
(A, x A" ;::;> and (Re x Re, ;::;'>, where ;::;' is d.efined on Re X Re by 
(x, y) ;::;' (u, v) iff x + y ;;, u + v. The uniqueness theorem asserts that the 
<Pi are ~ntervaI scales with a common unit (constant 0:) but independent 
zero pomts (constants /31 ,fJ2)' This is not surprising. Since the counting-of· 
units ~rocess is applied to intervals on each factor, the ordinary ideas of 
extensIve measurement lead one to expect invariance of ratios of intervals. 
But since only intervals in each factor are determined, the origins of the 
two scal~s are arbitrary. 

In the previous section, we briefly discussed the empirical status of the 
weak order assumption (Axioms I and 2). Little needs to be added bere 
except to note that the two factor aspect of the objects is more likely to 
lead to violations of transitivity. These will occur in any situation where 
attention is sometimes exclusively focused on one factor, sometimes on the 
other. 

Axioms 3 ~nd 4 are empirical laws of a very interesting type, We call 
them independence laws, Axiom 3 asserts that the ordering of A1-effects is 
independent of the choice of a fixed level in A, , which we abbreviate by 
saymg that Al is independent of A2 . Axiom 4 asserts that A2 is independent 
of 11' Intuitively, independence is a qualitative, ordinal version of noninter
actIOn between two variables. Of course, additivity (the conclusion of 
Theorem 2) asserts a quantitative noninteraction that is much stronger. 
Independence laws playa very prominent role in the discussion of additive 
and polynomial conjoint measurement (Chapters 6 and 7), in utility measure
ment (Chapter 8), and in multidimensional proximity measurement 
(Chapter 13). 

The ~nal axiom, 5, is of a very different nature. It is hardly ever satisfied 
by accIdent. If A, represents a finite set of levels of some factor and A 
represents a different factor, there is no reason whatsoever to suppose tha~ 
when we move from (b, ,b,) to the next higher level of A say (a b ) 
h 

. 1, 1, 2, 

t e effect IS exactly the same as when we move to the next higher level of A2 , 
say (b1 ,a2)' What one might try to do, in practice, is to select subsets of 
levels of the two factors so as to satisfy this property, much as we select 
a standard sequence of weights and lengths. Thus, if we start by choosing 
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high levels al and a2 and if we choose as the next highest level b1 in Al , 
then we are constrained to choose the next highest level b2 in A2 so that 
(a, ,b,) ~ (b, ,a,). We are then forced to choose the next A, level e, to be 
such that (c1 ,az) ........, (hl ,b2), since b1 J1 C1 and az J2 b2 • Similarly, Cz has 
to be chosen so that (b, ,b,) ~ (a, ,e,). But now, with all degrees offreedom 
gone, we are forced to have (bl ,cz)"""'" (c1 , hz) which, empirically, could be 
false. Thus, it is not possible, in general, even if Axioms 1-4 are satisfied, 
to select elements satisfying Axiom 5. At the very least, the following law 
must hold (as was just shown): 

. 5'. If (a" bJ ~ (b, ,a,) and (c" a,) ~ (b, , b,) ~ (a, ,e,), then 
(e" b,) ~ (b, ,c,). 

If we continued the selection process, we would soon discover yet more 
laws of the same type that must hold in order to satisfy Axiom 5. 

So it is not satisfactory to propose as empirical laws either Axiom 5 or 
the simple statement that the sets Al and A2 can be selected from some 
larger sets so that Axiom 5 holds. What is required for a satisfactory analysis 
is that one or more laws like 5', as simple as possible, be found that guarantee 
the internal consistency of constructed equally spaced sequences. This 
problem is solved in Chapter 6 in a surprisingly satisfying way. 

As is probably obvious, the equal-spacing notion is identical to that of a 
standard sequence; both terminologies exist in the literature. 

1.4 CHOOSING AN AXIOM SYSTEM 

The following discussion ofaxiomatization neither exhibits the spirit of 
nor uses the highly developed technical apparatus of mathematical logic. 
Chapter 18 is devoted to such a formal treatment. Here we touch upon only 
a few of the best-known logical features of axiom systems (Section 1.4.5) 
and otherwise we describe in nontechnical terms some of the types of axioms 
typically found in measurement systems. 

1.4.1 Necessary Axioms 

The previous discussion suggests that much of the effort in analyzing 
measurement goes into finding a goo~ axiom system. It should be clear 
by now that at least one axiom is required to construct a representation. 
Specifically, if ~ is an arbitrary binary relation on A, then there need not be 
any homomorphism of (A, ;::;> into (Re, ;;, >. Indeed, if we suppose that 
such a homomorphism .p exists, then it follows that ;::; is transitive (for if 
a;::; band b;::; e, then .p(a);;' .p(b) ;;, .p(e); hence p(a);;' .p(e), which 
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implies a.';::; ~). Thus';::; is not .arbitrary at alL We express this by saying 
that transItIvIty IS a necessary aXIom. "Necessary" here means mathematical 
not practical, necessity. An axiom is necessary if it is a consequence of th~ 
~xistence of the h?momorphism which we are trying to establish. Reflexivity 
IS also necessary 10 ~he sense of being a consequence of the representation 
of (A, ~> in (Re, ~), but we did not need to assume it as an axiom to 
prove Theorem 1 because it follows from the other axioms. Connectedness 
is also a necessary axiom for Theorem 1, and it was needed in the proof of 
Theorem J. 

~or the representation of additive conjoint, structures (Theorem 2) 
AXlOms 1-4 are all necessary. Axioms 1 and 2 are necessary for the same 
reason as in Theorem I since the mapping "'(a) = ",,(a,) + "',(a,) is a 
homomorphIsm of <A, ';::;)into <Re,;;;'). To show that Axiom 3 is 
necessary, suppose that (a, , e,) ';::; (b, , e,) and that Theorem 2 holds. Then 
"',(a,) + ",,(e,) ;;;, ",,(b,) + ",,(e,). Adding "'M,) - "',(eJ to both sides of 
the above inequality in Re yields "',(a,) + ",,(d,) ;;;, ",,(b,) + ",,(d,), and 
this implies (a, ,d,) ';::; (b, , d,). Similarly, Axiom 4 is necessary. 

In contrast, Axiom 5 is not necessary. This is shown by the following 
example. Let A, = A, = {O, 1,2, 4}, and define ';::; on A = A, X A, by: 
(a, , 0,) ';::; (b, , b,) iff a, + a, ;;;, b, + b, . It is obvious that the representation 
part of Theorem 2 holds with "', and "', just the identity functions. Slightly 
less obvious is the fact that the uniqueness part of Theorem 2 is true. But t" 

clearly it is true for {O, I, 2}, since that part is equally spaced; and since 
for any ~l' ,,1>2' providing a representation, 

",,'(0) + ",;(4) = ",,'(2) + ",,'(2) = "'1'(4) + ",,'(0), 

we have ",,'(4) and ",;(4) as linear combinations of lower values, and this 
extends the uniqueness theorem to them. Obviously~ Axiom 5 is not true 
in this structure. 

Each of the axiom systems in this book contains several fairly simple 
necessary axioms. We usually present these a.xioms first, sometimes discussing 
their intuitive meanings and their roles as empirical laws. Almost always, 
the proof that they are necessary is very simple and either is given at once' 
or is omitted altogether. We have no rule for selecting the right set of 
necessary axioms; in general, it is a matter of trial and errOr or of insight. 

We do not try to keep the number of axioms used to a bare minimum. 
The number of axioms is a rather misleading quantity anyway, since they 
can always be reduced to one axiom by stringing them all together by 
conjunctions. More realistically, it is often possible to hide it rather complex 
property within apparently simple axioms. If that property can be seen to 
be wrong-i.e., contrary to empirical fact-then we see no point in burying 
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it in an apparently more innocent system. If the proposed representation 
is wropg, then it needs to be altered. We try to state our axioms so that 
they are conceptually ,distinct, even at the cost of increasing their number. 

1.4.2 Nonnecessary Axioms 

Nonnecessary axioms are frequently referred to as structural because 
they limit the set of structures satisfying the axiom system to something 
less than the set determined by the representation theorem. Three main 
types of structural axioms occur. First, some demand that the system be 
nontrivial in one sense or another-that a certain set be nonempty, that there 
be at least two nonequivalent elements, etc. These do not reany limit the 
applicability of the theory because the structures excluded are of no empirical 
interest. Second, we occasionally assume that certain sets are finite or 
countable. Both Theorems I and 2 above are of this character. The fact 
that in neither case did we list finiteness as a separate axiom, but included it 
instead as a hypothesis of the representation-uniqueness theorem, is purely a 
matter of style; in a fully formalized theory, all of the assumptions would be 
listed as axioms. This stylistic device is used occasionally throughout the book. 
Finiteness is a real limitation. In each case, however, we present alternative 
theorems which replace finiteness with other axioms (see Section 1.4.3). 

Structural axioms of the third type assert that solutions exist to certain 
classes of equations or inequalities; these are known as solvability axioms. 
For example, in systems for length measurement, two different solvability 
axioms sometimes are used. One postulates that the set of rods A is so 
"dense" that whenever a >- b, then some c in A exists such that a Z b 0 C 

(Le., c solves an inequality) or even that a.......- b 0 c (Le., c solves an equation). 
It is easy to find examples of sets of rods where this does not hold, even 
though the representation and uniqueness theorems for extensive meaSUre
ment of length are valid. Another type of solvability axiom asserts that the 
conc"atenation a 0 b exists for, at least, certain pairs a, b in A. This type of 
axiom is sometimes well concealed. For example, one of the primitive" 
relations may be taken to be a binary operation, in which case by definition 
or" an operation a 0 b exists for every a, b. Nevertheless, in a formalization 
that makes explicit all existential assumptions, it would appear as follows: 
there is a primitive ternary relation, Which can be written a 0 b = c, with 
the property that for every a, b in A exactly one c exists in A such that 
a 0 b = c holds. In other cases, where a 0 b is not defined for all a and b, 
this kind of solvability is less well concealed. Nevertheless, it should always 
be considered as a specific assumption, for it plays much the same role in 
extensive measurement as does the other kind of solvability axiom in other 
measurement systems. 
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Axiom 5 for equally spaced, additive conjoint structures falls in .none of 
the three classes, but in effect it is ofthe solvability type. If one were trying 
to construct a structure (At x A2 , ~> in which Axiom 5 held, one would 
proceed as indicated in Section 1.3.2, by choosing a1 , a2 , hI , then selecting 
b, with (a" b,) ~ (b, , a,). To do so requires the assumption that 
(a, , b,) ~ (b, , a,) can be solved for b, . In Chapter 6, we replace Axiom 5 
by solvability axioms of precisely that type together with necessary axioms 
similar to Axiom 5', 

We try to select structural properties that are as nonrestrictive as possible. 
Sometimes, alternative sets can be offered, covering- different classes of 
structures. In particular, sometimes a trade can be effected in which the ciass 
of structures for which the representation is provable is enlarged (Le., 
the structural axioms are weakened) at the expense of explicitly introducing 
additional necessary conditions which, in the presence of the former, stronger 
nonnecessary ones, had been deducible from the total axiom system. Such 
an exchange is deemed desirable when both -an appreciable gain in applica~ 
biJity is effected and the added necessary conditions are neither too numerous 
nor too complex. 

In many cases-especially in Chapters 3, 4, 5, 6, and 13, where we are 
dealing with additive representations of one kind or another-we have 
succeeded in limiting the structural properties to such an extent that we 
feel the remaining restrictions are of little practical import, Le., they are 
quite likely to be acceptable empirically in many of the potential applica
tions. In other cases-especially where nonlinear numerical structures are 
involved, as in Chapter 7-the structural restrictions are unsatisfactory, 
and much work needs to be done to weaken them. But even if strong 
structural axioms must be invoked, it is important to obtain axioms that are 
logically sufficient for the representation. If we only have necessary axioms, 
we remain unsure how to perform a thorough test of the representation. 

1.4.3 Necessary and Sufficient Axiom Systems 

The ubiquity of these non necessary restrictions may well seem puzzling. 
It seems far more desirable to find axiom systems composed entirely of 
necessary axioms that are also sufficient to prove the d.esired representation 
and uniqueness theorems. Such an axiom system is said to be necessary and 
sufficient for the representation. The advantage lies in the exclusion of 
examples such as on p. 22 where the additive conjoint representation holds, 
but Axiom 5 is violated. 

As it happens, there are very few examples of what we consider satisfactory 
necessary and sufficient axiomatizations. Why is this'! Loosely speaking, 
the reason is that the total set of structures admitting homomorphisms 
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into a particular numerical structure is very heterogeneous and may include 
rather unusual and difficult-to-describe or pathological instances as well as 
more regular ones. Thus, the conditions which completely characterize 
such a set of structures are probably too complicated to be useful; in any 
event, they are not known. More systematic results, c1arifying the above 
informal statement, are found in Chapter 9, Measurement Inequalities, and 
Chapter 18, Axiomatizability. 

The requirement that the axiomatization be "satisfactory" is important 
(even though informal) because an unsatisfactory necessary and sufficient 
axiomatization always exists: take the representation and uniqueness 
theorems themselves as axioms. What criteria, then, do we impose on an 
axiornatization for it to be satisfactory? One demand is for the axioms 
to have a direct and easily understood meaning in terms of empirical opera
tions, so simple that either they are evidently empirically true on intuitive 
grounds or it is evident how systematically to test them. In part, simplicity 
and clarity of meaning lie in the eye of the beholder. By the time you finish 
this book, some axioms may be clear which now might leave you aghast. 
Axiomatization is partly a search for simplicity and partly a restructuring 
of the axiomatizer's cognitive processes so that more things seem simple. 

1.4.4 Archimedean Axioms 

In addition to the types of axioms just described, a rather odd axiom 
is usually stated as part of each system. It is called Archimedean because 
it corresponds to the Archimedean property of real numbers: for any positive 
number x no matter how small and for any number y, no matter how large, 
the;e exi;ts an integer n such'that nx > y. This simply means that any 
two positive numbers are comparable, i.e., their ratio is not infinite. Another 
way to say this, one which generalizes more readily to qualitative structures, 
is that the set of integers n for which y > nx is a finite set. For example, 
in extensive measurement, let a, a 0 a = 2a, 3a, ... , be a standard sequence. 
Then the Archimedean axiom says that for any b, the set of integers n for 
which b >- na is finite. More generally, whenever we have defined a standard 
sequence, namely, entities having nonzero, equal spacing in the intended 
numerical representation, then we may always formulate the Archimedean 
property as: every strictly bounded standard sequence is finite. 

It is evident that since the Archimedean property is true of the real 
numpers, it must also be true within the empirical relational system; it is a 
necessary axiom. What is surprising is that it is a needed axiom. In the few 
cases where the independence of axioms has been studied, the Archimedean 
axiom has been found to be independent of others; and no one seems to 
have suggested a more satisfactory substitute. It can be deleted if quite 
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strong structural assumptions are made (see Section 6.11.1 and most. of 
the systems in Pfanzagl, 1968), but with our relatively weak structural 
assumptions, we do not know how to eliminate it in favor of more desirable 
necessary axioms. 

The objection to it as a necessary axiom is that either it is trivially true 
in a finite structure (that is why it was not stated in either Theorem 1 or 2) 
or it is unclear what constitutes empirical evidence against it since it may 
not be possible to exhibit an infinite standard sequence (see Section 1.5). 
Nonetheless, we can produce examples where it is violated, and these reveal 
something of the role it plays. Suppose that <A, X A,; ;<:;> is a weak order 
in which any difference whatsoever on the first factor is decisive; the second 
factor matters only when a tie exists on the first. In such a case, any A ~ 
interval is infinitely large in comparison with any A2-interval. If sufficient1~ 
large A2 differences can compensate for small Al differences and vice versa, 
then the Archimedean axiom (for additive conjoint structures) seems 
reasonable. The difficulty in testing lies in deciding what evidence would be 
sufficient to conclude that a weak order on Al X A2 had the non-Archimedean 
character just described (see Section 1.5 and Chapters 17 and 18). 

1.4.5 Consistency, Categoricalness, and Independence 

All of the axiom systems we shall present have several nonisomorphic 
models m the real numbers. Therefore, the systems are consistent (i.e., some
thing satisfies the axioms) and not categorical (i.e., two or more inherently 
different things satisfy them). The issue of independence of the ·axioms is 
more difficult. We have not knowingly included any axioms that are entirely 
derivable from the others in a system, but we may very well have done so 
inadvertently. In a few cases we establish independence formally (Chapters 3 
and 6); but in many others, we are not sure that independence is met. 

Axiom systems differ also in their general logical form and in the types 
of models they admit (cardinality, closure under submodels, etc.). There 
has been considerable work on such matters, including some recent 
results on the equivalence of different systems for finite models (Adams, 
Fagot, & Robinson, 1970); this work is discussed in Chapter 18. 

1.5 EMPIRICAL TESTING OF A THEORY OF MEASUREMENT 

Formal systems of measurement, although axiomatic, are not wholly 
or even largely evaluated on mathematical grounds. To be sure, we attempt 
to be explicit, precise, and consistent, and our proofs meet reasonable 
contemporary standards of rigor for informal set theory. but elegance and 
esthetics must give way, to a degree, to empirical criteria. The axioms 
purport to describe relations, perhaps idealized in some fashion, among 
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certain potential observations, and adequacy of description is a more telling 
arbiter than beauty or simplicity. To carry out a satisfactory empirical evalua
tion of an axiom system is rather more difficult than it might first seem. 
Because some problems are very nearly universal, we sketch them briefly here. 

1.5.1 Error of Measurement 

The most pervasive problem is error-not human failure of one sort or 
another, but inherent features of the observational situation that cause us 
to fail to observe exactly what we wish to observe. As an example, suppose 
that we are judging qualitative weight by deflections of an equal-arm pan 
balance. When objects are placed in the two pans and do not cause a deflecv 

tion of the arm from the horizontal, do we. know that they have the same 
weight? In an operational sense relative to that balance, we do, but in 
some idealized sense we may doubt that we do. The contact between the 
knife edge and the arm exhibits some friction that makes the balance less 
than perfectly sensitive to what is placed in its pans. Moreover, the condition 
of the point of contact may vary over time as the result of movements and 
electrochemical effects, and so the amount of friction may fluctuate in some 
irregular way from observation to observation. Thus, we suspect that when 
two weights differ by an amount just at the edge of sensitivity of the balance, 
repeated observations may not yield the same results. Even when we avoid 
this boundary region of random error, we may still find 'evidence for system
atic errors. For example, we may find that a sequence of weights has the 
property that each successive pair is judged equivalent in weight, but the 
first and last ones of the sequence are definitely not equivalent. Clearly then, 
the observed relation is not a weak order-in particular, the indifference 
relation """ is not transitive-and so the order cannot be represent~d in 
terms of ~ in as simple a way as in Theorem 1. On the other hand, experience 
has shown that when we have such a sequence and when the observational 
conditions are improved by constructing a more sensitive balance, then at 
least one of the original equivalences is converted into a nonequivalence and, 
to a better approximation, the weak-order properties are satisfied. Of course, 
we can select a new set of objects that exhibits a refined version of the same 
phenomenon on the new balance. Nevertheless, the pattern of improved 
approximations is such that we elect to retain the assumption of an under
l~dng weak ordering of weight and to say that, in any particular set of observa
tions, there are systematic errors due to imperfections in the observational 
situation. 

The existence of error also has implications for the construction of measure
ment scales. As we have indicated in Sections 1.1.2 and 1.3.2, such construc
tions most often involve a counting-of-units procedure based on some 
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appropriate definition of standard sequence. But any definition of standard 
sequence involves finding exact replicas of a given object or interval. In the 
presence of error, we are confronted with two choices. The first, which 
often is the solution adopted, is to equate the replicas by a method that is 
much more expensive, but much more precise, than the method that is 
used to make comparisons in the field. For example, a good meter stick, 
calibrated in millimeters, should have the property that, if a comparison 
object falls clearly between the marks x and x + I millimeters, then with 
high probability its true length actually lies between x and x + I millimeters. 
This will happen if the procedure by which the milli1lieter step~ are equated 
yields a standard deviation not exceeding 10-3 mm or one micron. 
The standard deviation of a sequence of x steps, x < 10', will be about 
(lO')'/2 • 10-3 ~ 10-3 / 2 mm. Thus, an error of more than 10-1 mm will be 
extremely improbable (three standard deviations); and so an object that is 
clearly between the marks x and x + I, by visu~l comparison, is quite 
likely to be actually between x and x + I mm long. If an object falls 
"right on" the x mark, we will be quite uncertain whether its length is more 
or less than x mm, but with high probability it will lie in the interval 
(x - t, x + 1)· 

The second solution to the problem is to dispense with exact standard 
sequences and to use only clear-cut observations of inequality to construct 
approximate standard sequences. A good example is found in Section 4.4.4 
on difference measurement. Some of the inequality observations may be 
inferred rather than observed directly. For example, if a is clearly greater 
than c, but b seems to be indifferent to c, we infer that a is also greater 
than b. In order that such inferences yield a weak order, the clear-cut 
observations must satisfy the axioms of a semiorder (Chapter 15). 

Obviously, a subtle interplay obtains among observations, theory, and 
refined observations, in which the theory is both tested and used in a 
normative fashion to define the existence and nature of error. It is probably 
not possible at present to formulate generally the exact conditions that lead 
us to attribute a discrepancy between theory and observation to error rather 
than to an inadequacy in the theory. As explicit error theories are developed 
to accompany measurement theories, it should become easier to make these 
decisions more routine. Today, however, few error theories exist; what we 
know about them is described in Chapters 15-17. 

1.5.2 Selection of Objects in Tests of Axioms 

A second ubiquitous problem of testing is that most theories are stated 
for large, often infinite sets of elements, whereas empirical tests usually 
involve small finite subsets. The general problem of inductive generalization 
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from limited data arises in testing all scientific theories, but there are some 
special problems connected with most measurement axiom systems. 

First, some axioms may be easier to disconfirm than others. For example, 
transitivity can be disconfirmed if there is a single intransitive triple, a ~ h, 
b ;?:; c, c >- a. Usually the empirical interpretation of ;?:; is such that it is 
possible to decide, for given a, b, whether a ;?:; b, or at least, whether a ;?:; b 
is extremely probable. With such an empirical interpretation, transitivity 
can be unequivocally rejected or, at least, assigned a very low probability. 
On the other hand, the Archimedean axiom cannot be rejected merely 
because b >- a, b >- 2a, ... , b >- ma. There may be some n > m, for which 
na ;?:; b. One may eventually consider it improbable that a large enough n 
will ever be found and, thus, reject the Archimedean axiom-partly because 
it may seem not to make scientific sense to go on searching for n large 
enough and partly because a more attractive and manageable theory may 
result from a non-Archimedean representation. Alternatively, there may be 
other empirical interpretations of ;?:::, e.g., where underlying rules for 
generating ;?::: are directly observable, which enable us to reject the 
Archimedean axiom. One must keep in mind the fact that the refutability 
of axioms depends both on their mathematical form and on their empirical 
interpretation. 

Nonnecessary axioms are usually not tested. If the elements are thought 
to exhibit some kind of fine grained ness, then one's belief in the existence 
of solutions to inequalities may be extremely strong. For example, if rod b 
is longer than rod c, one assumes without much question that a small rod d 
can be found such that b ~ cod. Frequently one also accepts, as an 
idealization, the "continuity" (mathematically, connectedness in the order 
topology) of the domain of objects, in which case solvability of equations 
is also accepted as a consequent idealization. However, if there is real 
doubt about the matter, solvability axioms can offer a difficulty similar to 
that sometimes encountered with Archimedean axioms: the mere fact that a 
solution has not yet been found mayor may not lead one to believe that 
one never will be found, no matter what objects are tested. 

Second, some axioms are more difficult to confirm than others. If we fail 
to disconfirm an axiom, we need to ask a question akin to that of the 
statistical power of the test: Did we select the elements in such a way that 
the data had some chance of showing the axiom wrong if, in fact, it is wrong? 
For example, if a is much greater than b, and b is much greater than c, 
it does not surprise us that a is greater than c. A more convincing test of 
transitivity is obtained by selecting triples a, b, c that are likely to violate it, 
if it is indeed false. Sometimes, an alternative theory can be a guide (see 
Tversky, 1969, for the use of an alternative theory to locate violations of 
transitivity). If we choose a slightly greater than band b slightly greater 
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than C, we may be more gratified to find a >- c; but then. there is mQre 
danger of falsely rejecting transitivity, as a result of errors of measurement. 

Another manifestation of the problem of selection of objects in confirming 
axioms is the fact that, even though none of the necessary axioms of a 
system are disconfirmed by a given set of data, and even though the structural 
axioms of the system are assumed a priori, nevertheless, other necessary 
consequences of the representation. which were not needed to prove 
the representation theorem, may be disconfirmed by those same data. 
Because this seems almost contradictory, we amplify the point. 

In most theories of measurement, several necess!lry axioms along with 
a few nonnecessary ones are shown to be sufficient for the numerical 
representation (homomorphism) to exist. From the representation, other 
necessary properties follow which. of course, do not need to be listed among 
the axioms, since they are deducible from them. Now, a particular set of 
data may not disconfirm any axiom of the theory; however, an axiom 
such as solvability may be false if attention is restricted just to that subset 
of objects tested: the solution to some inequality or equation may lie outside 
that subset. In fact, we may have accepted solvability to begin with because 
of the fine grained ness of the entire object set. Since the axiom system as a 
whole (including solvability) does not hold for the particular subset sampled, 
there is no mathematical reason why the unneeded necessary property 
must hold for that subset, even if none of the needed necessary axioms 
is disconfirmed for that subset. The disconfirmation of the necessary but 
unneeded pr9perty points, in fact, to an inadequate selection of objects 
for testing the necessary axioms. Since solvability presumably holds in the 
large structure, one of the tested necessary axioms would in fact be discon
firmed elsewhere, if suitable objects were selected. (For an example, see 
Section 9.1.) 

These remarks are intended to point up the need for thoroughness in 
sampling objects before accepting any particular set of axioms as probably 
being satisfied. Another conclusion, which is tempting but overhasty, is 
that one should carry out all possible indirect tests of the axiom system 
by testing as many consequences of the system as possible in a given set of 
data. Since the ultimate consequence is the representation theorem itself, 
why not test whether a representation can be constructed for the sample 
at hand? There are two reasons why such a conclusion is unwarranted. 
The first has to do with fallibility of data. The more tests that are performed, 
the greater the chance that one of them will fail due to sampling error. 
This must be compensated for by relaxing the criterion for disconfirmation; 
but then, there may be an excellent chance of failing to reject the axiom system 
when it is in fact systematically wrong. 

The existence of a numencal representation, for a fixed sample, generally 
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corresponds to the existence of a solution to a large set of simultaneous 
inequalities (see Section 1.1.3 or Chapter 9). The sets of inequalities that 
arise in this way~ in practice, rarely have solutions; but if one relaxes the 
criterion, accepting a ~'solution" that solves most of the inequalities, 
a "solution" may very well exist even when there is some systematic failure 
of one of the axioms. 

The second danger in testing all necessary consequences of the representa
tion by trying to construct the representation for a sample is that failure 
tends not to be instructive. Direct tests of particular axioms, on the other 
hand, are often very informative, since they can easily fail in a systematic 
way. Consider, for example, the independence axioms of additive conjoint 
measurement (Section 1.3.2). If both (a, , c,) >- (h, , c,) and (a, ,d,) -< (h, ,d,), 
we may be able to subclassify or order the A,·factor so that the first inequality 
holds for values Cz in certain classes or at one end of the dimension, and the 
reverse inequality holds in other classes or at the end of the dimension 
near d'l,' This kind of systematic rejection greatly alleviates statistical 
problems in rejecting the axiom: we can be surer that the rejection is not 
due to sampling error if an alternative hypothesis is shown to fit the data 
very well. Moreover, such systematic rejection tells us a good deal about 
what is wrong, and it may suggest either other measurement schemes that 
will work or a different choice of basic factors. 

Thus, one value of a satisfactory axiomatization is that it provides a set 
of relatively simple, conceptually distinct, empirically testable conditions 
to be tested. The problems of error and of selection of objects to be tested 
have no easy solutions, however; they must be tackled with whatever experi
mental and statistical tools are available. 

1.6 ROLES OF THEORIES OF MEASUREMENT 
IN THE SCIENCES 

As measurement surely plays an essential role in all science, one might 
anticipate great interest attaching to theories of measurement. This is not 
true, however, in much of contemporary physics. Some exists in applied 
physics-mechanics. thermodynamics, hydrodynamics, etc.-because the 
methods of dimensional analysis depend explicitly on properties of physical 
measures, and some also arises in connection with questions deep in the 
foundations of quantum theory and the theory of relativity. But for the most 
part, questions about physical measurement are regarded as being in the 
province of philosophy of physics, not in physics itself. Usually, the 
measurability of the variables of interest in physics is taken for granted 
and the actual measurements are reduced, via the elaborate superstructure 
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of physical theory, to comparatively indirect observations. The construction 
and calibration of measuring devices is a major activity. but it lies rather 
far from the sorts of qualitative theories we examine here. 

Other sciences, especially those having to do with human beings, approach 
measurement with considerably less confidence. In the behavioral and social 
sciences we are not entirely certain which variables can be measured nor 
which theories really apply to those we believe to be measurable; and we 
do not have a superstructure of wellwestablished theory that can be used 
to devise practical schemes of measurement. For these reasons, the analysis 
of measurement and the construction of new system~ of measurement have 
been an active preoccupation of some behavioral scientists. Included is 
some work that is highly sophisticated, and some that is remarkably naive. 

!~
~ , A recurrent temptation when we need to measure an attribute of interest 

is to try to avoid the difficult theoretical and empirical issues posed by 
fundamental measurement by substituting some easily measured physical 
quantity that is believed to be strongly correlated with the attribute in 
question: hours of deprivation in lieu of hunger; skin resistance in lieu of 
anxiety; milliamperes of current in lieu of aversiveness, etc. Doubtless this 
is a sensible thing to do when no deep analysis is available, and in aIllikeli~ 
hood some such indirect measures will one day serve very effectively when 
the basic attributes are well understood, but to treat them now as objective 
definitions of unanalyzed concepts is a form of misplaced operationalism. 

Little seems possible in the way of a careful analysis of an attribute until 
means are devised to say which of two objects or events exhibits more of 
the attribute~ Once we are able to order the objects in an acceptable way, 
we need to examine them for additional structure, for example, by selecting 
two or more factors that affect the ordering. Then begins the search for 
qualitative laws satisfied by the ordering and the additional structure. 
In contrast to fundamental physical measurement, which is typically one
dimensional (see, however, Chapter 10), many of the theories of measurement 
that appear applicable to behavioral problems are inherently multidimen
sional, and so the measurement theories deal simultaneously with several 
measures and the laws connecting them. These theories suggest new qualitative 
laws to be tested, and even when they are found to be wrong, much may be 
learned if the violations are systematic. Moreover, these theories lead to 
selection among the many factors that might be relevant by focusing attention 
on those variables that enter into simple qualitative laws. 

The work on fundamental measurement representations, which is relatively 
recent in the behavioral sciences, contrasts with an older research field 
known as psychometrics and scaling theory, Most of the psychometric 
literature is based on numerical rather than qualitative relations (e.g., 
matrices of correlation coefficients, test profiles, choice probabilities), 
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although there is a tradition, which has recently grown considerably, focusing 
on ordinal relations. This work aims to represent such relations by numerical 
relations, mostly of a geometric nature, that are more cOD,1pact and more 
revealing than the input data. Among the unidimensional methods are 
Thurstonian scaling (Bock & Jones, 1968; Thurstone, 1959; Torgerson, 1958) 
and test theory (Lord and Novick, 1968); and among the multidimensional 
methods are the classic bilinear models of ractor analysis (Harman, 1967; 
Spearman, 1927; Thurstone, 1947) and the ordinal procedures of Coombs 
(1964), Guttman (1944,1968), and Shepard (1966), Most of these scaling 
procedures assume the validity of the proposed model and produce a best
fitting numerical representation of the data~ whether or not the assumed 
model is really appropriate, 

Here, by contrast, we are concerned almost exclusively with the qualitative 
conditions under which a particular representation holds. To some extent, 
therefore, theories of measurement may be regarded as complementary 
to the methods of scaling, with the former being concerned with empirical 
laws (axioms) that make a particular type of numerical representation 
appropriate and the latter with methods for finding a numerical representation 
of a particular type. This seeming complementarity is, however, somewhat 
illusory because the bulk of the scaling literature involves mapping one 
numerical structure into another one rather than a qualitative structure 
into a numerical one. For example, in scaling aptitude, intelligence, or 
social attitudes, test scores or numerical ratings are usually interpreted 
as measures of the attribute in question. But in the absence of a well-defined 
homomorphism between an empirical and a numerical relational structure, 
it is far from clear how to interpret such numbers. We return to this issue 
in Chapter 20, 

The clearest complementarity exists with the ordinal scaling methods, 
which lately have become one of the main foci of scaling research (partly 
because the widespread availability of fast computers has made them 
practical). In fact, it was the earlier work on ordinal multidimensional 
scaling (e,g" Coombs, 1964; Shepard, 1966) that motivated the reworking 
of the foundations of geometry which is presented in Chapter 13, Such 
axiomatizations play the important role of showing how to test whether 
a particular scaling method is at all justified, and it invites the search for 
systematic departures from the axioms. 

1.7 PLAN OF THE BOOK 

Much of the book develops and demonstrates the theme stated in Sections 
1. I and 1.2 that, although many different empirical, relational structures 
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and many different axiom systems lead to measurement, the procedure 
for obtaining the numbers always reduces to one of three basic methods. 
Chapter 2 is the mathematical pivot which provides proofs, mainly using 
constructive methods, of a series of rigorous isomorphism theorems which 
amount to showing that, under suitable assumptions, the procedures 
outlined in Section 1.1 do give internally consistent numerical answers. 
In Chapters 3-9 the representation and uniqueness theorems are reduced to 
applications of the theorems in Chapter 2. 

If you intend to skip proofs you need not read Chapter 2 in detail; however, 
you should go over Section I.l carefully to gain a good intuitive idea 
of how numerical scales are constructed. Then in reading a later chapter, 
you should try to see how the appropriate method of Section I.l is applied 
to the situation at hand. To understand this, you may find it useful to scan 
the statements of the theorems in Chapter 2. 

Chapters 3-8 all depend on the counting-of-units procedure outlined 
in Section 1.1.2 and formulated more rigorously in Section 2.2. In Chapter 3, 
counting of units arises directly because the empirical relational structure 
contains a concatenation operation. This is extensive measurement. Some 
special variants arise in connection with problems of relativity and thermo
dynamics. The first half of the probability chapter (Chapter 5) may be 
considered as another variant of extensive measurement in which the union 
of disjoint events plays the role of concatenation. The latter half of Chapter 5 
and Chapters 6 and 8 use the device discussed in Section 1.3.2, i.e., counting 
off equal units by laying equal intervals end to end, where equality of 
intervals is defined in terms of balancing by a single interval on another 
factor. Chapter 4 (Difference Measurement) studies this counting device 
in pure form; many results in later chapters reduce to those in Chapter 4. 
Chapter 6 deals with additive conjoint measurement, and Chapter 8 applies 
the results of Chapter 6 to expected-utility measurement. Still a third variant 
of the counting-of-units process is used for combined additive-multiplicative 
(polynomial) conjoint measurement studied in Chapter 7. 

Some of the topics of Chapters 3-8 are reconsidered in Chapter 9 in terms 
of the solution-of-inequalities method (Sections 1.1.3 and 2.3) instead of 
the counting~of-units method. The results are primarily concerned with finite 
structures. 

The final chapter of Volume I attempts to construct a bridge between 
f~ndamental measurement and dimensional analysis, and it includes formula
tIons of the qualitative equivalents of numerical, laws satisfied by funda
mentally measured variables. 

In contrast to the relative unity of Volume I, the ten chapters of Volume II 
are more diverse. The first four deal with geometric representations. Since 
geometry is by far the earliest and most far-reaching example of measurement, 
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we have included in Chapter I I and 12 a general discussion of geometric 
structures and an overview of classical foundations of geometry, seen as 
measurement theory. A self-contained treatment of this classical theory is, of 
course, beyond the scope of this book. Chapter 13 presentsa new approach to 
the foundations of geometry which is based on the ordering of distances as a 
primitive notion. The representation theorems rely on the theories of exten
sive, difference, and additive conjoint measurement developed in Chapters 3. 
4,and 6, respectively, of Volume I. Chapter 14 deals with one of the best
developed measurement systems outside of the physical sciences, namely 
color measurement. The representation is geometric, but it is unlike any other 
in the book. 

The next three chapters approach the problem of error of measurement 
in two very different ways. Chapters 15 and 16 deal with empirical relational 
structures in which error is incorporated directly and is dealt with 
axio~atically. Chapter 17 presents some statistical methods for testing 
theOrIes of measurement of the kind discussed earlier in the book, where 
error is treated as an extraneous phenomenon. 

Next ·we deal with two philosophical issues: the (logical) problem of 
axiomatizability (Chapter 18) and the relationship between uniqueness 
theorems and the meaningfulness of statements involving numerical measure
ments (Chapter 19). 

Finally, Chapter 20 sums up the approach to measurement embodied 
in the rest of the book and compares it with other approaches. 

EXERCISES' 

1. Show that the inequalities in Equation (2) imply 1 < X,/X2 < i. (1.1.3) 

2. Suppose that P(x, y) denotes the proportion of times that x is chosen 
over y in a preference experiment. Define x ;:; y iff P(x, y) ;. }. When does 
this yield a weak order (Definition I)? (1.3.1) 

3. Suppose that;:; is defined as in ExerCise 2 and that P(x, y) is given for 
all distinct pairs in the set A = {a, b, c, d) by the values in the following 
matrIx. 

~ a b c d 

a .72 .65 .67 
b .28 .39 .32 
c .35 .61 .40 
d .33 .68 .60 

4 The directly relevant sections of Chapter 1 are listed in parentheses at the end of each 
exercise. 
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Verify that <A, <::) is a weak order (assuming x <:: x for aU x). (1.3.1) 

4. Let <A, <::) be a weak order. Show that the symmetric part ~ (Definition 
2) is an equivalence relation and that the asymmetric part >- is transitive 
and asymmetric. Show that ~ on A/~ is a simple order. (1.3.1) 

5. Construct scale values <p(a), <p(b), <p(e), <p(d) successively, in that order, 
using the data in Exercise 3, by the method of Section 1.3.1. . 

6. Construct f(a), feb), <p'(e), <p'(d) successively, in that order, using 
the data in Exercise 3, by the method sketched in Section I.!.!. 

7. Construct a strictly increasing real-valued function h from Re onto Re 
such that h[<p(x)] = <p'(x) for aU x in A, where <p is the scale of Exercise 5 
and f is the scale of Exercise 6. 

8. Suppose that the ordinal-scale values have been assigned to aU elements 
of Al X A2 , where Al = {a1 ,hI' Cl ,d1}, Az = {az ,bz ,cz, dz}, as given 
in the following matrix. 

~ Al 
a, b, e, d, 

a, 5 13 29 
b, 29 13 61 125 
e, 61 29 125 253 
d, 13 5 29 61 

Verify that Axioms 3 and 4 of independent conjoint structures (Definition 
3) are satisfied. Determine the weak orderings ;2::1 and ;2::2 on AI' and Az , 
respectively. (1.3.2) 

9. Verify that Axiom 5 of Definition 5 holds for the matrix of Exercise 
8. (1.3.2) 

10. Construct functions tPl' 4>2 on Al ~ Az that satisfy the requirements 
of Theorem 2, for the data of Exercise 8. What is the relationship between 
the sums <P, + <p, and the numbers in the matrix? (J .3.2) 

11. Let <A, x A" <::) be an independent conjoint structure. Show that 
<Ai' <::,), i = 1,2, is a weak order (Definition 4). (1.3.2) 

12. Suppose that <A, x A" <::) is a finite, equaUy spaced, additive conjoint 
structure (Definition 5). Assume that the weak orders ;Gl and ;:::;2 are 
simple orders, and label the elements of Al as aii), i = I, .. " m, with 

a(m) >- a(m-l) >- ... >- a tll 
1 1 1 1 1· 1 . 
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Similarly, let A, = {al" Ij = I, ... , n}, with ali+ll >-, al"· 
(a) Use Axiom 5, and mathematical induction, to prove that if 

i + j = k + I, then (ali), a~j») '" (alk
), t4l». 

(b) Use the result of (a), plus Axioms 3 and 4, to show that if 
i + j > k + I, then (aii

), a~j») >- (alk
), a*l). 

(c) Show that <Pl(a;") = i, <p,(ai") = j satisfy the representation theorem 
(Theorem 2). (1.3.2) 

13. Extend the result of Exercise 12 to the case where <::, , <::, need not be . 
antisymmetric by using equivalence classes (Definition 2) with respect to 
~l and ~, . (1.3.1, 1.3.2) 

14. Prove the uniqueness theorem for finite, equally spaced, additive conjoint 
structures by showing that if <Pl'(al") = u,' <p,'(al") = u, and <Pl'(ai") = T, 

then 

<p,' = (T - U,)(<P, - I) + u, , 
<p,' = (T - u,)(<p, - I) + u,. 

Do this by using the results of Exercise 12(a). (1.3.2) 




