Measurement Inequalities and Dimensional Analysis

IF YOU KEEP SAYYN "BEAR WITH ME FOR A MOMENT" PEOPLE TAKE A WHILE TO FIGURE OUT THAT
YOU'RE JUST SHOWING THEM RANDOM SLIDES.

Gregory McWhirter

UC Irvine
Foundations of Measurement Spring 2011

Measurement Inequalities and Dimensional Analysis

[^0]
Outline

Measurement Inequalities
Solvability
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities

Solvability

Finite Linear Structures
Polynomial Structures

Dimensional Analysis

Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

-Solvability

- Solvability Conditions

1. So far, we have made heavy use of various solvability axioms.

Solvability Conditions

Examples

- If $a \succ b$, then there exists $d \in A$ such that $(b, d) \in B$ and $a \succsim b \circ d$. (84)
- If $a b, c d \in A^{*}$ and $a b \succ c d$, then there exist $d^{\prime}, d^{\prime \prime} \in A$ such that $a d^{\prime}, d^{\prime} b, a d^{\prime \prime}, d^{\prime \prime} b \in A^{*}$ and $a d^{\prime} \sim c d \sim d^{\prime \prime} b$. (147)
- Definition 6.5 (256)
- Most Closure axioms.

Measurement Inequalities and Dimensional Analysis
$\stackrel{\square}{\sim}$ Measurement Inequalities

-Solvability

-Failures of Solvability

1. Solvability claims are usually non-necessary
2. Some models can get close to being, for example, a conjoint measurement structure, but they slightly miss.
3. Even if data generating processes satisfy solvability, that does not mean that the data collected also satisfy it, nor does it mean that the equations implied by the data are practically solvable.

Failures of Solvability

- Solvability axioms are existence claims, so they are usually non-necessary.
- There are models that almost satisfy the conjoint measurement structure, for instance, but one variable is discrete and the other is not equally spaced.
- Even if solvability is a safe assumption, the shape of the data can make solving the requisite equations practically impossible.
- Even if a nontested solvability condition is true in the underlying data-generating process and if the tested necessary conditions are true in the obtained factorial data, it does not follow that the obtained data possess a representation of the kind in question. (425)

Measurement Inequalities and Dimensional Analysis
$\stackrel{\downarrow}{\sim} L_{\text {Measurement Inequalities }}$

—Solvability

-Failures of Solvability

1. Suppose we have a $3 \times 3 \times 2$ factorial design and we get the ordinal data shown in the top two tables
2. These data do not violate the independence axioms necessary for an additive decomposition. An example of one of the checks is in the bottom left table.
3. However, these data do not satisfy double cancellation (inequalities are schematic).
4. Since solvability and independence imply double cancellation, the data generated cannot satisfy solvability.
5. So what can we do if we can't assume solvability?

Failures of Solvability

Example

Example from 425

a_{3}			
	a_{1}	b_{1}	c_{1}
a_{2}	12	14	18
b_{2}	4	10	16
c_{2}	2	6	8

b_{3}			
	a_{1}	b_{1}	c_{1}
a_{2}	11	13	17
b_{2}	3	9	15
c_{2}	1	5	7

	a_{3}	b_{3}
	6	5
a_{2}	6	
b_{2}	4	3
c_{2}	2	1

$a_{1} b_{2} \precsim b_{1} c_{2}$
$b_{1} a_{2} \precsim c_{1} b_{2}$
$a_{1} a_{2} \succ c_{1} c_{2}$

$$
\begin{aligned}
& a_{1}+b_{2} \leq b_{1}+c_{2} \\
& b_{1}+a_{2} \leq c_{1}+b_{2} \\
& a_{1}+a_{2}>c_{1}+c_{2}
\end{aligned}
$$

Measurement Inequalities and Dimensional Analysis

I Measurement Inequalities
 ```LFinite Linear Structures```
 -Outline

 Ontare

(transition)

Outline

Measurement Inequalities
Solvabilitu
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

-Finite Linear Structures

-Finite Linear Structures

1. (read slide)
2. Since we want additive representations without solvability, we need something else to get us all of the cancellation axioms.

Finite Linear Structures

Additive Conjoint Models

- Suppose A_{1} and A_{2} are finite sets.
- Let \succsim be a weak order of $A=A_{1} \times A_{2}$.
- We want to find necessary and sufficient conditions such that $a p \succsim b q$ iff $\phi_{1}(a)+\phi_{2}(p) \geq \phi_{1}(b)+\phi_{2}(q)$.
- This is possible for any finite number of A_{i} given that all n-th order cancellation axioms hold.
- Furthermore, all n-th order cancellation axioms were implied by independence, double-cancellation, Archimedean-ness, and restricted solvability.

Measurement Inequalities and Dimensional Analysis

Finite Linear Structures

Auxiliary Space Construction

- Let $A=A_{1} \times \ldots \times A_{n}$.
- Suppose $\left|A_{i}\right|=k_{i}<\infty$ for all i and $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$.
- Let \succsim be a reflexive binary relation on A (think a weak ordering, but it doesn't need to be transitive or connected).
- Let $k=\sum_{i=1}^{n} k_{i}$ be the size of $Y=\bigcup_{i=1}^{n} A_{i}$.
- Enumerate the elements of Y as y_{1}, \ldots, y_{k}.
- Define an injective mapping $v: A \rightarrow \mathbb{R}^{k}$ by $a \mapsto \bar{a}=\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)$, where

$$
\bar{a}_{i}= \begin{cases}1 & \text { if } y_{i} \text { is a component of } a \\ 0 & \text { otherwise }\end{cases}
$$

Measurement Inequalities and Dimensional Analysis

Finite Linear Structures

Auxiliary Space Construction Continued

- Let $\bar{A}=\{\bar{a} \mid a \in A\}$ and A^{+}be the additive closure over \bar{A}.
- Define \sim, on A^{+}by $x \sim_{l} y$ iff there are $\bar{a}^{(1)}, \ldots, \bar{a}^{(m)}, \bar{b}^{(1)}, \ldots, \bar{b}^{(m)} \in \bar{A}$ such that $x=\sum_{i=1}^{m} \bar{a}^{(i)}$ and $y=\sum_{i=1}^{m} \bar{b}^{(i)}$ and $\bar{a}^{(i)} \sim \bar{b}^{(i)}$ for all i.
- Define \succ_{l} on A^{+}by $x \succ_{l} y$ iff there are
$\bar{a}^{(1)}, \ldots, \bar{a}^{(m)}, \bar{b}^{(1)}, \ldots, \bar{b}^{(m)} \in \bar{A}$ such that $x=\sum_{i=1}^{m} \bar{a}^{(i)}$ and
$y=\sum_{i=1}^{m} \bar{b}^{(i)}$ and $\bar{a}^{(i)} \succsim \bar{b}^{(i)}$ for all i and for some $j, \bar{b}^{(j)} \nsucceq \bar{a}^{(j)}$.
- Define \succsim ı on A^{+}as $\succsim ı=\sim, ~ \cup \succ_{1}$.

Measurement Inequalities and Dimensional Analysis

Finite Linear Structures

Properties of \sim_{1}, \succ_{1}, and \succsim_{1}

- The relation \sim_{1} is reflexive and symmetric.
- The relation \succ_{1} is not necessarily irreflexive nor asymmetric (contrary to what the usual parallel with $>$ might suggest).

Measurement Inequalities and Dimensional Analysis

Finite Linear Structures

Counterexample to \succ_{l} being necessarily asymmetric.

Example

Suppose \succsim on $A_{1} \times \ldots \times A_{n}$ violates independence. So we have the following for some $a, b, a^{\prime}, b^{\prime}$:

$$
\begin{aligned}
a & =a_{1} \cdots a_{i} \cdots a_{n} \succ b_{1} \cdots a_{i} \cdots b_{n}=b^{\prime} \\
b & =b_{1} \cdots b_{i} \cdots b_{n} \succeq a_{1} \cdots b_{i} \cdots a_{n}=a^{\prime}
\end{aligned}
$$

Measurement Inequalities and Dimensional Analysis

Finite Linear Structures

Counterexample to \succ, being necessarily asymmetric.

Example

Now, we have, WLOG:

12 of 70

Measurement Inequalities and Dimensional Analysis

Finite Linear Structures

Counterexample to $\succ_{\text {, }}$ being necessarily asymmetric.

Example

Adding $\bar{a}+\bar{b}$ and $\overline{b^{\prime}}+\overline{a^{\prime}}$, we get:

$$
\bar{a}+\bar{b}=(\underbrace{1,1,0, \ldots, 0}_{A_{1}}, \ldots, \underbrace{1,1,0, \ldots, 0}_{A_{i}}, \ldots, \underbrace{1,1,0, \ldots, 0}_{A_{n}})=\overline{b^{\prime}}+\overline{a^{\prime}}
$$

We have $\bar{a}+\bar{b} \succ$, $\overline{b^{\prime}}+\overline{a^{\prime}}$ since we have:

$$
\begin{aligned}
a \succ b^{\prime} \Longrightarrow & a \succsim b^{\prime} \\
& b \succsim a^{\prime} \\
a \succ b^{\prime} \Longrightarrow & b^{\prime} \succsim{ }^{\prime}
\end{aligned}
$$

$\underset{12 \text { of } 70}{\text { But we also have } \overline{b^{\prime}}+\overline{a^{\prime}} \succ_{I} \bar{a}+\bar{b} \text { since we have equality of sum. }}$

Measurement Inequalities and Dimensional Analysis

Finite Linear Structures

Moral of the Story

- The example before shows us that irreflexivity of \succ_{1} implies independence of \succsim.
- Similarly, it can be shown that irreflexivity of \succ_{1} implies every n-th order cancellation axiom.
- Furthermore, \succ_{l} is irreflexive iff \succ_{l} and \sim_{l} are the asymmetric and symmetric parts of \succsim / respectively.
- Irreflexivity of $\succ_{ノ}$ also implies that \succsim / has no intransitive cycles, but does not imply that \succsim_{\prime} is in fact transitive.

Measurement Inequalities and Dimensional Analysis

LFinite Linear Structures
-Finite Linear Structures

Finite Linear Structures

Moral of the Story: Representation Theorem

Theorem 1

The relation \succ_{l} is irreflexive iff there exist $\phi: Y \rightarrow \mathbb{R}$ and $\psi: A \rightarrow \mathbb{R}$ such that for all $a, b \in A$:
(i) $\psi(a)=\psi\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} \phi\left(a_{i}\right)$
(ii) $a \sim b$ implies $\psi(a)=\psi(b)$
(iii) $a \succ b$ implies $\psi(a)>\psi(b)$

Measurement Inequalities and Dimensional Analysis

LFinite Linear Structures
-Finite Linear Structures

Finite Linear Structures

Moral of the Story: Representation Theorem

Theorem 1 Proof Technique
Theorem 1 can be proved by demonstrating the existence of a vector $z \in \mathbb{R}^{k}$ such that:
(i) $a \sim b$ implies $z \cdot \bar{a}=z \cdot \bar{b}$
(ii) $a \succ b$ implies $z \cdot \bar{a}>z \cdot \bar{b}$

Then define $\phi\left(y_{i}\right)=z_{i}$.

Measurement Inequalities and Dimensional Analysis

LFinite Linear Structures LFinite Linear Structures
$=$ $=2=$.-5

Finite Linear Structures

Moral of the Story: Scale Type

Theorem 2

Suppose A has an order-preserving additive representation. Then there are vectors $z^{(1)}, \ldots, z^{(m)} \in \mathbb{R}^{k}$ and an integer j with $0 \leq j \leq m$ such that z is an additive representation of A iff

$$
z=\sum_{i=1}^{m} \alpha_{i} z^{(i)}+c
$$

where $c=\lambda \overrightarrow{1}, \alpha_{i} \geq 0$ for $i \leq j$, and $\alpha_{i}>0$ for $i>j$.
The representation is an interval scale iff $m=1$.

Measurement Inequalities and Dimensional Analysis

LFinite Linear Structures
LFinite Linear Structures

Finite Linear Structures

Before and After

Before

- Independence, double-cancellation, Archimedean-ness, and restricted solvability imply all n-th order cancellations.
- All n-th order cancellations imply additive representation.

After

- Irreflexivity of $\succ_{\text {I }}$ implies independence and all n-th order cancellations.
- All n-th order cancellations imply additive representation.

Measurement Inequalities and Dimensional Analysis

Probability Structures

- We can do much the same thing for finite probability structures as well.
- Let X be a finite non-empty set, and let \mathscr{E} be an algebra of sets on X, interpreted as events.
- As before, define $\overline{\mathscr{E}}$ and \mathscr{E}^{+}and \sim_{I}, \succ_{l} with $\overline{\mathscr{E}}$ and \mathscr{E}^{+}taking the place of \bar{A} and A^{+}respectively.
- Let z be a representation given by Theorem 1 .
- Define

$$
P(A)=\frac{z \cdot \bar{A}}{z \cdot \bar{X}}
$$

, and note that this satisfies all the requirements of probabilities. (433)

- This representation is possible iff \succ_{I} is irreflexive (Theorem 3). 18 of 70

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities
Solvability
Finite Linear Structures

Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant？

Measurement Inequalities and Dimensional Analysis
—Polynomial Structures
—Polynomial Structures

Polynomial Structures

- In general, factorial data and a proposed measurement model give rise to a set of polynomial inequalities.
- There is a map from $a_{1} \cdots a_{n} \in A_{1} \times \cdots \times A_{n}$ to a polynomial p in the unknowns corresponding to a_{1}, \ldots, a_{n}.
- If the proposed model is decomposable, then there is exactly one unknown for each $a_{i} \in A_{i}$, so the set of all unknowns is

$$
Y=\bigcup_{i=1}^{n} A_{i} .
$$

- If the proposed model is not decomposable, then there may be more than one unknown for some a_{i}. In this case, the set of all unknowns is still designated Y.
- Define the relation \succsim, on the set of polynomials corresponding to some $a_{1} \cdots a_{n}$ such that when p corresponds to $a_{1} \cdots a_{n}$ and q to $b_{1} \cdots b_{n}$, we have $p \succsim ı q$ iff $a_{1} \cdots a_{n} \succsim b_{1} \cdots b_{n}$.

Measurement Inequalities and Dimensional Analysis
—Polynomial Structures
—Polynomial Structures

Polynomial Structures

Representation Theorem: Big Picture

Theorem 4

A set of polynomial inequalities in the unknowns Y has a solution iff the corresponding relation \succsim, on $\mathbb{R}[Y]$ can be extended to a weak order $\succsim \|$ such that $\langle\mathbb{R}[Y], \succsim \|\rangle$ is an Archimedian weakly ordered ring (i.e., $\succsim \prime$ induces an Archimedian ordered ring structure on $\left.\mathbb{R}[Y] / \sim_{\| I}\right)$.

- We can find necessary conditions for this extension to exist similar to the necessary and sufficient conditions from the linear case.
- However, the necessary and sufficient conditions for the extension do not imply any easily testable consequences.

Measurement Inequalities and Dimensional Analysis

—Polynomial Structures

\llcorner Polynomial Structures

Polynomial Structures

Representation Theorem: Necessary Conditions

Corollary to Theorem 5

If there exists an extension \succsim^{\prime} of \succsim, such that $\left\langle\mathbb{R}[Y], \succsim^{\prime}\right\rangle$ is a weakly ordered ring, then \succ^{*} is irreflexive, where $\left(\sim^{*}, \succ^{*}\right)$ is the minimal regular extension of $\succsim \iota$.

Theorem 5
Any binary relation on $\mathbb{R}[Y]$ has at least one regular extension (the universal extension) and a unique minimal regular extension.

- The universal extension is $\mathbb{R}[Y] \times \mathbb{R}[Y]$

Measurement Inequalities and Dimensional Analysis

LPolynomial Structures

—Polynomial Structures

Polynomial Structures

Representation Theorem: Necessary Conditions

Regular Extension

A pair of relations $\left(\sim_{I I}, \succ_{I I}\right)$ is called a regular extension of \succsim_{l} iff
(a) $p \sim_{\|} q$ whenever one of the following holds:
(i) Extension: $p \sim 1 q$
(ii) Polynomial Identity: $p=q$
(iii) Closure: There are $p_{1}, p_{2}, q_{1}, q_{2}$ with $p_{1} \sim / / q_{1}, p_{2} \sim / / q_{2}$ such that either $p=p_{1}+p_{2}, q=q_{1}+q_{2}$ or $p=p_{1} p_{2}, q=q_{1} q_{2}$.
(b) $p \succ_{\|} q$ whenever one of the following holds:
(i) Extension: $p \succ_{1} q$
(ii) Additive Closure: There are $p_{1}, p_{2}, q_{1}, q_{2}$ with $p_{1} \succ_{I I} q_{1}$, $p_{2} \sim{ }_{\|} q_{2}$ such that $p=p_{1}+p_{2}$ and $q=q_{1}+q_{2}$.
(iii) Multiplicative Closure: There are p_{1}, q_{1}, r with either $p_{1} \succ_{I I} q_{1}$, $r \succ_{\|} 0$ or $q_{1} \succ_{\|} p_{1}, 0 \succ_{\|} r$ such that $p=p_{1} r, q=q_{1} r$.
22 of 70

Measurement Inequalities and Dimensional Analysis

—Polynomial Structures

—Polynomial Structures

1. (read slide)
2. There is a paper from the JOURNAL OF MATHEMATICAL PSYCHOLOGY 12, 99-113 (1975) by Marcel Richter that may or may not actually decide this conjecture, but at any rate gives an algebraic criterion for the solvability of arbitrary finite sets of polynomial inequalities.

Polynomial Structures

Necessary and Sufficient Conditions

Theorem 6

A set of polynomial inequalities in the unknowns of Y has a solution iff the corresponding relation \succsim ৷ on $\mathbb{R}[Y]$ has a regular extension $\left(\sim_{I I}, \succ_{\|}\right)$such that $\succsim_{I I}$ is Archimedean and $\succ_{I I}$ is non-universal.

Conjecture

There exists an extension \succsim^{\prime} of \succsim^{\prime} such that $\left\langle\mathbb{R}[Y], \succsim^{\prime}\right\rangle$ is a weakly ordered ring iff \succ^{*} is irreflexive, where $\left(\sim^{*}, \succ^{*}\right)$ is the minimal regular extension of $\succsim \iota$.

Measurement Inequalities and Dimensional Analysis

Outline

(transition)

Outline

Measurement Inequalities
 Solvability
 Finite Linear Structures
 Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

The Big Picture

My HobBy:

ABUSING DIMENSIONAL ANALYSIS

25 of 70

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities

Solvability
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

Physical Laws

Examples

- $F=m a$
- $p=m v$
- $E_{k}=\frac{1}{2} m v^{2}$
- $P=I R^{2}$
- $F=G \frac{m_{1} m_{2}}{r^{2}}$

REMEMBER: WITH GREAT POWER COMES GREAT CURRENT SQUARED TMES RESISTANCE.

OHM NEVER FORGOT HIS DYING UNCLE'S ADVICE.

Measurement Inequalities and Dimensional Analysis

Physical Laws

What's so Special?

- Several units of measurement are expressible in terms of others.
- Taking charge (Q), temperature (Θ), mass (M), length (L), time duration (T), and angle (A) as primary, all other known physical attributes are expressible as monomial combinations of these
- Density: dimensions of $M L^{-3}$
- Frequency: dimensions of $T^{-1} A$
- Force: dimensions of $M L T^{-2}$
\square Current: dimensions of $Q T^{-1}$
\square Entropy: dimensions of $\Theta^{-1} M L^{2} T^{-2}$
- In fact, all the meaningful monomial combinations known are relatively simple: $Q^{\chi} \Theta^{\theta} M^{\mu} L^{\lambda} T^{\tau} A^{\alpha}$ where $\chi, \theta, \mu, \lambda, \tau, \alpha$ are all small integers (between -4 and 4).
28 of 70

Measurement Inequalities and Dimensional Analysis

Physical Laws

What's so Special?

- Furthermore, there are some "dimensional constants" that relate various measurements. Some are system-dependent, others are truly constant for a fixed system of units:
\square System-dependent gravitational constant g (e.g., approx. $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for Earth)
\square Velocity of light c, electron charge e, gas constant R, Planck's constant h, Avogadro's constant N_{A}
- Certain measures such as momentum and kinetic energy are useful in many laws, but no laws seem to play a role in defining them. They are like the density of objects, not the density of materials (density independent of volume).
- Furthermore, most quantities of the form $m^{i} v^{j}$ aren't terribly important.

Measurement Inequalities and Dimensional Analysis
—Physical Laws
—Physical Laws

Physical Laws

The Big Questions

- So what role are laws playing?
- Why are laws generally so simple?
- Why does the dimensional analysis heuristic work? (The only meaningful equations (additions) are those where the sides (terms) have matching dimensions)

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities
Solvability
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

The Algebra of Physical Quantities

General Requirements

- Quantities with the same (extensively measurable) units combine additively.
- Quantities with different dimensions combine multiplicatively.
- The multiplicative structure resembles a finite-dimensional vectors space over \mathbb{Q}.
- The existence of basic dimensions is analogous to the existence of a finite basis of that vector space.
- Numerical physical laws are formulated in terms of a very special class of functions on the space.

Measurement Inequalities and Dimensional Analysis
-The Algebra of Physical Quantities -The Algebra of Physical Quantities

The Algebra of Physical Quantities

Axiom System

Structure of Physical Quantities

Suppose $A \hookleftarrow \mathbb{R}$ is a nonempty set, $A^{+} \subseteq A$ nonempty, and *: $A \times A \rightarrow A$. Then $\left\langle A, A^{+}, *\right\rangle$ is a structure of physical quantities
iff $\langle A \backslash\{0\}, *\rangle$ is an abelian group extension of $\langle\mathbb{R} \backslash\{0\}, \times\rangle$ and:

1. $*$ is associative and commutative.
2. $\mathbb{R} \cap A^{+}=\mathbb{R}^{+}$.
3. $1 * a=a$ and $0 * a=0$.
4. If $a \neq 0$, then exactly one of a and $-1 * a$ is in A^{+}.
5. If $x, y \in A^{+}$, then $x * y \in A^{+}$.
6. If $n \in \mathbb{Z}, n \neq 0$ and $x \in A^{+}$, there exists a unique $x^{1 / n} \in A^{+}$ such that $\left(x^{1 / n}\right)^{n}=x$.

Measurement Inequalities and Dimensional Analysis

The Algebra of Physical Quantities

Example

- Let $A=(\mathbb{R} \backslash\{0\} \times \mathbb{Q} \times \mathbb{Q}) \cup\{z\}$.
\square The element $(\alpha, \boldsymbol{q}, r)$ can represent a quantity α with units $L^{q} M^{r}$.
\square The element z represents 0 .
- Let $*$ on A be defined for non-zero operands as $(\alpha, q, r) *\left(\alpha^{\prime}, q^{\prime}, r^{\prime}\right)=\left(\alpha \alpha^{\prime}, q+q^{\prime}, r+r^{\prime}\right)$. Let $z * a=a * z=z$ for all $a \in A$.
- $\mathbb{R} \hookrightarrow A$ by $\alpha \mapsto \begin{cases}(\alpha, 0,0) & \alpha \neq 0 \\ z & \alpha=0\end{cases}$
- $A^{+}=\left\{(\alpha, q, r) \mid \alpha \in \mathbb{R}^{+}\right\}$
- $(\alpha, q, r)^{-1}=\left(\alpha^{-1},-\boldsymbol{q},-r\right)$
- $(\alpha, q, r)^{1 / n}=\left(\alpha^{1 / n}, q / n, r / n\right)$ for $(\alpha, q, r) \in A^{+}, n \in \mathbb{Z}$.

Measurement Inequalities and Dimensional Analysis

ก L Dimensional Analysis
-The Algebra of Physical Quantities
LThe Algebra of Physical Quantities

1. Recall that Theorem 1 was one of our desiderata.

The Algebra of Physical Quantities
 Dimension Space

- Let $\left\langle A, A^{+}, *\right\rangle$ be a structure of physical quantities.
- For $a \neq z \in A$, define $[a]=\{\alpha * a \mid \alpha \in \mathbb{R}\},\left[a^{+}\right]=[a] \cap A^{+}$.
- The set $[A]=\{[a] \mid a \in A\}$ is a set of equivalence classes over A, and each equivalence class can be thought of as a dimension.
- There are well-defined operations $[a] *[b]=[a * b]$ and $[x]^{\rho}=\left[x^{\rho}\right]=\left[\left(x^{1} / j\right)^{i}\right]$ for $x \in A^{+}, \rho=i / j, i, j \in \mathbb{Z}$.

Theorem 1
Suppose that $\left\langle A, A^{+}, *\right\rangle$ is a structure of physical quantities. Then the set $[A]$ under $*$ and powers as defined above is a multiplicative vector space over \mathbb{Q} where $[1]=\mathbb{R}$ is the identity element and $[a]^{-1}=\left[a^{-1}\right]$ is the inverse of $[a]$.

Measurement Inequalities and Dimensional Analysis
-The Algebra of Physical Quantities
LThe Algebra of Physical Quantities

1. These are two more of our desiderata.
2. The formal addition agrees with the extensive concatenation operation if the dimension is extensively measurable.

The Algebra of Physical Quantities

More Desiderata

Theorem 2

Suppose that $\left\langle A, A^{+}, *\right\rangle$ is a structure of physical quantities. Then the elements $a_{1}, \ldots, a_{n} \in A^{+}$span A iff for every $a \in A$ there exist $\alpha \in \mathbb{R}$ and $\rho_{1}, \ldots, \rho_{n} \in \mathbb{Q}$ such that $a=\alpha * a_{1}^{\rho_{1}} * \cdots * a_{n}^{\rho_{n}}$.
They are independent iff $a_{1}^{\gamma_{1}} * \cdots * a_{n}^{\gamma_{n}} \in \mathbb{R}$ implies that $\gamma_{i}=0$ for all i. If they are independent, they are a basis for $[A]$ and the ρ_{i} depend only on [a].

- The dimensions that are elements of a basis for $[A]$ can be thought of as basic/fundamental dimensions.
- We can also introduce a formal addition within a dimension: \square Suppose $a, b \in[c]$ where $a=\alpha * c, b=\beta * c$, and $\alpha, \beta \in \mathbb{R}$. Then define $\boldsymbol{a} \oplus b=(\alpha+\beta) * c$

Measurement Inequalities and Dimensional Analysis
ก L Dimensional Analysis
-The Algebra of Physical Quantities
-The Algebra of Physical Quantities
左 $=\mathbf{y}=$ $=-2$

The Algebra of Physical Quantities

Functional Form Restrictions

- Let $\left\langle A, A^{+}, *\right\rangle$ be a structure of physical quantities.
- Let $P=[a] \cap A^{+}$be a typical positive dimension.
- Physical laws have the following form:
\square A function $f: P_{1} \times \cdots \times P_{s} \rightarrow \mathbb{R}$, where $s \geq 2$.
- A condition $f\left(x_{1}, \ldots, x_{s}\right)=0$ on the physically realizable values of $x_{i} \in P_{i}$.
- The functional form of laws are (usually) restricted to be dimensionally invariant (homogeneous). This means that the function should be invariant under changes of units between coherent systems.

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities
Solvability
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

-The Pi Theorem and Dimensional Analysis

$L_{\text {The Pi Theorem and Dimensional Analysis }}$

The Pi Theorem and Dimensional Analysis

Similarities

Similarity

Suppose that $\left\langle A, A^{+}, *\right\rangle$ is a structure of physical quantities. A function $\phi: A \rightarrow A$ is a similarity iff it is an automorphism of A that preserves dimensions, maps A^{+}into itself, and fixes $\alpha \in \mathbb{R}$.

Theorem 3
Suppose that a structure of physical quantities $\left\langle A, A^{+}, *\right\rangle$ is of finite dimension and that $\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis. If ϕ is a similarity on A, then there are numbers $\phi_{i}>0$ such that $\phi\left(a_{i}\right)=\phi_{i} * a$ and so $\phi(a)=\left(\phi_{1}^{\rho_{1}} \cdots \phi_{n}^{\rho_{n}}\right) * a$, where $a=\alpha * a_{1}^{\rho_{1}} * \cdots * a_{n}^{\rho_{n}}$. Conversely, for any $\phi_{i}>0$, the function $\phi(a)=\left(\phi_{1}^{\rho_{1}} \cdots \phi_{n}^{\rho_{n}}\right) * a$ is a similarity.

Measurement Inequalities and Dimensional Analysis

-The Pi Theorem and Dimensional Analysis

$L_{\text {The Pi Theorem and Dimensional Analysis }}$
 $\tan 2=0=0$

The Pi Theorem and Dimensional Analysis
 Dimensional Invariance

Dimensional Invariance
Suppose that $\left\langle A, A^{+}, *\right\rangle$ is a structure of physical quantities and that P_{i} are positive dimensions. A function $f: \prod_{i=1}^{n} P_{i} \rightarrow \mathbb{R}$ is dimensionally invariant iff for all similarities ϕ on A, $f\left(x_{1}, \ldots, x_{n}\right)=0$ iff $f\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)=0$.

Measurement Inequalities and Dimensional Analysis
-The Pi Theorem and Dimensional Analysis LThe Pi Theorem and Dimensional Analysis

1. To understand this, it helps to have a bit of an "example".

The Pi Theorem and Dimensional Analysis

 The Pi Theorem
Theorem 4

Suppose that $\left\langle A, A^{+}, *\right\rangle$ is a finite-dimensional structure of physical quantities, that $P_{i}, i=1, \ldots, s$ are positive dimensions of the structure that are indexed so that the first $r<s$ form a maximal independent subset of the subspace spanned by all s of them, and that $f: \prod_{i=1}^{s} P_{i} \rightarrow \mathbb{R}$ is a dimensionally invariant
function. Then there exist a function $F: \mathbb{R}^{s-r} \rightarrow \mathbb{R}$ and $\rho_{i j} \in \mathbb{Q}$ for $i=r+1, \ldots, s, j=1, \ldots, r$ such that for all $x_{i} \in P_{i}$, $\pi_{i-r}=x_{i} * x_{1}^{-\rho_{i 1}} * \cdots * x_{r}^{-\rho_{i r}}$, for $i=r+1, \ldots, s$, are real numbers (dimensionless), and $f\left(x_{1}, \ldots, x_{s}\right)=0$ iff $F\left(\pi_{1}, \ldots, \pi_{s-r}\right)=0$. Conversely, any function of the π 's as above is dimensionally invariant.
41 of 70

Measurement Inequalities and Dimensional Analysis

-The Pi Theorem and Dimensional Analysis

-The Pi Theorem and Dimensional Analysis

The Pi Theorem and Dimensional Analysis

The Pi Theorem: "Example"

- A physical law usually represents a dependent variable in terms of several independent ones: $x_{s}=g\left(x_{1}, \ldots, x_{s-1}\right)$.
- Using the Pi Theorem, we can switch this to a dimensionless form: $\pi_{s-r}=G\left(\pi_{1}, \ldots, \pi_{s-r-1}\right)$
- We can also go backwards and express this as: $x_{s}=x_{1}^{\rho_{s 1}} * \cdots * x_{r}^{\rho_{s r}} * G\left(\pi_{1}, \ldots, \pi_{s-r-1}\right)$.
\square The function G gives a proportional constant relating x_{s} to a monomial of the independent dimensions x_{1}, \ldots, x_{r}

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities

Solvability
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis

Examples of Dimensional Analysis

```
Consistency of Derived Measures
    Embedding into a Structure of Physical Quantities
    Why are Numerical Laws Dimensionally Invariant?
```

Measurement Inequalities and Dimensional Analysis

- Examples of Dimensional Analysis

-Examples of Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
What is the period of oscillation, t, of a simple pendulum?
The behavior of a simple pendulum has the five parameters:

- t for time
- I for the length of the pendulum
- α for the angle from vertical
- m for the mass of the pendulum
- g for the gravitational acceleration

Measurement Inequalities and Dimensional Analysis

-Examples of Dimensional Analysis

-Examples of Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
Thus, we can write down the following table:

	Physical quantities				
Dimensions	t	l	m	g	α
L	0	1	0	1	0
M	0	0	1	0	0
T	1	0	0	-2	0

Measurement Inequalities and Dimensional Analysis

-Examples of Dimensional Analysis

-Examples of Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
Thus, we can write down the following table:

	Physical quantities				
Dimensions	t	l	m	g	α
L	0	1	0	1	0
M	0	0	1	0	0
T	1	0	0	-2	0

Since there are three dimensions and five parameters, by the Pi Theorem, there must be 2 dimensionless parameters π_{1} and π_{2}. Clearly one of these is $\pi_{1}=\alpha$. We can use standard linear algebra to find the other.

Measurement Inequalities and Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
Thus, we can write down the following table:

	Physical quantities				
Dimensions	t	l	m	g	α
L	0	1	0	1	0
M	0	0	1	0	0
T	1	0	0	-2	0

$$
\begin{array}{r}
L: 0 \rho_{t}+1 \rho_{l}+0 \rho_{m}+1 \rho_{g}=0 \\
M: 0 \rho_{t}+0 \rho_{I}+1 \rho_{m}+0 \rho_{g}=0 \\
T: 1 \rho_{t}+0 \rho_{l}+0 \rho_{m}-2 \rho_{g}=0
\end{array}
$$

Measurement Inequalities and Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
Thus, we can write down the following table:

	Physical quantities				
Dimensions	t	l	m	g	α
L	0	1	0	1	0
M	0	0	1	0	0
T	1	0	0	-2	0

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
\rho_{t} \\
\rho_{l} \\
\rho_{m} \\
\rho_{g}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

44 of 70

Measurement Inequalities and Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
Thus, we can write down the following table:

Dimensions	Physical quantities				
	t		m	g	α
L			0	1	0
M			1	0	0
T	1		0	-2	0
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -2\end{array}\right]$	\rightsquigarrow		$\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}$		$\left.\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$

Measurement Inequalities and Dimensional Analysis

Examples of Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
Thus, we can write down the following table:

	Physical quantities				
Dimensions	t	l	m	g	α
L	0	1	0	1	0
M	0	0	1	0	0
T	1	0	0	-2	0

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

We can choose one ρ arbitrarily. Since t is the dependent variable, it is customary to set $\rho_{t}=1$.

Measurement Inequalities and Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
Thus, we can write down the following table:

	Physical quantities				
Dimensions	t	l	m	g	α
L	0	1	0	1	0
M	0	0	1	0	0
T	1	0	0	-2	0

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Clearly $\rho_{m}=0$, and it is easy to see from the first row that $\rho_{g}=\frac{1}{2}$. Finally, then, $\rho_{I}=-\frac{1}{2}$.

Measurement Inequalities and Dimensional Analysis

Examples of Dimensional Analysis

A Simple Pendulum
Thus, we can write down the following table:

	Physical quantities				
Dimensions	t	l	m	g	α
L	0	1	0	1	0
M	0	0	1	0	0
T	1	0	0	-2	0

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Therefore, we have $\pi_{2}=t\left(\frac{g}{T}\right)^{1 / 2}$. Since we can write $\pi_{2}=G\left(\pi_{1}\right)$, we then get $t=\Phi(\alpha)\left(\frac{l}{g}\right)^{1 / 2}$.

Measurement Inequalities and Dimensional Analysis

-Examples of Dimensional Analysis

-Examples of Dimensional Analysis

Examples of Dimensional Analysis

Possible Errors: A Simple Pendulum

- Suppose gravitational mass and inertial mass were assumed equivalent. Then mass would have dimension $L^{3} T^{-2}$. (274)
- If we walked through the simple pendulum example again, we would start with just the table:

Dimensions	t	l	m	g	α
L	0	1	3	1	0
T	1	0	-2	-2	0

- We would then arrive at $\pi_{1}=\alpha, \pi_{2}=I\left(\frac{g}{m}\right)^{1 / 2}$, and $\pi_{3}=t\left(\frac{g}{I}\right)^{1 / 2}$
- Therefore, we would arrive at $t=\Phi\left(I(g / m)^{1 / 2}, \alpha\right)\left(\frac{l}{g}\right)^{1 / 2}$, which is not technically wrong, but is misleading.

Measurement Inequalities and Dimensional Analysis

-Examples of Dimensional Analysis

-Examples of Dimensional Analysis

Examples of Dimensional Analysis

Possible Errors: Ballistics

- In some situations, we may try to include more dimensions than necessary, such as with the ballistics example on 475-6. This generally leads to a more complete solution.
- Other times, redundant bases and superfluous constants may be included. This generally results in the inclusion of universal constants that can be chosen to be convenient values, reducing the solution to a non-redundant case.

Measurement Inequalities and Dimensional Analysis

-Examples of Dimensional Analysis

Examples of Dimensional Analysis

Examples of Dimensional Analysis

Obtaining Exact Solutions

- We can also use dimensional analysis to help obtain exact solutions to some partial differential equations by reducing the space of possible solutions.
- Example: Propagation of vorticity is given by

$$
\frac{\partial \Omega}{\partial t}=\nu\left(\frac{\partial^{2} \Omega}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Omega}{\partial r}\right)
$$

- Here, Ω is the angular velocity of a viscous fluid, r is the radial distance, t is time, and $\nu=\mu / d$ is the kinematic viscosity.
- Suppose we want to solve for $\Omega(r, t)$ subject to the initial condition that the circulation around a circle of radius R at the origin is a constant, i.e.: $\Gamma=4 \pi \int r \Omega(r, 0) d r$

Measurement Inequalities and Dimensional Analysis

-Examples of Dimensional Analysis

-Examples of Dimensional Analysis

Examples of Dimensional Analysis

Obtaining Exact Solutions Continued
Given this problem description, we can set up a dimensional analysis for $\Omega(\Gamma, \nu, r, t)$:

Dimensions	Ω	Γ	ν	r	t
L	0	2	2	1	0
M	0	0	0	0	0
T	-1	-1	-1	0	1

By the Pi Theorem, there are two dimensionless parameters, namely $\pi_{1}=r^{2} \nu^{-1} t^{-1}$ and $\pi_{2}=\Omega \nu t \Gamma^{-1}$, so we have, where $\xi=r^{2} / \nu t:$

$$
\Omega=(\Gamma / \nu t) \Phi(\xi)
$$

Measurement Inequalities and Dimensional Analysis

Examples of Dimensional Analysis

Obtaining Exact Solutions Continued
Substituting $\Omega=(\Gamma / \nu t) \Phi(\xi)$ into $\frac{\partial \Omega}{\partial t}=\nu\left(\frac{\partial^{2} \Omega}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Omega}{\partial r}\right)$ and simplifying, we get:

$$
\frac{d}{d t}\left[\xi \Phi(\xi)+4 \xi \frac{d \Phi(\xi)}{d \xi}\right]=0
$$

Therefore, it is clear that we must have

$$
\xi \Phi(\xi)+4 \xi \frac{d \Phi(\xi)}{d \xi}=C
$$

Assuming $\Phi(0)$ and $\frac{d \Phi(0)}{d \xi}$ are finite, setting $\xi=0$ shows that $C=0$.

Measurement Inequalities and Dimensional Analysis

-Examples of Dimensional Analysis

-Examples of Dimensional Analysis

Examples of Dimensional Analysis

Obtaining Exact Solutions Continued
So, we can rewrite things as:

$$
\frac{d \Phi(\xi)}{d \xi}=-\frac{1}{4} \Phi(\xi)
$$

From this it clearly follows that we must have $\Phi(\xi)=A e^{-\xi / 4}$, for some constant A.

Substituting this back into the expression for Ω, we get $\Omega(r, t)=(\Gamma A / \nu t) e^{-r^{2} / 4 \nu t}$.

Putting that back into the initial condition to solve for $A=\frac{1}{8 \pi}$, we arrive at the solution $\Omega(r, t)=(\Gamma / 8 \pi \nu t) e^{-r^{2} / 4 \nu t}$.

48 of 70

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities

Solvability
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis

Consistency of Derived Measures

Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

Consistency of Derived Measures

- The algebra of physical quantities gave us a way to describe how the ratio scale measures of various physical quantities combine, but it did not discuss the consistency of various measures obtained by other theories (e.g., extensive and conjoint measurement).
- It is generally acknowledged that there are quantities that must be measured indirectly in terms of other extensive measures, and this is only possible because various physical laws are true.
- Furthermore, we want to show how extensive and conjoint measures can be embedded as a substructure of the theory we developed earlier.

Measurement Inequalities and Dimensional Analysis
-Consistency of Derived Measures
$\left\llcorner_{\text {Consistency of Derived Measures }}\right.$

1. \succsim^{*} is one of \succsim or \precsim, and similarly for the second structure.

Consistency of Derived Measures

Laws of Similitude

Consider a conjoint multiplicative scale $a=b c$ where a and b can also be extensively measured. We would like some conditions to ensure consistency in the measurements.

Law of Similitude
Suppose that $\left\langle A_{1} \times A_{2}, \succsim\right\rangle$ is an additive conjoint structure and that $\left\langle A_{1} \times A_{2}, \succsim^{*}, \circ\right\rangle$ and $\left\langle A_{1}, \succsim_{1}^{*}, \circ_{1}\right\rangle$ are extensive structures. A (qualitative) law of similitude with exponents m and n, where $m, n \in \mathbb{Z}^{+}$holds iff one of the following is valid for all $a \in A_{1}$, all $u \in A_{2}$, and all $i \in \mathbb{Z}^{+}$, where the concatenations exist:
(i) $\succsim^{*}=\succsim, \succsim_{1}^{*}=\succsim_{1}$ or $\succsim^{*}=\precsim, \succsim_{1}^{*}=\precsim_{1}$ and $i^{m}(a, u) \sim\left(i^{n} a, u\right)$
(ii) $\succsim^{*}=\succsim, \succsim_{1}^{*}=\precsim_{1}$ or $\succsim^{*}=\precsim, \succsim_{1}^{*}=\succsim_{1}$ and $(a, u) \sim i^{m}\left(i^{n} a, u\right)$

Measurement Inequalities and Dimensional Analysis

LConsistency of Derived Measures
$\square_{\text {Consistency of Derived Measures }}$

1. A flat structure is one such that for every $a, b \in A_{1}$ there are $u, v \in A_{2}$ such that $(a, u) \sim(b, v)$.

Consistency of Derived Measures

Laws of Similitude

Theorem 5
Suppose $\left\langle A_{1} \times A_{2}, \succsim\right\rangle$ is a flat conjoint structure that has an additive representation $\log \psi_{1}+\log \psi_{2} ;\left\langle A_{1} \times A_{2}, \succsim^{*}, \circ\right\rangle$ and $\left\langle A_{1}, \succsim_{1}^{*}, \circ_{1}\right\rangle$ are closed extensive structures with no essential maxima; ϕ and ϕ_{1} are, respectively, additive extensive scales; and that the range of ϕ_{1} includes \mathbb{Q}^{+}. If a law of similitude with exponents m and n holds, then there are constants $\alpha, \gamma, \alpha_{1}$, and γ_{1} such that:
(i) $\psi_{1} \psi_{2}=\gamma \phi^{\alpha}$ and $\psi_{1}=\gamma_{1} \phi_{1}^{\alpha_{1}}$
(ii) $\alpha>0$ or <0 according as $\succsim^{*}=\succsim$ or \precsim and $\alpha_{1}>0$ or <0 according as $\succsim_{1}^{*}=\succsim_{1}$ or \precsim_{1}
(iii) $\left|\alpha / \alpha_{1}\right|=n / m$

52 of 70

Measurement Inequalities and Dimensional Analysis

Consistency of Derived Measures

Laws of Exchange

Now consider a conjoint multiplicative scale $a=b c$ where b and c can also be extensively measured. We would again like some conditions to ensure consistency in the measurements.

Law of Exchange
Suppose $\left\langle A_{1} \times A_{2}, \succsim\right\rangle$ is an additive conjoint structure and $\left\langle A_{k}, \succsim_{k}^{*}, \circ_{k}\right\rangle, k=1,2$, are extensive structures. A (qualitative) law of exchange with exponents m and n, where $m, n \in \mathbb{Z}^{+}$, holds iff once of the following is valid for all $a \in A_{1}$, all $u \in A_{2}$, and all $i \in \mathbb{Z}^{+}$, where the concatenations exist:
(i) $\succsim_{1}^{*}=\succsim_{1}, \succsim_{2}^{*}=\succsim_{2}$ or $\succsim_{1}^{*}=\precsim_{1}, \succsim_{2}^{*}=\precsim_{2}$ and $\left(i^{m} a, u\right) \sim\left(a, i^{n} u\right)$
(ii) $\succsim_{1}^{*}=\succsim_{1}, \succsim_{2}^{*}=\precsim_{2}$ or $\succsim_{1}^{*}=\precsim_{1}, \succsim_{2}^{*}=\succsim_{2}$ and $(a, u) \sim\left(i^{m} a, i^{n} u\right)$

Measurement Inequalities and Dimensional Analysis

-Consistency of Derived Measures

$\left\llcorner_{\text {Consistency of Derived Measures }}\right.$

Consistency of Derived Measures

Laws of Exchange

Theorem 6

Suppose $\left\langle A_{1} \times A_{2}, \succsim\right\rangle$ is a conjoint structure that has an additive representation $\log \psi_{1}+\log \psi_{2} ;\left\langle A_{k}, \succsim_{k}^{*}, o_{k}\right\rangle, k=1,2$, are closed positive extensive structures with no essential maxima and additive representations ϕ_{k}. If a law of exchange with exponents m and n holds, then there are constants α_{k}, and $\gamma_{k}, k=1,2$, such that:
(i) $\psi_{k}=\gamma_{k} \phi_{k}^{\alpha_{k}}$
(ii) $\alpha_{k}>0$ or <0 according as $\succsim_{k}^{*}=\succsim_{k}$ or \precsim_{k}
(iii) $\left|\alpha_{1} / \alpha_{2}\right|=n / m$

Measurement Inequalities and Dimensional Analysis
$L_{\text {Consistency of Derived Measures }}$
$\left\llcorner_{\text {Consistency of Derived Measures }}\right.$

1. Skipping difference structures

Consistency of Derived Measures

Similitude and Exchange Compatibility

- How compatible are the laws of similitude and exchange as given? Are more assumptions needed?
- Consider the case of conjoint measurement where $a=b c$ and a, b, c all have extensive measurements. Two laws of similitude and one law of exchange could possibly hold simultaneously. In this case, any two of the three possibly laws determine what the third must be for a representation of the form $\phi(a, u)^{\alpha}=\phi_{1}(a)^{\alpha_{1}} \phi_{2}(u)^{\alpha_{2}}$ to hold. With some manipulation, we can see that a compatible representation can be of the form $\phi^{n q}=\phi_{1}^{m q} \phi_{2}^{n p}$ or $\phi^{n q}=\phi_{1}^{n p} \phi_{2}^{m p}$.
- Similar conditions can be derived for cases larger than 2 dimensions.

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities
Solvability
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

-Embedding into a Structure of Physical Quantities

-Embedding into a Structure of Physical Quantities

Embedding into a Structure of Physical Quantities

- Let \mathscr{A} be a collection of physical attributes, represented by structures $\langle A, \succsim\rangle$, and let $\mathscr{E} \subset \mathscr{A}$ be a set of extensively measurable attributes, represented by structures $\langle A, \succsim, \circ\rangle$.

Measurement Inequalities and Dimensional Analysis

-Embedding into a Structure of Physical Quantities

-Embedding into a Structure of Physical Quantities

Embedding into a Structure of Physical Quantities

- Axiomatize \mathscr{A} and \mathscr{E} as follows:

1. The set \mathscr{E} is nonempty and \mathscr{A} is finite.
2. If $\langle A, \succsim, 0\rangle \in \mathscr{E}$, it is an extensive structure with an additive representation whose range includes \mathbb{Q}^{+}
3. If $\langle A, \succsim\rangle \in \mathscr{A}$, then it is part of a conjoint structure in the sense that either:
(i) $A=A_{1} \times A_{2},\left\langle A_{1} \times A_{2}, \succsim\right\rangle$ is a symmetric conjoint structure with a multiplicative representation, and $\left\langle A_{i}, \succsim_{i}\right\rangle$ are in \mathscr{A}; or
(ii) there is a symmetric conjoint structure $\left\langle A_{1}^{\prime} \times A_{2}^{\prime}, \succsim^{\prime}\right\rangle \in \mathscr{A}$ with a multiplicative representation such that $A_{1}^{\prime}=A, \succsim_{1}^{\prime}=\succsim$, and $\left\langle A_{2}^{\prime}, \succsim_{2}^{\prime}\right\rangle \in \mathscr{A}$.

Measurement Inequalities and Dimensional Analysis

-Embedding into a Structure of Physical Quantities

-Embedding into a Structure of Physical Quantities

Embedding into a Structure of Physical Quantities

- Axiomatize \mathscr{A} and \mathscr{E} as follows:

4. If $\left\langle A_{1} \times A_{2}, \succsim\right\rangle \in \mathscr{A}$, then either
(i) there exist o_{i} on $A_{i}, i=1,2$, such that $\left\langle A_{i}, \succsim_{i}, o_{i}\right\rangle$ are both in \mathscr{E} and a law of exchange holds; or
(ii) there exist \circ on $A_{1} \times A_{2}$ and for either $i=1$ or $2, o_{i}$ on A_{i} such that $\left\langle A_{1} \times A_{2}, \succsim, 0\right\rangle$ and $\left\langle A_{i}, \succsim_{i}, \circ_{i}\right\rangle$ are both in \mathscr{E} and a law of similitude holds.
5. Suppose laws of similitude hold both for $\left\langle A_{1} \times A_{2}, \succsim, \circ, \circ_{1}\right\rangle$ and $\left\langle A_{1} \times A_{2}, \succsim^{\prime}, \circ^{\prime}, o_{1}^{\prime}\right\rangle$. If $\succsim_{i}^{\prime}=\succsim_{i}$ or $\precsim_{i}, i=1,2$, then $\succsim^{\prime}=\succsim$ and $\circ^{\prime}=0$.

Measurement Inequalities and Dimensional Analysis

—Embedding into a Structure of Physical Quantities

 -Embedding into a Structure of Physical Quantities
$v=\Pi_{1}$ i $\%$

Embedding into a Structure of Physical Quantities

Theorem 10
Suppose assumptions 1-5 hold. Then there exists a subset \mathscr{B} of \mathscr{E} that is maximal with respect to the properties:
(i) not both an attribute and its converse are in \mathscr{B}
(ii) no law of exchange or similitude holds with all three attributes in \mathscr{B}.
Further, if $\phi_{1}, \ldots, \phi_{n}$ are extensive representations of the n attributes in \mathscr{B} and if ψ is a representation of an attribute in \mathscr{A}, then there exist unique real $\alpha>0$ and unique rational ρ_{i} such that

Measurement Inequalities and Dimensional Analysis
$\stackrel{\sim}{\sim}$ Dimensional Analysis
LEmbedding into a Structure of Physical Quantities
—Embedding into a Structure of Physical Quantities

What the theorem shows is that the axioms of extensive and conjoint measurement plus some assumptions about the occurrence of two types of trinary laws are adequate to construct a structure of physical quantities that satisfies the usual axions. Moreover, it shows that there is a basis composed entirely of extensive representations.

Embedding into a Structure of Physical Quantities

Theorem 11

Suppose that the assumptions of Theorem 10 hold and let \mathscr{B} and ϕ_{i} be defined as there. Let

and let $*$ denote pointwise multiplication of functions from A. Then
(i) $\left\langle A, A^{+}, *\right\rangle$ is a structure of physical quantities
(ii) $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ is a basis of the structure
(iii) if ψ is a representation of an attribute in \mathscr{A}, the $\psi \in A^{+}$.

Measurement Inequalities and Dimensional Analysis

Outline

Measurement Inequalities
Solvability
Finite Linear Structures
Polynomial Structures

Dimensional Analysis
Physical Laws
The Algebra of Physical Quantities
The Pi Theorem and Dimensional Analysis
Examples of Dimensional Analysis
Consistency of Derived Measures
Embedding into a Structure of Physical Quantities
Why are Numerical Laws Dimensionally Invariant?

Measurement Inequalities and Dimensional Analysis

LWhy are Numerical Laws Dimensionally Invariant?
$\complement_{\text {Why are Laws Dimensionally Invariant? }}$

Why are Laws Dimensionally Invariant?

- Given the spirit of the previous sections, we would like to formulate a general qualitative definition of a physical law, using only orderings and concatenations, and then prove that it is dimensionally invariant. However, the authors were unable to arrive at or find such a characterization.
- There have been three classes of attempts to account for dimensional invariance:

1. "It couldn't be otherwise"
2. "Descriptive/deductive"
3. "Physical similarity"

Measurement Inequalities and Dimensional Analysis
-Why are Numerical Laws Dimensionally Invariant?
Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

It couldn't be otherwise

Argument Scheme

1. Choice of units is entirely arbitrary.
2. Any assertion that describes physical phenomena cannot depend on something entirely arbitrary.
3. Therefore, descriptions of physical phenomena must be dimensionally invariant.
"We suspect that many who hold this view are simply saying...that if we knew how to formulate what we mean by a qualitative physical law, then we would find, as a purely logical consequence of our measurement assumptions, that the numerical representation of the law would be dimensionally invariant." (505) 62 of 70

Measurement Inequalities and Dimensional Analysis

LWhy are Numerical Laws Dimensionally Invariant?
-Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

 Descriptive/deductive
Argument Scheme

1. Fundamental physical laws are, as a matter of fact, dimensionally invariant.
2. All laws that derive from dimensionally invariant laws are dimensionally invariant.
3. Therefore, all physical laws are dimensionally invariant.

- Only accounts for derived laws, doesn't justify the use of dimensional analysis to obtain new results.
- Derived laws depend not only on the fundamental laws but also on boundary conditions (not a problem if the boundary conditions are dimensionally invariant).

Measurement Inequalities and Dimensional Analysis

ค L Dimensional Analysis
-Why are Numerical Laws Dimensionally Invariant?
Why are Laws Dimensionally Invariant?

1. Recall that a positive dimension is an equivalence class $\left[a^{+}\right]$
2. Example: Springs - P_{1}, P_{2} represent force and length.
3. The set S is the set of all physically consistent force-length combinations for springs of a fixed spring-constant value.

Why are Laws Dimensionally Invariant?

Physical similarity

- Consider a system of positive dimensions P_{1}, \ldots, P_{r}.
- Let $\left\langle A, A^{+}, *\right\rangle$ be the finite-dimensional structure of physical quantities on the dimensions P_{1}, \ldots, P_{r}. Items $p \in A$ are just elements $p \in \prod_{i=1}^{r} P_{i}$ (where formal negative elements have been appended).
- Write $\mathscr{P}=\prod_{i=1}^{r} P_{i}$. The set of all possible configurations of a system is a set $S \subseteq \mathscr{P}$.
- Define an equivalence relation on sets $S, S^{\prime} \subseteq \mathscr{P}$ by calling S and S^{\prime} similar iff S^{\prime} is the image of S under a similarity on A.
- Let \mathscr{I} designate an equivalence class under this relation, called a "family of similar sets".

Measurement Inequalities and Dimensional Analysis
$\stackrel{1}{\sim}$ Limensional Analysis
LWhy are Numerical Laws Dimensionally Invariant?
Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

Physical similarity

- The behavior of (at least some) physical systems can be described as subsets of some \qquad
- Two physical systems "of the same type" can be described as subsets of the same \mathscr{P}, and these subsets are similar.
- If a subset of \mathscr{P} describes the behavior of a physical system and if another subset is similar to it, then there is a physical system of the same type whose behavior is described by the second subset.

Measurement Inequalities and Dimensional Analysis
$\stackrel{\sim}{\sim}$ Dimensional Analysis
-Why are Numerical Laws Dimensionally Invariant?
-Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

Physical similarity

- Physical theory also associates a unique set of dimensional constants to each system in a family of similar systems.
- Some additional positive dimensions Q_{1}, \ldots, Q_{t} of $\left\langle A, A^{+}, *\right\rangle$ are singled out. Let $\mathscr{Q}=\prod_{j=1}^{t} Q_{j}$.
- We want a function $g: \mathscr{I} \rightarrow \mathscr{Q}$ associating a t-tuple of dimensional constants with each system $S \in \mathscr{I}$ in a consistent way. In particular, we need $g \circ \phi=\phi \circ g$ for all similarities ϕ on A. Such a g is called a system measure of \mathscr{I}.

Measurement Inequalities and Dimensional Analysis

-Why are Numerical Laws Dimensionally Invariant?

-Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

Physical similarity

Law Satisfaction

Suppose \mathscr{I} is a family of similar systems, g is a system measure from \mathscr{I} into \mathscr{Q}, and $f: \mathscr{P} \times \mathscr{Q} \rightarrow \mathbb{R}$. We say that \mathscr{I} satisfies the law (f, g) iff, for all $p \in \mathscr{P}$ and all $q \in \mathscr{Q}$, we have $f(p, q)=0$ iff there is some $S \in \mathscr{I}$ such that $p \in S$ and $g(S)=q$.

Dimensional Invariance
A law (f, g) as above is said to be dimensionally invariant if f is
a dimensionally invariant function, i.e., $f(p, q)=0$ iff
$f(\phi(p), \phi(q))=0$ for all similarities ϕ on A.

Measurement Inequalities and Dimensional Analysis
$\stackrel{\sim}{\sim}$ Dimensional Analysis
-Why are Numerical Laws Dimensionally Invariant?
Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

Physical similarity

- For $f: \mathscr{P} \times \mathscr{Q} \rightarrow \mathbb{R}$, for each $q \in \mathscr{Q}$ we can define a set $S_{q}=\{p \mid f(p, q)=0\}$.
- Denote by \mathscr{I}_{f} the set of all nonempty S_{q}.
- \mathscr{I}_{f} is a family of similar systems if f is dimensionally invariant.

Stability Group

We define the stability group of \mathscr{I} to be
$S G(\mathscr{I})=\{\psi \mid \psi(S)=S \forall S \in \mathscr{I}\}$, where the ψ are similarities on A.

Similarly, the stability group of \mathscr{Q} is
$S G(\mathscr{Q})=\{\psi \mid \psi(q)=q \forall q \in \mathscr{Q}\}$, where the ψ are similarities on A.

Measurement Inequalities and Dimensional Analysis
-Why are Numerical Laws Dimensionally Invariant? Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

Physical similarity
Theorem 12
Suppose \mathscr{I} is a family of similar systems over \mathscr{P}. Then TFAE:
(i) There exists a system measure g from \mathscr{I} into \mathscr{Q}.
(ii) There exists a function f from $\mathscr{P} \times \mathscr{Q}$ into \mathbb{R} and a function g from \mathscr{I} into \mathscr{Q} such that \mathscr{I} satisfies the dimensionally invariant law (f, g).
(iii) $S G(\mathscr{I}) \subseteq S G(\mathscr{Q})$

Assuming the above, then TFAE:
(iv) The system measure g is injective.
(v) $\mathscr{I}_{f}=\mathscr{I}$.
(vi) $S G(\mathscr{I}) \supseteq S G(\mathscr{Q})$.

69 of 70

Measurement Inequalities and Dimensional Analysis

Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?
 Physical similarity

Theorem 12

Uniqueness: Suppose g is a system measure into \mathscr{Q}. Then g^{\prime} is a system measure into \mathscr{Q} iff there is a similarity ϕ on A such that $g^{\prime}=\phi \circ g$. If $g^{\prime}=\phi \circ g$ and $f^{\prime}(p, q)=f(\phi(p), q)$, then \mathscr{I} satisfies
the dimensionally invariant law (f, g) iff \mathscr{I} satisfies the dimensionally invariant law (f^{\prime}, g^{\prime}).

Measurement Inequalities and Dimensional Analysis

LWhy are Numerical Laws Dimensionally Invariant?
Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

Physical similarity

Questions

- One of the equivalent conditions was "There exists a system measure g from \mathscr{I} into \mathscr{Q}." Do all families of similar systems always have a system measure (and hence satisfy a dimensionally invariant law)?
- Does an arbitrary dimensionally invariant function f always lead to the definition of a family of similar systems \mathscr{I} and a system measure g on \mathscr{I} that satisfies the law (f, g) ?

Measurement Inequalities and Dimensional Analysis

-Why are Numerical Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

Why are Laws Dimensionally Invariant?

Physical similarity

Answers

Yes to both, for a restricted class of families of similar systems (Theorem 13, 511).

- The restriction is necessary because we only allowed rational powers of dimensions in structures of physical quantities.

Limitations

- Doesn't account for laws involving universal constants (no distinct, realized similar systems).

[^0]: Potyenal stua

 LOutline

 1. About 1 hour on Measurement Inequalities, then a break
 2. Remainder of the time on Dimensional Analysis
