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I—Solvabllltg Conditions

1. So far, we have made heavy use of various solvability axioms.

= 112> b, then there exits d < A such that (b,) € B and

3 re exist d', d" € Asuch
@b e A" and ad ~ cd ~ d"b. (147)

Solvability Conditions

Examples
® |f a > b, then there exists d € A such that (b,d) € B and
ar bod. (84)

m |f ab, cd € A* and ab = cd, then there exist d’, d” € A such
that ad’, d'b, ad”, d"b e A* and ad’ ~ cd ~ d"b. (147)

® Definition 6.5 (256)

® Most Closure axioms.
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I—Failures of Solvability

1. Solvability claims are usually non-necessary

2. Some models can get close to being, for example, a conjoint
measurement structure, but they slightly miss.

3. Even if data generating processes satisfy solvability, that does not
mean that the data collected also satisfy it, nor does it mean that the
equations implied by the data are practically solvable.

Failures of Solvability

® Solvability axioms are existence claims, so they are usually
non-necessary.

® There are models that almost satisfy the conjoint measurement
structure, for instance, but one variable is discrete and the
other is not equally spaced.

® Even if solvability is a safe assumption, the shape of the data
can make solving the requisite equations practically impossible.

® Even if a nontested solvability condition is true in the
underlying data-generating process and if the tested necessary
conditions are true in the obtained factorial data, it does not
follow that the obtained data possess a representation of the
kind in question. (425)
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1. Suppose we have a 3 x 3 x 2 factorial design and we get the ordinal
data shown in the top two tables

2. These data do not violate the independence axioms necessary for an
additive decomposition. An example of one of the checks is in the
bottom Lleft table.

3. However, these data do not satisfy double cancellation (inequalities
are schematic).

4. Since solvability and independence imply double cancellation, the
data generated cannot satisfy solvability.

5. So what can we do if we can't assume solvability?

Failures of Solvability

Example

Example from 425
as b3
aa b g aa b1

as b3
a| 6 5 aib 3 bicp aat+thbh<bh+o
b | 4 3 bia; Z by bi+a<c+b
Co 2 1

aiaz = C1C& at+a>c+o
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Finite Linear Structures
Finite Linear Structures

1. (read slide)
2. Since we want additive representations without solvability, we need
something else to get us all of the cancellation axioms.

Finite Linear Structures

Additive Conjoint Models

® Suppose A; and Az are finite sets.
m Let - be a weak order of A= A; X A.

= We want to find necessary and sufficient conditions such that
ap 2 bq iff ¢1(a) + ¢2(p) > ¢1(b) + ¢2(q).

® This is possible for any finite number of A; given that all n-th
order cancellation axioms hold.

® Furthermore, all n-th order cancellation axioms were implied

by independence, double-cancellation, Archimedean-ness, and
restricted solvability.
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Finite Linear Structures

Auxiliary Space Construction

B let A=A; X ... X A,

® Suppose |A;| = ki < oo for all i and A;N A; =0 for all i # .

m Let 77 be a reflexive binary relation on A (think a weak
ordering, but it doesn’t need to be transitive or connected).

n n
® let k =) ki be the size of Y = J A,
i=1 i=1
® Enumerate the elements of Y as y1,..., V.
= Define an injective mapping v: A — RK by a— 3= (a,...,a),
where
1 if y; is a component of a

aj = .
0 otherwise
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Finite Linear Structures

Auxiliary Space Construction Continued

® et A= {3la € A} and A be the additive closure over A.

® Define ~; on A" by x ~; y iff there are

2,3 B, BM ¢ A such that x = 3 3 and
i=1

y= f: B and 3 ~ B for all i.
i=1

® Define =; on A" by x =, y iff there are

2,3 B, B ¢ A such that x = 3 3 and
i=1

m —_— . —_— —_— .
y =3 b0 and 3 = b for all i and for some j, bU) % a0).
i=1
® Define =, on At as 7=~ U .
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Finite Linear Structures

Properties of ~;, >, and Z;

B The relation ~ is reflexive and symmetric.

® The relation >, is not necessarily irreflexive nor asymmetric
(contrary to what the usual parallel with > might suggest).

11 of 70
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Finite Linear Structures

Counterexample to >, being necessarily asymmetric.

Example

Suppose Z on A; X ... x A, violates independence. So we have
the following for some a, b, a’, b':

a:al...ai...an>_bl...ai...bn:bl
b=by---bj---by=ay---bj--a,=2a

12 0f 70
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Finite Linear Structures _

:::::::

Example
Now, we have, WLOG:

Talo abs i Finite Linear Structures

B Q000100 0100 . . .
e g Counterexample to >, being necessarily asymmetric.

Example
Now, we have, WLOG:

a=(1,0,...,0,...,1,0,...,0,...,1,0,...,0)

N—_——
A1 A; An
3,2(1,0, 707 7971707" 707 71707 70)
Ay A An
b=(0,1,0,...,0,...,0,1,0,...,0,...,0,1,0,...,0)
A1 X 2:
b =(0,1,0,...,0,...,1,0,...,0,...,0,1,0,...,0)
—_——
A1 A; An
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Adding

Finite Linear Structures A0 D8 L DT . . . 5 ‘ ~
e _ S Finite Linear Structures
Finite Linear Structures ozt
=i Counterexample to >, being necessarily asymmetric.
But we also have 5+ 7 ~; 3+ since we have equality of sum.
Example

Adding 3+ b and b/ + @, we get:
a+b=(1,1,0,...,0,...,1,1,0,...,0,...,1,1,0,...,0) = I + &

A1 A; An

We have a3+ b =, b’ + & since we have:

a-b = arxb
bxad
a-b = Vb ita

But we also have b’ 4 @ >, 3@+ b since we have equality of sum.
12 of 70
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Finite Linear Structures

ot imply that 2 1 in fact transitive.

® The example before shows us that irreflexivity of >, implies
independence of 7.

® Similarly, it can be shown that irreflexivity of >, implies every
n-th order cancellation axiom.

® Furthermore, = is irreflexive iff =, and ~; are the asymmetric
and symmetric parts of 22, respectively.

® |rreflexivity of >, also implies that 77, has no intransitive
cycles, but does not imply that Z; is in fact transitive.
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(i) 2~ b implies
(1) 2> b implies v(3) > v

=

()
()

Finite Linear Structures

Moral of the Story: Representation Theorem

Theorem 1
The relation > is irreflexive iff there exist ¢: Y — R and

1 A — R such that for all a, b € A:
() 1(a) = Vlan. .. 0) = 2 0(a)

(it) a ~ b implies 1(a) = ¥(b)
(iit) a > b implies 1(a) > ¥(b)
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Finite Linear Structure
Morst o 1

e Stoy R

s
epresenaton Theorem

W
(i) 25 b impli
Then define 6

existence of a

Finite Linear Structures

Moral of the Story: Representation Theorem

Theorem 1 Proof Technique

Theorem 1 can be proved by demonstrating the existence of a
vector z € R¥ such that:

(i) a~bimpliesz-a=z-

ol ol

(it) a> bimpliesz-a>z-

Then define ¢(y;) = z;.
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Finite Linear Structures

Moral of the Story: Scale Type

Theorem 2

Suppose A has an order-preserving additive representation. Then
there are vectors z(D, ... z(M ¢ R¥ and an integer j with

0 <j < m such that z is an additive representation of A iff

m
z= Z a;z(i) +c
i=1

where ¢ = A1, a;j >0fori<j,and a; >0 for i >j.

The representation is an interval scale iff m = 1.
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Betore and At

7 Finite Linear Structures

T Before and After

Before

B Independence, double-cancellation, Archimedean-ness, and
restricted solvability imply all n-th order cancellations.

® All n-th order cancellations imply additive representation.

After

® |rreflexivity of >, implies independence and all n-th order
cancellations.

® All n-th order cancellations imply additive representation.

17 of 70
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Probability Structures

® We can do much the same thing for finite probability structures
as well.

® Let X be a finite non-empty set, and let & be an algebra of
sets on X, interpreted as events.

m As before, define & and &1 and ~y, = with & and &F taking
the place of A and AT respectively.

B let z be a representation given by Theorem 1.

m Define .
z-A
P(A) = —
z-X
, and note that this satisfies all the requirements of
probabilities. (433)

® This representation is possible iff > is irreflexive (Theorem 3).
18 of 70
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Polynomial Structures

In general, factorial data and a proposed measurement model
give rise to a set of polynomial inequalities.
There is a map from a; ---a, € Ay X --- X A, to a polynomial p
in the unknowns corresponding to ai, ..., an.
If the proposed model is decomposable, then there is exactly
one unknown for each a; € A;, so the set of all unknowns is

n
Y =U A

i=1
If the proposed model is not decomposable, then there may be
more than one unknown for some a;. In this case, the set of all
unknowns is still designated Y.
Define the relation 7Z; on the set of polynomials corresponding
to some a; - - - a, such that when p corresponds to a; - - - a, and
gtoby---b, wehavep=,qiffay---a,2 b1 b,

~
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Polynomial Structures

Representation Theorem: Big Picture

Theorem 4

A set of polynomial inequalities in the unknowns Y has a solution
iff the corresponding relation 7Z; on R[Y] can be extended to a
weak order 77 such that (R[Y], ) is an Archimedian weakly
ordered ring (i.e., ZZy induces an Archimedian ordered ring

structure on R ]/N,, .

® We can find necessary conditions for this extension to exist
similar to the necessary and sufficient conditions from the
linear case.

® However, the necessary and sufficient conditions for the
extension do not imply any easily testable consequences.

21 of 70
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I—PolLJnom'Lal Structures
Representation Theorem: Necessary Conditions

Corollary to Theorem 5

If there exists an extension =~/ of =, such that (R[Y],/) is a
weakly ordered ring, then >* is irreflexive, where (~*,>*) is the
minimal reqgular extension of Z;.

Theorem 5
Any binary relation on R[Y] has at least one regular extension
(the universal extension) and a unique minimal regular extension.

® The universal extension is R[Y] x R[Y]

22 of 70
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Polynomial Structures

Representation Theorem: Necessary Conditions

Regular Extension
A pair of relations (~y, =) is called a regular extension of 7, iff
(@) p ~u g whenever one of the following holds:
(i) Extension: p ~; g
(ii) Polynomial Identity: p=gq
(iii) Closure: There are ps1, p2, g1, g2 with p1 ~y g1, p2 ~y g2 such
that either p = p1 + p2, g = g1 + g2 or p = p1p2, 9 = q1G2.
(b) p > g whenever one of the following holds:
(i) Extension: p >, q
(i) Additive Closure: There are p1, p2, g1, g2 With p1 >y q1,
P>~y g2 such that p=p; + po and ¢ = g1 + q>.
(iit) Multiplicative Closure: There are p1, g1, r with either p1 >y g1,
re=u0orqgy >y p1, 0=y rsuchthat p=pir, g = qir.
22 of 70
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1. (read slide)

2. There is a paper from the JOURNAL OF MATHEMATICAL
PSYCHOLOGY 12, 99-113 (1975) by Marcel Richter that may or may
not actually decide this conjecture, but at any rate gives an
algebraic criterion for the solvability of arbitrary finite sets of
polynomial inequalities.

Polynomial Structures

Necessary and Sufficient Conditions

Theorem 6

A set of polynomial inequalities in the unknowns of Y has a
solution iff the corresponding relation 7Z; on R[Y] has a reqular
extension (~y, ) such that =7 is Archimedean and > is
non-universal.

Conjecture

There exists an extension =" of 7Z; such that (R[Y],Z) is a
weakly ordered ring iff ~* is irreflexive, where (~*,>=*) is the
minimal reqgular extension of ;.
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REMEMBER: WITH GREAT
POVER COMES GREAT

TIMES RESISTANCE..

9

Physical Laws

‘OF NEVER FORGOT HIS
DYING UNCLE'S ADVICE.

Examples
" F=ma
5 p=mv

m £ = %mv2

= P=|R?

F — Gm;::mz

27 of 70
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What's so Special?

Physical Laws

m Several units of measurement are expressible in terms of
others.

® Taking charge (Q), temperature (©), mass (M), length (L), time
duration (T), and angle (A) as primary, all other known
physical attributes are expressible as monomial combinations
of these.
o Density: dimensions of ML™3
o Frequency: dimensions of T~1A
o Force: dimensions of MLT 2
0 Current: dimensions of QT !
0 Entropy: dimensions of @ 1 ML2T 2

® |n fact, all the meaningful monomial combinations known are
relatively simple: QX@!MHIAT™A™ where x, 0, i, A, 7, o are all

small integers (between —4 and 4).
28 of 70
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What's so Special?

® Furthermore, there are some “dimensional constants” that
relate various measurements. Some are system-dependent,
others are truly constant for a fixed system of units:
0 System-dependent gravitational constant g (e.g., approx. 9.8m/s
for Earth)
o Velocity of light ¢, electron charge e, gas constant R, Planck’s
constant h, Avogadro’s constant Na

2

® Certain measures such as momentum and kinetic energy are
useful in many laws, but no laws seem to play a role in
defining them. They are like the density of objects, not the
density of materials (density independent of volume).

= Furthermore, most quantities of the form m'v/ aren’t terribly
important.

29 of 70



2011-04-25

Measurement Inequalities and Dimensional Analysis
I—Dlmensional Analysis
Physical Laws

- Physical Laws

Physical Laws _
The big

2
s heuristic work? (The only
e those where the sides

Physical Laws
The Big Questions

® So what role are laws playing?
= Why are laws generally so simple?

® Why does the dimensional analysis heuristic work? (The only
meaningful equations (additions) are those where the sides
(terms) have matching dimensions)
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) e -
L The Algebra of Physical Quantities The Algebra of Physical Quantities

General Requirements

® Quantities with the same (extensively measurable) units
combine additively.

® Quantities with different dimensions combine multiplicatively.

® The multiplicative structure resembles a finite-dimensional
vectors space over Q.

® The existence of basic dimensions is analogous to the
existence of a finite basis of that vector space.

® Numerical physical laws are formulated in terms of a very
special class of functions on the space.
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Axiom System

I—The Algebra of Physical Quantities

Structure of Physical Quantities
Suppose A < R is a nonempty set, At C A nonempty, and

x: Ax A— A Then (A AT %) is a structure of physical quantities
iff (A\ {0}, %) is an abelian group extension of (R \ {0}, x) and:

. * is associative and commutative.

. RNAT =R*.

.1lxa=aand 0xa=0.

1
2
3
4. 1f a # 0, then exactly one of a and —1xais in At
5. lf x,y € AT, then xxy € AT,

6

. lfn€Z n+#0and x € AT, there exists a unique x/n e A+
such that (x}/")" = x.

33 0f 70
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The Algebra of Physical Quantities

Example

I—The Algebra of Physical Quantities

mlet A= (R\{0} xQxQ)uU{z}.
0 The element (a, g, r) can represent a quantity « with units LYM".
o The element z represents 0.

B Let x on A be defined for non-zero operands as
(a,q,r)x (¢, r)=(ad,q+q,r+71). Letzxa=axz=z
for all a € A.
0,0 0
"R~ Abyaw— (,0,0) a7
z a=0
= At ={(a,q,r)la e R}
= (Oé, q, r)il = (05717 —q, —I’)
= (a,q,r)Y/" = (a*",q/n,r/n) for (a,q,r) € AT, n€ L
34 0f 70
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Dimension Space

I—The Algebra of Physical Quantities

® Let (A, AT %) be a structure of physical quantities.

® For a# z € A define [a] = {a*ala e R}, [aT] = [a] N AT.

® The set [A] = {[a]|a € A} is a set of equivalence classes over A,
and each equivalence class can be thought of as a dimension.

1. Recall that Theorem 1 was one of our desiderata.

= There are well-defined operations [a] * [b] = [a* b] and
[x]? = [x°] = (/)] for x € A*, p— ifj, ij € Z.

Theorem 1

Suppose that (A, AT %) is a structure of physical quantities. Then
the set [A] under * and powers as defined above is a
multiplicative vector space over Q where [1] = R is the identity
element and [a] ! = [a}] is the inverse of [a].
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I—The Algebra of Physical Quantities
More Desiderata

1. These are two more of our desiderata. Theorem 2
2. Tl it . i i i Suppose that (A, AT %) is a structure of physical quantities. Then
. The formal addition agrees with the extensive concatenation PI c Xl S phystical qua :
operation if the dimension is extensively measurable. the elements ap,...,a, € AT span A iff for every a € A there exist
a€Rand p1,...,pp € Q such that a=a xaf* x---xa)".

They are independent iff a* % --- x a)" € R implies that v; = 0 for
all i. If they are independent, they are a basis for [A] and the p;
depend only on [a].

® The dimensions that are elements of a basis for [A] can be
thought of as basic/fundamental dimensions.
®m We can also introduce a formal addition within a dimension:
0 Suppose a,b € [c] where a=ax*xc, b=x*c, and a,5 € R. Then
definea® b= (a+B)*c
36 of 70
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In the condition on realizable values, the x; are usually treated as
real numbers, but in fact, they involve the specification of both the
dimension and the unit of measurement of which the numerical
dimensionless ration x; is given.

The Algebra of Physical Quantities

Functional Form Restrictions

® Let (A, AT %) be a structure of physical quantities.

® Let P =[a]N AT be a typical positive dimension.

® Physical laws have the following form:
O A function f : P; X -+ x P — R, where s > 2.
0 A condition f(xi,...,xs) =0 on the physically realizable values of

x; € P;.

® The functional form of laws are (usually) restricted to be
dimensionally invariant (homogeneous). This means that the
function should be invariant under changes of units between
coherent systems.
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The Pi Theorem and Dimensional Analysis
Similarities

Similarity

Suppose that (A, AT %) is a structure of physical quantities. A
function ¢ : A — A is a similarity iff it is an automorphism of A
that preserves dimensions, maps A" into itself, and fixes a € R.

Theorem 3

Suppose that a structure of physical quantities (A, AT, %) is of
finite dimension and that {a1,...,a,} is a basis. If ¢ is a similarity
on A, then there are numbers ¢; > 0 such that ¢(a;) = ¢; *x a and
so ¢(a) = (¢7* - ¢h") * a, where a = a* af* - * ap".

Conversely, for any ¢; > 0, the function ¢(a) = (¢7* -+ ") x ais a
similarity.
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The Pi Theorem and Dimensional Analysis

The Pi Theorem and Dimensional Analysis

Dimensional Invariance

Dimensional Invariance

Suppose that (A, AT %) is a structure of physical quantities and
n

that P; are positive dimensions. A function f: [[ P, = R is
i=1

dimensionally invariant iff for all similarities ¢ on A,

f(xt,...,xp) =0 Uf f(A(x1),...,0(xn)) =0.
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The Pi Theorem and Dimensional Analysis
The Pi Theorem

Theorem 4

Suppose that (A, AT %) is a finite-dimensional structure of
physical quantities, that P;, i =1,...,s are positive dimensions of
the structure that are indexed so that the first r < s form a
maximal independent subset of the subspace spanned by all s of

1. To understand this, it helps to have a bit of an “example”.

S
them, and that f: [[ Pi — R is a dimensionally invariant

i=1
function. Then there exist a function F: R*™" — R and p;; € Q for
i=r+1,...,s,j=1,...,r such that for all x; € P;,
Tior =Xikx; "t xooxx, " for i =r+1,...,s, are real numbers

(dimensionless), and f(xi,...,xs) =0 iff F(71,...,ms—,) = 0.
Conversely, any function of the 7's as above is dimensionally

invariant.
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The pi The

Exanple”

The Pi Theorem and Dimensional Analysis

The Pi Theorem: “Example”

® A physical law usually represents a dependent variable in
terms of several independent ones: xs = g(x1,...,Xs—1)

® Using the Pi Theorem, we can switch this to a dimensionless
form: ms_, = G(71, ..., Ts—r_1).

® We can also go backwards and express this as:

xs = Xtk ox xPT x G(T1, . Tsmpo1).

O The function G gives a proportional constant relating xs to a
monomial of the independent dimensions xi, ..., x..
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Examples of Dimensional Analysis

What s the period of oscllation, t, of a simple pendulum?

The behavior of @ simple pendulum has the five parameters:

= I for the length of the pendulum
o rical

# g for the gravitational acceleration

Examples of Dimensional Analysis

A Simple Pendulum

What is the period of oscillation, t, of a simple pendulum?

The behavior of a simple pendulum has the five parameters:

m t for time

| for the length of the pendulum

« for the angle from vertical

m for the mass of the pendulum

g for the gravitational acceleration
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Thus, we can wite down the following table:

Examples of Dimensional Analysis

A Simple Pendulum

Thus, we can write down the following table:

Physical quantities
Dimensions t | m g «

L 01 0 1 0
M 00 1 0 O
T 1 0 0 -2 0
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Thus, we can wite down the following table:

Examples of Dimensional Analysis

A Simple Pendulum

Thus, we can write down the following table:

Physical quantities
Dimensions t | m g «

L 01 0 1 0
M 00 1 0 O
T 1 0 0 -2 0

Since there are three dimensions and five parameters, by the Pi
Theorem, there must be 2 dimensionless parameters 7 and .
Clearly one of these is m; = a. We can use standard linear
algebra to find the other.
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G it A Simple Pendulum

T 190 +0p1+Opp = 29 =0

I—Examples of Dimensional Analysis

Thus, we can write down the following table:

Physical quantities
Dimensions t | m g «

L 01 0 1 0
M 0o 0 1 0 O
T 1 0 0 -2 0

L:0pt+1p/+0pm+1pg =0
M :0p: +0p; + 1pm +0pg =0
T :1pt+0p; + 0pm — 2pg =0
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Thus, we can write down the following table:

Physical quantities
Dimensions t | m g «

L 01 0 1 0

M 00 1 0 0

T 10 0 2 0

o010 171" 0

00 1 P — o

100 —2| [P 0
Pg
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Examples of Dimensi

ional Analysis

Thus, we can wite down the following table:

Dimensions.

010
001
100

T
M
p

T
0
0

-

0
=

11 oo
of<fo1o
2| oo

=< o3|

Physical quantiiies
Timg

=
‘]
:

Examples of Dimensional Analysis

A Simple Pendulum

Thus, we can write down the following table:

Physical quantities

Dimensions t | m g «
L 01 0 1 0
M 0 01 0 O
T 10 0 2 0
010 1 100 -2
001 0|~ |f010 1
1 00 -2 001 O
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A Simple Pendulum

Thus, we can write down the following table:

Physical quantities
Dimensions t | m g «

L 01 0 1 0
M 00 1 0 O
T 1 0 0 -2 0

We can choose one p arbitrarily.
Since t is the dependent variable, it
is customary to set p; = 1.

O O =

o = O

= O O
—t
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I—Examples of Dimensional Analysis
A Simple Pendulum

Thus, we can write down the following table:

Physical quantities
Dimensions t | m g «

L 01 0 1 0
M 00 1 0 O
T 1 0 0 -2 0

Clearly pm =0, and it is easy to

(1) (1) 8 _12 see from the first row that p; = %
i —_1
001 0 Finally, then, p; = —3.
44 of 70



2011-04-25

Measurement Inequalities and Dimensional Analysis
I—Dlmensional Analysis
Examples of Dimensional Analysis

I—Examples of Dimensional Analysis

Examples of Dimensional Analysis _

Thus, we can wite down the following table:

Examples of Dimensional Analysis

A Simple Pendulum

Thus, we can write down the following table:

Physical quantities
Dimensions t | m g «

L 01 0 1 0
M 0 0 1 O 0
T 10 0 2 O
Therefore, we have m =t (%)1/2.
100 -2 Since we can write m = G(m1), we
010 1 1/2
001 0 then get tzcb(a)(é) .
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L g - .
xamples of Dimensional Analysis
Possible Errors: A Simple Pendulum

o= o ig/m ) ()
g, but s misleading

® Suppose gravitational mass and inertial mass were assumed
equivalent. Then mass would have dimension L3772, (274)

® |f we walked through the simple pendulum example again, we
would start with just the table:

Dimensions t | m g «
L o1 3 1 0
T 1.0 -2 20

. 1/2
= We would then arrive at my = o, m =/ (£) 2 and
1/2
=t (5"
1/2 1\/?
® Therefore, we would arrive at t = ¢ (/(g/m)'/2,a) (E ,
which is not technically wrong, but is misleading.
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Examples of Dimensional Analysis

Examples of Dimensional Analysis

Possible Errors: Ballistics

® |n some situations, we may try to include more dimensions
than necessary, such as with the ballistics example on 475-6.
This generally leads to a more complete solution.

® QOther times, redundant bases and superfluous constants may
be included. This generally results in the inclusion of universal
constants that can be chosen to be convenient values, reducing
the solution to a non-redundant case.
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Examples of Dimensional Analysis

= Example: Propaga

= H
di

T =45 [ 10(r,0)d
3

Examples of Dimensional Analysis

Obtaining Exact Solutions

®m We can also use dimensional analysis to help obtain exact
solutions to some partial differential equations by reducing the
space of possible solutions.

® Example: Propagation of vorticity is given by
o0 0°Q . 100
— = JE— [
ot or?  r or
® Here, € is the angular velocity of a viscous fluid, r is the radial
distance, t is time, and v = p/d is the kinematic viscosity.

= Suppose we want to solve for Q(r, t) subject to the initial
condition that the circulation around a circle of radius R at the
R

origin is a constant, i.e.: [ =4x [ rQ(r,0)dr
0
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i Examples of Dimensional Analysis

I—Examples of Dimensional Analysis et
a-om0 Obtaining Exact Solutions Continued

Given this problem description, we can set up a dimensional
analysis for Q(I, v, r, t):

Dimensions Q I v r t
L 0o 2 2 10
M 0O 0 O 0 O
T -1 1 1 0 1

By the Pi Theorem, there are two dimensionless parameters,
namely 1 = rPv=1t=1 and m = Qutl 1, so we have, where
£=r?/vt:

Q= (I/vt)®(¢)
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Substituting 2 = (1/v1)$(€) into 22 = (53 + L2 and
simpliling, we get:

4 [ee0 a2 o0
Therefore, it s lear that we must have

e +458 - ¢

Assuming 9(0) and 228 ae fine, seting € =0 shows that
c=o

Examples of Dimensional Analysis

Obtaining Exact Solutions Continued

S

Substituting Q = (M/vt)®(€) into 42 =v <%¥ +
simplifying, we get:

%—?) and

& Jeo(e) +ac (f)] 0

d§
Therefore, it is clear that we must have
co(e) +4e ) — €

Assuming ¢(0) and dd;(go) are finite, setting £ = 0 shows that
Cc=0.

48 of 70



2011-04-25

Measurement Inequalities and Dimensional Analysis e

I—D'Lmensional Analysis D ———
)

Examples of Dimensional Analysis

fon for 0, we get

Examples of Dimensional Analysis

I—Examples of Dimensional Analysis 2

Put o the inital condition to sol
arrive at the salution 2(r, £) = (7 /Brut)e"/4

oo A= Obtaining Exact Solutions Continued

So, we can rewrite things as:

do(§)

1
Tde = —Zq’@)

From this it clearly follows that we must have (&) = Ae=¢/4, for
some constant A.

Substituting this back into the expression for €2, we get
Q(r,t) = (TA/vt)e /41,

Putting that back into the initial condition to solve for A = slw' we
arrive at the solution Q(r, t) = (I'/87rz/t)e_’2/4”t.
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Consistency of Derived Measures

(0 show how extensive and conjoint
embedded as a substructure of the theory we.

Consistency of Derived Measures

® The algebra of physical quantities gave us a way to describe
how the ratio scale measures of various physical quantities
combine, but it did not discuss the consistency of various
measures obtained by other theories (e.g., extensive and
conjoint measurement).

® |t is generally acknowledged that there are quantities that
must be measured indirectly in terms of other extensive
measures, and this is only possible because various physical
laws are true.

® Furthermore, we want to show how extensive and conjoint
measures can be embedded as a substructure of the theory we
developed earlier.
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Consistency of Derived Measures

Z~* is one of 2~ or %, and similarly for the second structure.

Consistency of Derived Measures

Laws of Similitude

Consider a conjoint multiplicative scale a = bc where a and b can
also be extensively measured. We would like some conditions to
ensure consistency in the measurements.

Law of Similitude

Suppose that (A; x Az, 77) is an additive conjoint structure and
that (A1 x Ag, 2%, 0) and (A1, 227, 01) are extensive structures. A
(qualitative) law of similitude with exponents m and n, where
m,n € Z* holds iff one of the following is valid for all a € Ay, all
u € Ay, and all i € ZT, where the concatenations exist:

() ==, Zi=rmy or 2F=3, —i==1 and i"(a,u) ~ (i"a, u)

~!' ~17T ~! ~1T A~
(i) mr=rz, Zi=Z10r Z°=Z, mi=71 and (a,u) ~ i™(i"a, u)
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1. A flat structure is one such that for
u,v € A such that (a, u) ~ (b, v).

Laws

every a, b € A; there are

Consistency of Derived Measures

Laws of Similitude

Theorem 5

Suppose (A; x Ay, ) is a flat conjoint structure that has an
additive representation log 1 + logv; (A1 X Az, 2%, 0) and

(A1, 2%, 01) are closed extensive structures with no essential
maxima; ¢ and ¢; are, respectively, additive extensive scales; and
that the range of ¢ includes Q*. If a law of similitude with
exponents m and n holds, then there are constants «, v, a1, and
1 such that:

(i) Y1p2 = ¢ and P1 = 147"
(i) @ >0 or <0 according as Z*=2- or S and a3 >0o0r <0

according as ZZ7=21 or 31

(itt) |a/ai] =n/m
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Consistency of Derived Measures

Laws of Exchange

Now consider a conjoint multiplicative scale a = bc where b and
c can also be extensively measured. We would again like some
conditions to ensure consistency in the measurements.

Law of Exchange

Suppose (A1 x Ay, ) is an additive conjoint structure and

(Ak, Zksok), k=12, are extensive structures. A (qualitative) law of
exchange with exponents m and n, where m, n € Z*, holds iff once
of the following is valid for all a € Ay, all u € Ay, and all i € ZT,
where the concatenations exist:

(i) Zi=Z1, Zh=re or Zi=21, ZZ3=22 and (iMa, u) ~ (a, i"u)

~ ~ ~L N2~

(i) Zi=z1 Zh=22 or Zi==1, h=r2 and (a,u) ~ (iMa,i"u)

~2T ~
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Consistency of Derived Measures

iy
) o o/ it or 3 Laws of EXChange

Theorem 6

Suppose (A1 x Az, ) is a conjoint structure that has an additive
representation log vy + log12; (A, %, ok), k = 1,2, are closed
positive extensive structures with no essential maxima and
additive representations ¢. If a law of exchange with exponents
m and n holds, then there are constants ay, and v, k = 1,2, such
that:

(i) Yk = wodp*
(it) ax >0 or < 0 according as ;=2 or Sk

(Ul) |a1/a2| = n/m
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1. Skipping difference structures

Consistency of Derived Measures

Similitude and Exchange Compatibility

® How compatible are the laws of similitude and exchange as
given? Are more assumptions needed?

m Consider the case of conjoint measurement where a = bc and
a, b, ¢ all have extensive measurements. Two laws of similitude
and one law of exchange could possibly hold simultaneously.
In this case, any two of the three possibly laws determine what
the third must be for a representation of the form
o(a, u)® = ¢1(a)* p2(u)*? to hold. With some manipulation, we
can see that a compatible representation can be of the form
6" = 6765 or ¢ = 9TPeLP.

® Similar conditions can be derived for cases larger than 2
dimensions.
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Embedding into a Structure of Physical _

Quantities

Embedding into a Structure of Physical
Quantities

® Let o/ be a collection of physical attributes, represented by
structures (A, ), and let & C &7 be a set of extensively
measurable attributes, represented by structures (A, 7, o).

Y~
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I—Embedding into a Structure of Physical Quantities

® Axiomatize & and & as follows:

1. The set & is nonempty and <7 is finite.
2. If (A, 7z, 0) € &, it is an extensive structure with an additive
representation whose range includes Q™.
3. If (A, ) € &, then it is part of a conjoint structure in the sense
that either:
(i) A= A1 X Az, (A1 X Az, ) is a symmetric conjoint structure with a
multiplicative representation, and (A;, 7=;) are in «; or
(ii) there is a symmetric conjoint structure (A} x A3, =) € & with a
multiplicative representation such that A} = A, =1=>, and

(A2,72) € .
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I—Embedding into a Structure of Physical Quantities

® Axiomatize & and & as follows:
4. If (A1 X Ap, ) € o, then either

(i) there exist o; on A;, i = 1,2, such that (A;, 7z, 0;) are both in & and a
law of exchange holds; or

(i) there exist o on A1 X Az and for either i =1 or 2, o; on A; such that
(A1 X Az, 7, 0) and (A;, =i, 0;) are both in & and a law of similitude
holds.

5. Suppose laws of similitude hold both for (A; x Ap, 7, 0,01) and
(A1 x A, 770, o' o). If mi=rior %5, i = 1,2, then /= and o' = o.

~
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I—Embedding into a Structure of Physical Quantities
Quantities

Theorem 10
Suppose assumptions 1-5 hold. Then there exists a subset % of &
that is maximal with respect to the properties:

(i) not both an attribute and its converse are in %4

(ii) no law of exchange or similitude holds with all three
attributes in A.

Further, if ¢1,..., ¢, are extensive representations of the n
attributes in & and if ¢ is a representation of an attribute in o7,
then there exist unique real a > 0 and unique rational p; such

that
n
v=]]ef
i=1
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I—Embedding into a Structure of Physical Quantities

What the theorem shows is that the axioms of extensive and conjoint
measurement plus some assumptions about the occurrence of two
types of trinary laws are adequate to construct a structure of
physical quantities that satisfies the usual axions. Moreover, it shows
that there is a basis composed entirely of extensive representations.

Embedding into a Structure of Physical
Quantities

Theorem 11
Suppose that the assumptions of Theorem 10 hold and let #Z and
¢; be defined as there. Let

n n
A=Sa][¢lleeR, picQp A" =a]] ¢ le e RT, picQ

and let * denote pointwise multiplication of functions from A.
Then
(i) (A, AT %) is a structure of physical quantities

(i) {o1,...

(iii) if ¢ is a representation of an attribute in o7, the ¢ € A*.
59 of 70
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Wiy e evos By SR _

1d like to

Why are Laws Dimensionally Invariant?

m Given the spirit of the previous sections, we would like to
formulate a general qualitative definition of a physical law,
using only orderings and concatenations, and then prove that
it is dimensionally invariant. However, the authors were
unable to arrive at or find such a characterization.

B There have been three classes of attempts to account for
dimensional invariance:

1. “It couldn’t be otherwise”
2. “Descriptive/deductive”
3. “Physical similarity”
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Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

It couldn’t be otherwise

Argument Scheme

Choice of units is entirely arbitrary.

2. Any assertion that describes physical phenomena cannot
depend on something entirely arbitrary.

3. Therefore, descriptions of physical phenomena must be
dimensionally invariant.

“We suspect that many who hold this view are simply
saying...that if we knew how to formulate what we mean by a
qualitative physical law, then we would find, as a purely logical
consequence of our measurement assumptions, that the numerical

representation of the law would be dimensionally invariant.” (505)
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Why are Laws Dimensionally Invariant?

ntal Lows bu
lem i the boundar

t
y

Why are Laws Dimensionally Invariant?

Descriptive/deductive

Argument Scheme

1. Fundamental physical laws are, as a matter of fact,
dimensionally invariant.

2. All laws that derive from dimensionally invariant laws are
dimensionally invariant.

3. Therefore, all physical laws are dimensionally invariant.

® Only accounts for derived laws, doesn't justify the use of
dimensional analysis to obtain new results.

® Derived laws depend not only on the fundamental laws but
also on boundary conditions (not a problem if the boundary

conditions are dimensionally invariant).
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I—WhLJ are Laws Dimensionally Invariant?

1. Recall that a positive dimension is an equivalence class [a™].

2. Example: Springs — P1, P> represent force and length.

3. The set S is the set of all physically consistent force-length
combinations for springs of a fixed spring-constant value.

Why are Laws Dimensionally Invariant?

Physical similarity

® Consider a system of positive dimensions Py,..., P,.

m Let (A, AT, %) be the finite-dimensional structure of physical

quantities on the dimensions Py,..., P,. Items p € A are just
r

elements p € [[ P;i (where formal negative elements have been
i=1
appended).

,
® Write & = [] Pi. The set of all possible configurations of a
i=1
system is a set S C Z.
® Define an equivalence relation on sets 5,5 C £ by calling S

and S’ similar iff S’ is the image of S under a similarity on A.

® Let .# designate an equivalence class under this relation,

called a “family of similar sets”.
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1. Similarities carry the set of consistent values for one spring-constant
into those for another spring-constant.

Why are Laws Dimensionally Invariant?

Physical similarity

® The behavior of (at least some) physical systems can be
described as subsets of some £2.

® Two physical systems “of the same type” can be described as
subsets of the same &, and these subsets are similar.

® |f a subset of &2 describes the behavior of a physical system
and if another subset is similar to it, then there is a physical
system of the same type whose behavior is described by the
second subset.
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Why are Laws Dimensionally Invariant?

Physical similarity

® Physical theory also associates a unique set of dimensional
constants to each system in a family of similar systems.

® Some additional positive dimensions Q1, ..., Q; of (A, AT x)

t
are singled out. Let 2 =[] Q;.
j=1
® We want a function g: .# — 2 associating a t-tuple of
dimensional constants with each system S € .# in a consistent
way. In particular, we need g o ¢ = ¢ o g for all similarities ¢
on A. Such a g is called a system measure of .Z.
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Law Satisfaction

Suppose .# is a family of similar systems, g is a system measure
from .# into 2, and f: & x 2 — R. We say that .# satisfies the
law (f, g) iff, for all p € & and all g € 2, we have f(p, q) = 0 iff
there is some S € .# such that p € S and g(S) = q.

Dimensional Invariance

A law (f, g) as above is said to be dimensionally invariant if f is
a dimensionally invariant function, t.e., f(p, q) = 0 iff

f (¢(p), #(q)) = 0 for all similarities ¢ on A.
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Similarly, the stabilty group of 2 is
SG(2) = (416(g) = g %q € 2}, where the v are similarities on A

B Forf: & x 2 — R, for each g € 2 we can define a set
Sq = {plf(p,q) = 0}.
® Denote by .#¢ the set of all nonempty Sg.

" 7 is a family of similar systems if f is dimensionally invariant.

Stability Group

We define the stability group of .7 to be

SG(F) = {¢|¥(S) = S VS € #}, where the ¢ are similarities on
A

Similarly, the stability group of 2 is
SG(2) = {¢|Y(q) = g Vg € 2}, where the ¢ are similarities on A.
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Physical similarity

Theorem 12
Suppose . is a family of similar systems over &. Then TFAE:

(i) There exists a system measure g from .# into 2.

(i) There exists a function f from & x 2 into R and a function g
from .# into 2 such that .# satisfies the dimensionally
invariant law (7, g).

(iit) SG(¥) C SG(2)
Assuming the above, then TFAE:

(iv) The system measure g is injective.

(V) S5 =7
(vi) SG(.#) 2 SG(2).
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Why are Laws Dimensionally Invariant?

Physical similarity

Theorem 12

Uniqueness: Suppose g is a system measure into 2. Then g’ is a
system measure into 2 iff there is a similarity ¢ on A such that
g =¢og. It g =¢dogandf(p,q)="r(d(p),q) then ¥ satisfies
the dimensionally invariant law (f, g) iff .7 satisfies the
dimensionally invariant law (', g’).
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Que

Why are Laws Dimensionally Invariant?

Physical similarity

Questions

® One of the equivalent conditions was “There exists a system
measure g from .# into 2." Do all families of similar systems
always have a system measure (and hence satisfy a
dimensionally invariant law)?

® Does an arbitrary dimensionally invariant function f always
lead to the definition of a family of similar systems .# and a
system measure g on .¥ that satisfies the law (7, g)?
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Why are Laws Dimensionally Invariant?

Physical similarity

Answers

Yes to both, for a restricted class of families of similar systems
(Theorem 13, 511).

® The restriction is necessary because we only allowed rational
powers of dimensions in structures of physical quantities.
Limitations

® Doesn’t account for laws involving universal constants (no
distinct, realized similar systems).
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