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Introduction

In the previous chapter, we studied additive conjoint
measurement.

We had some relational structure 〈A1 × . . .× An,%〉 such that
for each Ai we could find a φi : Ai → R for each i = 1, . . . , n
such that for all ai , bi ∈ Ai ,

a1 . . . an % b1 . . . bn iff
n∑

i=1
φi(ai) ≥

n∑
i=1

φi(ai)
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Introduction

In this chapter, we’re interested in the more general case:

We have some relational structure 〈A1 × . . .× An,%〉 and we
want to find a φi : Ai → R for each Ai and a polynomial
F : Rn → R such that for all ai , bi ∈ Ai ,

a1 . . . an % b1 . . . bn iff
F [φ1(a1), . . . , φn(an)] ≥ F [φ1(b1), . . . , φn(bn)]

This subsumes the additive case where
F (x1, . . . , xn) =

∑n
i=1 xn.
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Introduction

The results we’ll obtain will allow us to classify some empirical
structures corresponding to a small class of particularly well
behaved polynomials.

Before we get to those results, we’re going to talk about a
property called decomposability, and its relationship to
polynomial measurement.



Introduction
to Polynomial
Conjoint
Measurement

Decomposable
structures
Decomposability and
Polynomial
Representation

Axioms and
Representations

Decomposability and
Equivalence of
Polynomial Models

Simple
Polynomials

The Rest of
The Chapter
in Brief
Representation and
Uniqueness
Theorems

Defining Decomposability

There’s a natural condition we might want of our n-factor
structures: that we might be able to obtain a real numbered
representation of each of the n-factors, and then construct a
function from Rn to R that preserves the ordering of the
empirical structure in the reals.

This section is about decomposability, which is slight
strengthening of that natural condition.
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Defining Decomposability

Definition

A structure 〈A1 × . . .× An,%〉 is called decomposable when
there are functions φi : Ai → R for i = 1, . . . , n and a function
F : Rn → R that’s one-to-one in each variable separately, such
that for all a, b ∈ A,

a % b iff F [φ1(a1), . . . , φn(an)] ≥ F [φ1(b1), . . . , φn(bn)]

Definition

A structure is monotonically decomposable when, in addition to
being decomposable, the associated F is strictly increasing in
each variable separately.
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Defining Decomposability

One wording I’ll use that the book doesn’t is that if
〈A1 × . . .× An,%〉 is a decomposable structure and F is a
function that meets the criteria above, I’ll say that F
decomposes 〈A1 × . . .× An,%〉.



Introduction
to Polynomial
Conjoint
Measurement

Decomposable
structures
Decomposability and
Polynomial
Representation

Axioms and
Representations

Decomposability and
Equivalence of
Polynomial Models

Simple
Polynomials

The Rest of
The Chapter
in Brief
Representation and
Uniqueness
Theorems

F is One-to-one in Each Variable Separately

To get back to the definition, let’s clarify what “one-to-one in
each variable separately” means.

We say F is one-to-one in each variable separately when
F (y1, . . . , yi−1, xiyi+1, . . . , yn) = F (y1, . . . , yi−1, x ′i yi+1, . . . , yn)
implies xi = x ′i for all i = 1, . . . , n.

If we keep everything the same, but change one input variable
to a different value, the function’s output will be different, no
matter what we change it to.

This doesn’t mean that F is necessarily one-to-one overall: we
don’t have any requirements about what happens when we
change multiple variables at once.
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The Constraints on F

So there are two restrictions placed on F :

It has to be one-to-one in each variable separately
It has to (together with the φi functions) preserve the
empirical structure’s order in the reals.
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Decomposability and Polynomial Representation

As it turns out, the “one-to-one in each variable separately”
condition is non-trivial, and represents the “strengthening” I
mentioned a moment ago.

Predecomposability is what I’ll call the property which is the
same as decomposability, but without the condition that F
must be one-to-one in each variable.

The set of structures for which there exists a polynomial model
is just a subset of the predecomposable structures, but it turns
out that there are structures for which there are polynomial
models that aren’t decomposable (and vice versa.)
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Decomposability and Polynomial Representation

So decomposability is not a necessary or sufficient condition for
having a polynomial representation. As it turns out, we’ll
generally have to tweak the domain of the polynomials we’re
interested in, in order to get them to satisfy decomposability.

What does decomposability bring to the table?

It ensures that, disregarding values that are always
equivalent, each of the system’s factors always has an
effect on the final product.
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Necessary and Sufficient Conditions

Theorem

Theorem 1. 〈A1 × . . .× An,%〉 is decomposable iff:
% is a weak order.

〈A,%〉 is necessarily a weak order. The reals are a weak order,
so the a % b iff F [φ1(a1), . . . , φn(an)] ≥ F [φ1(b1), . . . , φn(bn)]
condition means that any two a and b have to be comparable,
and the transitivity has to hold.
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Necessary and Sufficient Conditions

Theorem

Theorem 1. 〈A1 × . . .× An,%〉 is decomposable iff:
% is a weak order.

A/ ∼ has a countable order-dense subset.

A/ ∼, the set of equivalence classes of A under ∼, has a
countable order-dense subset. This comes from Theorem 2.2,
which says that a simple order has a countable order-dense
subset iff there’s an injective homomorphism from it to the
reals.
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Necessary and Sufficient Conditions

Theorem

Theorem 1. 〈A1 × . . .× An,%〉 is decomposable iff:
% is a weak order.

A/ ∼ has a countable order-dense subset.

∼ satisfies substitutability.

Substitutability comes from the one-to-one in each variable
condition. We say 〈A1 × . . .× An,%〉 satisfies substitutability
iff for any choice of the involved variables,
b1 · · · bi−1aibi+1 · · · bn ∼ b1 · · · bi−1a′ibi+1 · · · bn iff
c1 · · · ci−1aici+1 · · · cn ∼ c1 · · · ci−1a′ici+1 · · · cn. So we can hold
ai constant and change variables on both sides of the ∼, and
the relation will still hold.
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Independence and Monotonic Decomposability

There’s another condition worth defining:

If F is strictly increasing in each component then for any
choice of the involved variables,
b1 · · · bi−1aibi+1 · · · bn % b1 · · · bi−1a′ibi+1 · · · bn iff
c1 · · · ci−1aici+1 · · · cn % c1 · · · ci−1a′ici+1 · · · cn. Here, the order
%i induced on Ai by fixing all the non-Ai components is
independent of what values we choose to fix those components
at.

In this case, we say that Ai is independent of ×j 6=iAj .

Theorem

A structure 〈A1 × . . .× An,%〉 is monotonically decomposable
iff it’s decomposable and each Ai is independent of ×j 6=iAj .
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I Can’t Believe It’s Not a Representation Theorem

What we have so far is almost like a normal representation
theorem, but not quite.

What we’re asserting here is that iff the above conditions hold,
we can map A1 × . . .× An to R, by way of some intermediate
functions φi : Ai → R and a one-to-one in each variable
separately function F : Rn → R, such that % is preserved as ≥
under φ.

Normally, we specify the function F in the representation, and
most of the time, it’s just addition. Here, we leave the F
unspecified, and much of the rest of the chapter consists of
investigating a few suitable F functions.
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Uniqueness

There are two uniqueness questions worth bringing up:

1 How much can we fiddle around with our φi functions
(while retaining the same F ) such that we’ve still got a
homomorphism?

2 How much can we fiddle around with both our φi functions
and F , such that the homomorphism is preserved?

The answer to the former question depends on the F , so we’ll
come back to that. We can deal with the latter question right
now.
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Uniqueness

Suppose we have a decomposing homomorphism
φ : A1 × . . .× An → R made up of φi functions and a suitable
F , and we also have some real valued, strictly increasing
function h : ran(F )→ R (the domain could probably be
shrunk).

Strictly increasing functions preserve order, so φ′ = h ◦ φ is a
decomposing homomorphism as well, and we can find
corresponding, modified versions of F and φi (call them F ′ and
φ′i) to go along with it.

Conversely, if F and F ′ both decompose 〈A1 × . . .× An,%〉
then there’s a strictly increasing h, that takes one to the other,
and the corresponding φi functions will be constrained by that
h (but not generally uniquely determined).
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Nice Polynomials

Polynomials aren’t necessarily strictly increasing or even
one-to-one in each variable. Therefore, not every polynomial
can decompose some structure.

But many polynomials almost fit the bill, and we can tweak
them so that they do.

Suppose we have some polynomial F . If all the coefficients in
F are positive and the domain of each varible in F is strictly
positive, then F is strictly increasing in each variable.

I’ll call a polynomial that satisfies these conditions nice.

If a structure satisfies a nice polynomial model, it’s
monotonically decomposable.
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Equivalence for Nice Polynomials

Suppose a structure satisfies two different nice polynomial
models F (φ1(a1), . . . , φn(an)) and F ′(φ′1(a1), . . . , φ′n(an)).

In this case there are strictly increasing functions h and hi
(i = 1, . . . , n) defined on the positive reals such that
F ′(x1, . . . , xn) = h(F (h−11 (x1), . . . h−1n (xn))) and we say that
the two polynomial models are equivalent.
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Equivalence for Nice Polynomials

One question we can ask is: given some nice polynomial, when
can we find such h and hi functions that will take it into an
equivalent nice polynomial?

We don’t have a complete answer. If h and h−1i are nice
polynomials, that’s sufficient, but we can find some examples
where non-polynomial h and h−1i functions will do the trick.
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Polynomials and Decomposability

If our polynomials aren’t so nice, for instance if they’re defined
for non-positive values of the variables, they’re not necessarily
going to satisfy the decomposability conditions right out of the
box.

The example given in the book is x1x2 defined on R2. It’s not
one-to-one in each variable, (consider the case where x1 is set
to 0), so it can’t be a representation of a decomposable
structure.

However, suppose we exclude zeroes from its domain, i.e. we
define it over (R− {0})× (R− {0}). In that case, the
functions becomes one-to-one in each variable, and it could
satisfy some decomposable structure.
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Polynomials and Decomposability

Also, notice that x1x2 isn’t strictly increasing in each variable if
we let the variables take on negative values.

However, it is either strictly increasing or strictly decreasing in
each variable, depending on the sign of the other variable,
which means it satisfies a condition akin to monotone
decomposability. We’ll investigate these properties more in a
bit.

We can also define equivalent polynomial models in the case
where nonpositive values are permitted, that turns out more
complicated. (The domain ends up giving us problems in a lot
of cases, and we can find weird situations like where two
polynomials are equivalent for any finite structure but not for
infinite ones.)
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Defining Simple Polynomials

We’re going to define a class of polynomials which we’ll call
simple. A polynomial is simple if it can be recursively split into
either products or sums of smaller polynomials with no
variables in common.

Here’s the recursive definition of S(X ), the simple polynomials
in X = {x1, . . . , xn}.

Definition

S(X ) is the smallest set of polynomials such that:
xi ∈ S(X ) for i = 1, . . . , n
If Y1 are disjoint, non-empty subsets of X and F1 ∈ S(Y1),
F2 ∈ S(Y2) then F1 + F2 and F1F2 are in S(X ).
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Simple Polynomials in Three Variables

There are effectively only four kinds of simple polynomials with
exactly three variables:

Additive: x1 + x2 + x3
Distributive: (x1 + x2)x3, (x3 + x2)x1, (x1 + x3)x2
Dual-distributive: x1x2 + x3, x1x3 + x2, x2x3 + x1
Multiplicative: x1x2x3

Strictly speaking, there are four more polynomials that can be
formed by permuting the positions of the variables in the
distributive or dual-distributive polynomials, but since we can
order our factors any way we want, this doesn’t really matter.
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Simple Polynomials in Four Variables

The four variable simple polynomials can be formed from the
three variable ones to get ten different kinds:

Four kinds by simply tacking on another addition term to a
three variable form, four kinds by multiplying one of the three
variable forms by a new variable and two more polynomials in
new forms: (x1 + x2)(x3 + x4) and x1x2 + x3x4.

For the rest of this chapter, we’ll be concerned exclusively with
simple polynomials.



Introduction
to Polynomial
Conjoint
Measurement

Decomposable
structures
Decomposability and
Polynomial
Representation

Axioms and
Representations

Decomposability and
Equivalence of
Polynomial Models

Simple
Polynomials

The Rest of
The Chapter
in Brief
Representation and
Uniqueness
Theorems

Notation

Definitions

Suppose N ⊆ {1, . . . , n}.
a(N) is a vector with components taken from each Ai∈N .
A(N) is the set of all such a(N) vectors.
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Generalizing Independence

Suppose we have some structure 〈A1 × . . .× An,%〉 and also
some sets N1, N2 and N3 which together form a partition of
the index set {1, . . . ,N}.

Definition

I’ll denote the element of A1 × . . .× An composed of
elements from the vectors a(N1), a(N2), a(N3) as
a(N1)a(N2)a(N3).

We can say A(N1) is independent of A(N2) if given some a(N3):

a(N1)a(N2)a(N3) % b(N1)a(N2)a(N3) iff
a(N1)c(N2)a(N3) % b(N1)c(N2)a(N3) for any choice of a(N1), b(N1)

and c(N2).
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Generalizing Independence

Suppose we have some structure 〈A1 × . . .× An,%〉 and also
some sets N1, N2 and N3 which together form a partition of
the index set {1, . . . ,N}.

We can say A(N1) is independent of A(N2) if given some a(N3):

a(N1)a(N2)a(N3) % b(N1)a(N2)a(N3) iff
a(N1)c(N2)a(N3) % b(N1)c(N2)a(N3) for any choice of a(N1), b(N1)

and c(N2).
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Sign Dependence

We say A(N1) is sign dependent on A(N2) if A(N2) can be
partitioned into three sets, S+(N1,N2), S0(N1,N2) and
S−(N1,N2), such that:

A(N1) is independent of each
S+(N1,N2) ∪ S−(N1,N2) is non-empty
The relation induced on A(N1) by elements from
S+(N1,N2) is the converse of that induced by elements
from S−(N1,N2)

The relation induced on A(N1) by elements from
S0(N1,N2) is degenerate.

If S0(N1,N2) and exactly one of S+(N1,N2) and S−(N1,N2)
are empty, then A(N1) is independent from A(N2). If two or
three of the sets are non-empty, then A(N1) is properly sign
dependent on A(N2).
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Outline of the rest of the chapter

We use sign dependence to describe which factors of the simple
polynomials are dependent on one another.

We can use this information to narrow down what simple
polynomials are compatible with the empirical structure.

If all the factors are independent, it could technically be any of
the simple polynomials, so we use some joint independence
conditions.

There’s also a distributive cancellation condition which is
necessary for a distributive representation.

Eventually we’re presented with a flow chart for diagnosing the
proper simple polynomial.

Finally, we end up with representation and uniqueness theorems
for multiplicative, distributive and dual-distributive polynomials.
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Multiplicative Case

Theorem

Suppose that %is a binary relation on A = A1 × A2 × A3 for which the
following axioms are satisfied:

% is a weak order.
Each pair of factors is sign dependent on the third.
Every strictly bounded standard sequence in one factor is finite.
Unrestricted solvability holds.

Then, there exist real-valued functions φi on Ai , i = 1, 2, 3 such that, for all
a, b ∈ A,
a % b iff φ1(a1)φ2(a2)φ3(a3) ≥ φ1(b1)φ2(b2)φ3(b3)
Moreover, real-valued functions satisfying this property are unique up to the
transformations:

φi(ai)→
{
αi(φi(ai))β if φi(ai) ≥ 0
−αi(−φi(ai))β if φi(ai) ≤ 0

where αi and β are real numbers such that β > 0 and α1α2α3 > 0.
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Distributive Case

Theorem

Suppose that %is a binary relation on A = A1 × A2 × A3 for which the following axioms are satisfied:

% is a weak order.
A1 × A2 and A3 are mutually sign dependent.
〈A1 × A2, A3,∼〉 satisfies the Thomsen condition of Definition 4.
Distributive cancellation holds.
For any induced ordering on A1×A2, every strictly bounded standard sequence in one factor is finite.
Unrestricted solvability holds.
(A1 × A2)

0 and (A3)
0 are nonempty.

Then, there exist real-valued functions φi on Ai , i = 1, 2, 3 such that, for all a, b ∈ A,
a % b iff (φ1(a1) + φ2(a2))φ3(a3) ≥ (φ1(b1) + φ2(b2))φ3(b3)
Moreover, real-valued functions satisfying this property are unique up to the transformations:

φ1 → αφ1 + β

φ2 → αφ2 − β
φ3 → γφ3

where α, β and γ are real numbers such that αγ > 0.
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Dual-Distributive Case

Theorem

Suppose that %is a binary relation on A = A1 × A2 × A3 for which the following axioms are satisfied:

% is a weak order.
A1 × A2 and A3 are mutually independent, while A2 and A1 are mutually sign dependent.
〈A1 × A2, A3,∼〉 satisfies the Thomsen condition of Definition 4.
Dual-distributive cancellation holds.
Regarding 〈A1 × A2, A3,∼〉 as a two-component structure, each component has the property that
every strictly bounded standard sequence is finite.
Unrestricted solvability holds.
(A1)

0 and (A2)
0 are nonempty.

Then, there exist real-valued functions φi on Ai , i = 1, 2, 3 such that, for all a, b ∈ A,
a % b iff φ1(a1)φ2(a2) + φ3(a3) ≥ φ1(b1)φ2(b2) + φ3(b3)
Moreover, real-valued functions satisfying this property are unique up to the transformations:

φ1 → α1φ1

φ2 → α2φ2

φ3 → (α1α2)φ3 + β

where α1, α2 and β are real numbers such that α1α2 > 0.
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Conditional Expected Utility

We’re concerned with modeling subjective perceptions of utility
associated with decisions, where the subject has some control
over the possible outcomes of a chance set up and the
consequences associated with those outcomes.
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Conditional Expected Utility

There are three stages to the situation being modeled:

Decision We have some subject who has a number of
options available to her. The subject makes a
choice which constrains the possible subsequent
things that can occur in the chance set up.

Outcome A particular thing occurs, usually determined by
chance (or at least by a process which appears to
involve chance to the subject.)

Consequence There is some consequence for the subject
associated with the above outcome, determined
by the choice that the subject made.
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Decision We have some subject who has a number of
options available to her. The subject makes a
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Representation of Consequences

All the consequences we’re interested in for the consequence
stage are drawn from a set C . The members of C can be
arbitary consequences like getting a book, losing five dollars,
feeling happy or summary execution.
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Representation of Outcomes

Next we’re concerned with what can happen in the middle
stage. We start with a set X of outcomes that could happen as
a result of whatever chance process we’re interested in.

We can use X to define a few other sets we’re interested in.
Let E be a nonempty set of subsets of X that’s closed under
complement and finite union (i.e., it’s an algebra over X .)
We’ll call the sets in E events, and we’ll be associating
probabilities with them later.

N is a subset of E : it’s the set of “null” events, which
shouldn’t occur. When we’re in the business of assigning
probabilities to events, the events in N will have probability 0.
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Representation of Decisions

Finally, we have a set of decisions called D.

The purpose of a decision is to determine both what possible
outcomes can happen in the chance setup and how
consequences are associated with those events, so we can
represent a choice with a function fA : A→ C , where
A ∈ E − N.
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The Empirical Relation

Now we can arrive at the empirical relation we’re interested in:

A relation % can be derived over the decision set D by
presenting subjects with pairs of decisions and determining
which one they prefer.
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The Empirical Relational Structure

All together, our empirical relational structure is made up of
the following elements:

X Elementary outcomes
E Events (sets of outcomes)
N Null events (impossible events)
C Consequences
D Decisions
% A preference relation over the decisions
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Things the Theory Doesn’t Include

An objective probability distribution on E

Precisely what information the subject has about the
decisions available to her
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Why do it this way?

Question: Why do we need to model the intermediary stage,
where we learn the result of the chance process?
We could just have a setup where the subject chooses between
sets of possible consequences, with a conditional probability
distribution over the consequences.
As it turns out, divorcing the chance outcomes and the
consequences gives us a lot of representational power we
wouldn’t have otherwise.
For one thing, we’d have a hard time representing different
decisions with the same possible consequences without formally
including a probability model of some sort. Second, we’d like to
have the possibility of not having utility strictly coupled to
consequences, but rather having it as a function of all the
factors involved in a decision.
This is really interesting, we’ll get back to it later.
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The Utility Function

We have our empirical relational structure 〈X ,E ,N,C ,D,%〉,
we’d like to be able to represent it in the reals. The
homomorphism from the decision set to the reals is going to be
a utility function u.

u(fA) represents a numerical measure of utility assigned to the
decision fA. Notice, again, we associate utility with decisions
most directly. In certain circumstances, we’ll be able to treat
u(fA) as the expected utility associated with the various
consequences of fA, but not in the most general case.
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The Subjective Probability Measure

We expect that the utility the subject associates with a
particular choice in which the possible outcomes come from the
union of two (disjoint) events should be consistently weighted
by her subjective impression of the relative probability of those
events.

We’ll represent this subjective probability formally in our
representation by a function P which is defined over the event
set E .
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The Subjective Probability Measure

Since the decisions in D are just functions, if their domains are
disjoint, we can take the set theoretic union of the functions,
which gives us a well-defined function from the union of their
domains to the union of their ranges.

So the union of fA and gB is fA ∪ gB(x) =
{
fA(x) if x ∈ A
gB(x) if x ∈ B

.

Notice that for fA ∪ gB, we can end up with any of the
consequences we got from fA or gB.

It would be useful to have a sense of which of A or B is more
likely given that the outcome will be in A ∪ B. As it turns out,
the only probabilities we’re really interested in are of the form
P(A|A ∪ B) where A, B and A ∪ B are events which form the
domain of some decisions fA, gB and fA ∪ gB.
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The Desired Representation

All together, the representation system we want involves an
order preserving map u : D → R and a subjective probability
measure P on E such that:

For all R ∈ E , R ∈ N iff P(R) = 0
For events A,B ∈ E − N, and fA, fB ∈ D:

fA % gB iff u(fA) ≥ u(gB)
If A and B are disjoint then
u(fA ∪ gB) = u(fA)P(A|A ∪ B) + u(gB)P(B|A ∪ B)

So N represents subjectively impossible events, the utility
function preserves subjective preference between decisions and
the subjective utility of a union of disjoint decisions is weighted
by the perceived conditional probability of the occurrence of
outcomes from their domains.
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The Axiom System

Closure Guarantees that D is sufficiently rich

If A,B ∈ E and fA, gB ∈ D, then:
If A and B are disjoint, then fA ∪ gB ∈ D.
If B ⊂ A then the restriction of fA to B is in D.

Weak Order % is a weak ordering of D
Union Indifference A mix of two equivalent decisions is equivalent to both

Independence Adding/removing disjoint (sub)decisions doesn’t affect preference order

Compatibility Two different utility interval orderings coincide

Archimedian Condition ....

Nullity Null events behave sanely

Nontriviality Nonnecessay, guarantees cancellation conditions

Restricted Solvability Nonnecessary solvability requirements
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The Axiom System

Closure Guarantees that D is sufficiently rich

Weak Order % is a weak ordering of D
Union Indifference A mix of two equivalent decisions is equivalent to both

For disjoint A,B ∈ E and fA, gB ∈ D, fA ∼ gB implies
fA ∪ gB ∼ fA.

Independence Adding/removing disjoint (sub)decisions doesn’t affect preference order

Compatibility Two different utility interval orderings coincide

Archimedian Condition ....

Nullity Null events behave sanely

Nontriviality Nonnecessay, guarantees cancellation conditions

Restricted Solvability Nonnecessary solvability requirements
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The Axiom System

Closure Guarantees that D is sufficiently rich

Weak Order % is a weak ordering of D
Union Indifference A mix of two equivalent decisions is equivalent to both

Independence Adding/removing disjoint (sub)decisions doesn’t affect preference order

For disjoint A,B ∈ E and f (1)A , f (2)A , gB ∈ D, f (1)A % f (2)A iff
f (1)A ∪ gB % f (2)A ∪ gB.

Compatibility Two different utility interval orderings coincide

Archimedian Condition ....

Nullity Null events behave sanely

Nontriviality Nonnecessay, guarantees cancellation conditions

Restricted Solvability Nonnecessary solvability requirements
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The Axiom System

Closure Guarantees that D is sufficiently rich

Weak Order % is a weak ordering of D
Union Indifference A mix of two equivalent decisions is equivalent to both

Independence Adding/removing disjoint (sub)decisions doesn’t affect preference order

Compatibility Two different utility interval orderings coincide

For disjoint A,B ∈ E , f (i)A ∼ g (i)
B for i = 1, 2, 3, 4, f (1)A ∪ k(1)B ∼

f (2)A ∪k
(2)
B and h(1)A ∪g

(1)
B ∼ h(2)A ∪g

(2)
B , then f (3)A ∪k

(1)
B ∼ f (4)A ∪k

(2)
B

iff h(1)A ∪ g (3)
B ∼ h(2)A ∪ g (4)

B .

Archimedian Condition ....

Nullity Null events behave sanely

Nontriviality Nonnecessay, guarantees cancellation conditions

Restricted Solvability Nonnecessary solvability requirements
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The Axiom System

Closure Guarantees that D is sufficiently rich

Weak Order % is a weak ordering of D
Union Indifference A mix of two equivalent decisions is equivalent to both

Independence Adding/removing disjoint (sub)decisions doesn’t affect preference order

Compatibility Two different utility interval orderings coincide

Archimedian Condition ....

For disjoint A,B ∈ E , where N is a sequence of consecutive
integers, g (0)

B 6∼ g (1)
B , f (i)A ∪g

(1)
B ∼ f (i+1)

A ∪g (0)
B for all, i , i+1 ∈ N

then either N is finite of {f (i)A |i ∈ N} is unbounded.

Nullity Null events behave sanely

Nontriviality Nonnecessay, guarantees cancellation conditions

Restricted Solvability Nonnecessary solvability requirements
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The Axiom System

Closure Guarantees that D is sufficiently rich
Weak Order % is a weak ordering of D
Union Indifference A mix of two equivalent decisions is equivalent to both

Independence Adding/removing disjoint (sub)decisions doesn’t affect preference order

Compatibility Two different utility interval orderings coincide
Archimedian Condition ....
Nullity Null events behave sanely

If R ∈ N and S ⊂ R, then S ∈ N.
R ∈ N iff, for all fA∪R ∈ D where R ∈ E and A ∈ E − N
are disjoint, fA∪R ∼ fA, where fA is the restriction of fA∪R
to A.

Nontriviality Nonnecessay, guarantees cancellation conditions
Restricted Solvability Nonnecessary solvability requirements
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The Axiom System

Closure Guarantees that D is sufficiently rich

Weak Order % is a weak ordering of D
Union Indifference A mix of two equivalent decisions is equivalent to both

Independence Adding/removing disjoint (sub)decisions doesn’t affect preference order

Compatibility Two different utility interval orderings coincide

Archimedian Condition ....

Nullity Null events behave sanely

Nontriviality Nonnecessay, guarantees cancellation conditions

E − N has at least three pairwise disjoint elements and
D/ ∼ has at least two distinct equivalence classes.

Restricted Solvability Nonnecessary solvability requirements
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The Axiom System

Closure Guarantees that D is sufficiently rich
Weak Order % is a weak ordering of D
Union Indifference A mix of two equivalent decisions is equivalent to both

Independence Adding/removing disjoint (sub)decisions doesn’t affect preference order

Compatibility Two different utility interval orderings coincide
Archimedian Condition ....
Nullity Null events behave sanely
Nontriviality Nonnecessay, guarantees cancellation conditions
Restricted Solvability Nonnecessary solvability requirements

Given A,B ∈ E and gB ∈ D, there’s an hA ∈ D such that
hA ∼ gB.
Given disjoint A,B ∈ E and h(1)A ∪ gB % fA∪B % h(2)A ∪ gB,
there’s an hA ∈ D such that hA ∪ gB ∼ fA∪B.
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The Representation Theorem

Theorem

If 〈X ,E ,N,C ,D,%〉 is a conditional decision structure, there
exist real valued functions u on D and P on E such that 〈X ,E ,P〉
is a finitely additive probability space (see chapter 5) and for all
A,B ∈ E − N, R ∈ E, fA, gB ∈ D,

R ∈ N iff P(R) = 0
fA % gB iff u(fA) ≥ u(gB)
If A and B are disjoint then
u(fA ∪ gB) = u(fA)P(A|A ∪ B) + u(gB)P(B|A ∪ B)

Furthermore, P is totally unique and u is unique up to a positive
linear transformation.
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Some Definitions

Definition

If c ∈ C and A ∈ E − N then the function cA such that
cA(x) = c for any x ∈ A, is called a constant decision function.

Definition

A conditional decision fA ∈ D is a gamble if the image of fA is
finite and if for every c in the image of fA, the set of elements
mapped into c (i.e. f −1A (c) = {x |x ∈ A, fA(x) = c}) is an
event in E − N.

Gambles are the finite union of constant decisions, and the
associated f −1A sets partition A.
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Utility of Consequences

In the model that we’ve been developing so far we assign
utilities to decisions, not directly to consequences.

We typically think of the consequences as being what is most
directly valued by the subject.

We often want to assume the preference relation over decisions
is determined exclusively by the values (and relative
probabilities) the subject associates with the possible
consequences.
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Necessary Conditions

In order to be able to assign utilities directly to consequences,
our structure has to satisfy two conditions:

We have to be able to find a constant decision for each
consequence.
The constant decisions for each particular consequence
must be preferentially equivalent.

In the most general case, neither of these conditions is
guaranteed to be satisfied.
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Utility of Consequences

Theorem

If 〈X ,E ,N,C ,D,%〉 is a conditional decision structure, such that
for every c ∈ C:

1 There’s some A ∈ E − N such that cA ∈ D.
2 If A,B ∈ E − N and cA, cB ∈ D then cA ∼ cB.

By theorem 8.1, there exist utility and probability functions u
and P associated with 〈X ,E ,N,C ,D,%〉.

Continued...



Introduction
to Conditional
Expected
Utility

Formal
Representation

Motivating the
Representation
Theorem

Axioms and
Representa-
tions

Utility of
Consequences
Discussion

Things We
Didn’t Have
Much Time
For

Utility of Consequences

Theorem, continued

Then there exists a well defined value function v that gives us the
utility associated with a consequence, such that for each c ∈ C
and cA ∈ D, v(c) = u(cA).
Every gamble fA ∈ D is of the form fA =

⋃n
i=1 c

(i)
Ai
, so we can

calculate the utility of each gamble in terms of the value of its

consequences: u(fA) =
n∑

i=1
v(c(i))P(Ai |A).
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Other Possibilities

The property we’ve just been talking about is a nice one for a
structure to have. I’ll refer to structures that afford such a
representation, as well as the representations themselves, as
being consequentially determined.

When we’re modeling conditional expected utility, we typically
want the consequences that appear in our model to represent
the situational outcomes that matter to the subject.
Consequentially determined relations are ideal in that regard.

However, there are cases of interest that don’t satisfy the
restrictions above.
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Relations Determined by Other Factors

For example, suppose we can find a constant decision for each
consequence, but we don’t require a consequence’s constant
decisions to be preferentially equivalent across different domain
events.

One simple way we can model this is to have some function
w : (E − N)→ R that associates a utility with the events that
serve as the decision domains in a manner consistent with the
subject’s subjective probability assignments:

w(A ∪ B) = w(A)P(A|A ∪ B) + w(B)P(B|A ∪ B)

In this case, if fA is a gamble of the form fA =
⋃n
i=1 c

(i)
Ai
, then

u(fA) = w(A) +
∑n

i=1 v(c(i))P(Ai |A).
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Good Luck Getting This One Past IRB

Suppose we present two games of chance to a subject, and
she’s given the task of deciding which will occur. In both
games, there are only two reasonably possible outcomes and the
subject has no reason to suppose that they aren’t equally likely
in either case. As a consequence of the outcome of the games,
the subject might either win a single nickel, or nothing at all,
and again she supposes both are equally likely in either case.

The first game of chance is determined by a coin flip. (The
subject wins a nickel if the coin lands on “heads”.)

The second game of chance is determined by the outcome of a
game of Russian roulette between two of the subject’s
acquaintances.
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The second game of chance is determined by the outcome of a
game of Russian roulette between two of the subject’s
acquaintances.
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Consequences

Here, the “consequences” as represented in the formal model
have nothing to do with the things that determine the subject’s
decision preferences.

As noted above, when we’re modeling conditional expected
utility, we typically want the consequences in our model to
represent the outcomes that matter to the subject.

The problem is that, there’s no a priori way to determine what
aspects of a situation are going to turn out to be relevant to a
subject’s preferences, so we can’t guarantee that the way we
choose to model the situation will allow for a
consequence-determined preference relation.
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Consequences

We can define a perceived subjective consequence as any
outcome involved in the decision situation that the subject
finds relevant in determining decision preferences.

In principle, supposing the subject’s preferences are rational
enough to fit into a conditional decision structure, given any
decision situation, there’s nothing that would seem to rule out
the existence of a model in which the consequences in C
describe the subject’s perceived subjective consequences at
least well enough to allow for an empirical preference relation
such that admits a consequence-determined representation.

Thoughts about this?
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Model Error

One possibility I find interesting involves using the
representation above, with the additional w(A) term in the
utility function to, in some sense, measure model error.

The w(A) term gives us an idea of the degree to which the
subject’s preferences are dependent on aspects of the situation
associated with the decision domain events, rather than the
associated consequences.

It doesn’t tell us how to fix our model, but it gives us some
ideas about where to look.
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Expected Utility and Risk

In this situation, our D is a set of gambles with monetary
consequences.

Definitions

E (fA) is conditional expectation associated with fA
V (fA) is the variance associated with fA
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Expected Utility and Risk

Definitions

Preference order is VE -dependent whenever for all fA, gB ∈ D,
V (fA) = V (gB) and E (fA) = E (gB) imply fA ∼ gB.
Let R(fA) = θV (fA)− (1− θ)E (fA) where 0 < θ ≤ 1/
Preference order is R-dependent whenever for all fA, gB ∈ D,
R(fA) = R(gB) implies fA ∼ gB.
Any preference that’s R-dependent is VE -dependent, but not
conversely.
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Theorem

Let 〈X ,E ,N,C ,D,%〉 be a conditional decision structure, with C = R and
suppose that:

For all n ∈ I+, c(1), . . . , c(n) ∈ R, p1, . . . , pn ∈ R+ (where∑n
i=1 pi = 1), there exist pairwise disjoint events A1, . . . ,An ∈ E − N

with P(Ai | ∪ni=1 Ai) = pi such that c(i)Ai
∈ D for i = 1, . . . , n. (We can

divide the conditional probability between n constant functions any
way we please.)
For any c ∈ C, A,B ∈ E − N, if cA, cB ∈ D then cA ∼ cB (constant
decisions agree)
v(c) = u(cA) =

∑∞
m=0 αmcm for all c ∈ R (the utility associated with

a consequence is monotonically increasing)

Then, a preference order is VE-dependent iff v(c) = α0 + α1c + α2c2 and
furthermore, there’s no preference order that’s R-dependent.
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The Relation Between Subjective and Objective
Probability

There’s a brief section relating subjective and objective
probability measures.

Earlier we put aside the objective probability distribution that
determines the likelihood of each particular outcome’s
occurranceoccurrence, given a particular decision.

Now we’ll briefly investigate the relation between our normal
subjective probability measure P and the objective probability
measure Q.
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The Relation Between Subjective and Objective
Probability

Theorem

Let P and Q be finitely additive probability measures on an
algebra of sets E that are strictly increasing functions of each
other. If for every pair of rational numbers r and s (where
r + s ≤ 1) there’s some disjoint pair R,S ∈ E such that
P(R) = r and P(S) = s, then P = Q.

If E is sufficiently rich, and P 6= Q, then P doesn’t preserve the
objective probability ordering of events given by Q.
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