Chapter 5:
Probability Representations

Definition

Suppose that X is a nonempty set (sample space) and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is an algebra of sets on X iff, for every $A, B \in \mathcal{E}$:

1. $-A \in \mathcal{E}$.
2. $A \cup B \in \mathcal{E}$

Definition

Suppose that X is a nonempty set (sample space) and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is an algebra of sets on X iff, for every $A, B \in \mathcal{E}$:

1. $-A \in \mathcal{E}$.
2. $A \cup B \in \mathcal{E}$

Furthermore, if \mathcal{E} is closed under countable unions, the \mathcal{E} is called $\mathbf{a} \sigma$-algebra on X.

Kolmogorov Axioms

Definition

Suppose that X is a nonempty set, that that \mathcal{E} is an algebra of sets on X, and that P is a function from \mathcal{E} into the real numbers. The triple $\langle X, \mathcal{E}, P\rangle$ is a (finitely additive) probability space iff, for every $A, B \in \mathcal{E}$:

1. $P(A) \geq 0$.
2. $P(X)=1$.
3. If $A \cap B=\emptyset$, then $P(A \cup B)=P(A)+P(B)$.

Kolmogorov Axioms

Definition

It is a probability space $\langle X, \mathcal{E}, P\rangle$ is countably additive if in addition:

1. \mathcal{E} is a σ-algebra on X.
2. If $A_{i} \in \mathcal{E}$ and $A_{i} \cap A_{j}=\emptyset, i \neq j$, then

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

finite $X+$ algebra
finite $X+$ probability space
$\Rightarrow \quad \sigma$-algebra
\Rightarrow countably additive probability space
$\langle X, \mathcal{E}, P\rangle$ measure space $+\Leftrightarrow\langle X, \mathcal{E}, P\rangle$ countably additive probability space

Non-countably-additive prob- \Leftrightarrow infinite $X+($ non $-\sigma)$ algebra ability space

Necessary Conditions

Definition

Suppose that X is a nonempty set, that \mathcal{E} is an algebra of sets on X, and that \succsim is a relation on \mathcal{E}. The triple $\langle X, \mathcal{E}, \succsim\rangle$ is a structure of qualitative probability iff for every $A, B, C \in \mathcal{E}$:

1. $\langle\mathcal{E}, \succsim\rangle$ is a weak ordering.
2. $X \succ \emptyset$ and $A \succsim \emptyset$.
3. Suppose that $A \cap B=A \cap C=\emptyset$. Then $B \succsim C$ iff $A \cup B \succsim A \cup C$.

Necessary Conditions

Definition

Suppose \mathcal{E} is an algebra of sets an that \sim is an equivalence relation on \mathcal{E}. A sequence $A_{1}, \ldots, A_{i}, \ldots$, where $A_{i} \in \mathcal{E}$, is a standard sequence relative to $A \in \mathcal{E}$ iff there exist $B_{i}, C_{i} \in \mathcal{E}$ such that:
(i) $A_{1}=B_{1}$ and $B 1 \sim A$;
(ii) $B_{i} \cap C_{i}=\emptyset$;
(iii) $B_{i} \sim A_{i}$;
(iv) $C_{i} \sim A$;
(v) $A_{i+1}=B_{i} \cup C_{i}$.

Necessary Conditions

Definition

A structure of qualitative probability is Archimedean iff, for every $A \succ \emptyset$, any standard sequence relative to A is finite.

Nonsufficiency of Qualitative Probability

Let $X=\{a, b, c, d, e\}$ and let \mathcal{E} be all subsets of X. Consider any order for which
(1) $\{a\} \succ\{b, c\}, \quad\{c, d\} \succ\{a, b\} \quad$ and $\quad\{b, e\} \succ\{a, c\}$.

Nonsufficiency of Qualitative Probability

Let $X=\{a, b, c, d, e\}$ and let \mathcal{E} be all subsets of X. Consider any order for which
(1) $\{a\} \succ\{b, c\}$, $\{c, d\} \succ\{a, b\}$ and $\{b, e\} \succ\{a, c\}$.

Proposition

If the relation \succsim on \mathcal{E} satisfies (1) and has an order-preserving (finitely additive) probability representation, then

$$
\{d, e\} \succ\{a, b, c\}
$$

Proposition

There is a relation \succsim such that $\langle X, \mathcal{E}, \succsim\rangle$ is a structure of qualitative probability and $\{a, b, c\} \succ\{d, e\}$.

Nonsufficiency of Qualitative Probability

Lesson?

A probability representation has metrical structure that a (Archimedean) structure of qualitative probability does not.

Nonsufficiency of Qualitative Probability

Lesson?

A probability representation has metrical structure that a (Archimedean) structure of qualitative probability does not.

Recall that, to solve this sort of problem wrt extensive measurement, we had axiom (4) in Definition 3 of Chapter 3 (p. 84). Why not impose a similar axiom here?

Nonsufficiency of Qualitative Probability

Lesson?

A probability representation has metrical structure that a (Archimedean) structure of qualitative probability does not.

Recall that, to solve this sort of problem wrt extensive measurement, we had axiom (4) in Definition 3 of Chapter 3 (p. 84). Why not impose a similar axiom here?

What a great idea! Let's call it 'Axiom 5'.

Sufficient Conditions

Axiom 5

Suppose $\langle X, \mathcal{E}, \succsim\rangle$ is a structure of qualitative probability. If $A, B, C, D \in \mathcal{E}$ are such that $A \cap B=\emptyset, A \succ C$, and $B \succsim D$, then there exist $C^{\prime}, D^{\prime}, E \in \mathcal{E}$ such that:
(i) $E \sim A \cup B$;
(ii) $C^{\prime} \cap D^{\prime}=\emptyset$;
(iii) $E \supset C^{\prime} \cup D^{\prime}$;
(iv) $C^{\prime} \sim C$ and $D^{\prime} \sim D$.

Sufficient Condition

Proposition

If a finite structure of qualitative probability satisfies Axiom 5, then its equivalence classes form a single standard sequence.

Sufficient Condition

Proposition

If a finite structure of qualitative probability satisfies Axiom 5, then its equivalence classes form a single standard sequence.

Similar to "Lego blocks" in the case of extensive measurement.

Representation Theorem

Theorem 2

Suppose that $\langle X, \mathcal{E}, \succsim\rangle$ is an Archimedean structure of qualitative probability for which Axiom 5 holds, then there exists a unique order-preserving function P such that $\langle X, \mathcal{E}, P\rangle$ is a finitely additive probability space.

Countably Additive Representation

Countably Additive Representation

Definition

Suppose that $\langle X, \mathcal{E}, \succsim\rangle$ is a structure of qualitative probability and that \mathcal{E} is a σ-algebra. We say that \succsim is monotonically continuous on \mathcal{E} iff for any sequence A_{1}, A_{2}, \ldots in \mathcal{E} and any $B \in \mathcal{E}$, if $A_{i} \subset A_{i+1}$ and $B \succsim A_{i}$, for all i, then $B \succsim \bigcup_{i=1}^{\infty} A_{i}$.

Countably Additive Representation

Definition

Suppose that $\langle X, \mathcal{E}, \succsim\rangle$ is a structure of qualitative probability and that \mathcal{E} is a σ-algebra. We say that \succsim is monotonically continuous on \mathcal{E} iff for any sequence A_{1}, A_{2}, \ldots in \mathcal{E} and any $B \in \mathcal{E}$, if $A_{i} \subset A_{i+1}$ and $B \succsim A_{i}$, for all i, then $B \succsim \bigcup_{i=1}^{\infty} A_{i}$.

Theorem 4

A finitely additive probability representation of a structure of qualitative probability, on a σ-algebra, is countably additive iff the structure is monotonically continuous.

Countably Additive Representation

Definition

Let \succsim be a weak ordering of an algebra of sets \mathcal{E}. An even $A \in \mathcal{E}$ is an atom iff $A \succ \mathcal{E}$ and for any $B \in \mathcal{E}$, if $A \supset B$, then $A \sim B$ or $B \sim \emptyset$.

Countably Additive Representation

Definition

Let \succsim be a weak ordering of an algebra of sets \mathcal{E}. An even $A \in \mathcal{E}$ is an atom iff $A \succ \mathcal{E}$ and for any $B \in \mathcal{E}$, if $A \supset B$, then $A \sim B$ or $B \sim \emptyset$.

Theorem 5

Suppose that $\langle X, \mathcal{E}, \succsim\rangle$ is a structure of qualitative probability, \mathcal{E} is a σ-algebra, and there are no atoms. Then there is a unique order preserving probability representation, and it is countably additive.

QM-Algebra

QM-Algebra

Definition

Suppose that X is a nonempty set and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is a QM-algebra of sets on X iff, for every $A, B \in \mathcal{E}$

$$
\begin{aligned}
& \text { 1. }-A \in \mathcal{E} \text {; } \\
& \text { 2. If } A \cap B=\emptyset \text {, then } A \cup B \in \mathcal{E} \text {. }
\end{aligned}
$$

Furthermore, if \mathcal{E} is closed under countable unions of mutually disjoint sets, then \mathcal{E} is called a QM σ-algebra.

QM-Algebra

Axiom 3^{\prime}

Suppose that $A \cap B=C \cap D=\emptyset$. If $A \succsim C$ and $B \succsim D$, then $A \cup B \succsim C \cup D$; moreover, if either hypothesis is \succ, then the conclusion is \succ.

QM-Algebra

Axiom 3^{\prime}

Suppose that $A \cap B=C \cap D=\emptyset$. If $A \succsim C$ and $B \succsim D$, then $A \cup B \succsim C \cup D$; moreover, if either hypothesis is \succ, then the conclusion is \succ.

Theorem 3

If \mathcal{E} is a QM-algebra and if $\langle X, \mathcal{E}, \succsim\rangle$ satisfies Axioms $1,2,3^{\prime}, 4$, and 5 , then there is a unique order-preserving (finitely additive) probability representation on \mathcal{E}.

Independent Events

Necessary Conditions

Definition

Suppose \mathcal{E} is an algebra of sets on X and \perp is a binary relation on \mathcal{E}. Then \perp is an independence relation iff

1. \perp is symmetric.
2. For $A \in \mathcal{E},\{B \mid A \perp B\} \subset \mathcal{E}$ is a QM-algebra.

Independent Events

Necessary Conditions

Definition

Suppose \mathcal{E} is an algebra of sets on X and \perp is a binary relation on \mathcal{E}. Then \perp is an independence relation iff

1. \perp is symmetric.
2. For $A \in \mathcal{E},\{B \mid A \perp B\} \subset \mathcal{E}$ is a QM-algebra.

Definition

Let \mathcal{E} be an algebra of sets and \perp an independence relation on \mathcal{E}. For $m \geq 2, A_{1}, \ldots, A_{m} \in \mathcal{E}$ are \perp-independent iff, for every $M \subset\{1, \ldots, m\}$, every B in the smallest subalgebra containing $\left\{A_{i} \mid i \in M\right\}$, and every C in the smallest subalgebra containing $\left\{A_{i} \mid i \notin M\right\}$, we have $B \perp C$.

Independent Events

Necessary Conditions

Definition

Suppose that $\langle X, \mathcal{E}, \succsim\rangle$ is a structure of qualitative probability and \perp is an independence relation on \mathcal{E}. The quadruple $\langle X, \mathcal{E}, \succsim, \perp\rangle$ is a structure of qualitative probability with independence iff
3. Suppose that $A, B, C, D \in \mathcal{E}, A \perp B$, and $C \perp D$. If $A \succsim C$ and $B \succsim D$, then $A \cap B \succsim C \cap D$; moreover, if $A \succ C$, $B \succ D$, and $B \succ \emptyset$, then $A \cap B \succ C \cap D$.

Structural Condition

Definition

The structure $\langle X, \mathcal{E}, \succsim, \perp\rangle$ is complete iff the following additional axiom holds:
4. For any $A_{1}, \ldots, A_{m}, A \in \mathcal{E}$, there exists $A^{\prime} \in \mathcal{E}$ with $A^{\prime} \sim A$ and $A^{\prime} \perp A_{i}$. Moreover, if A_{1}, \ldots, A_{m} are \perp-independent, then A^{\prime} can be chosen so that $A_{1}, \ldots, A_{m}, A^{\prime}$ are also \perp-independent.

Conditional Probability

Definition

Suppose $\langle X, \mathcal{E}, \succsim, \perp\rangle$ is a structure of qualitative probability with independence. Let $\mathcal{N}=\{A \mid A \sim \emptyset\} \subset \mathcal{E}$. If $A, C \in \mathcal{E}$ and
$B, D \in \mathcal{E}-\mathcal{N}$, define

$$
A\left|B \succsim^{\prime} C\right| D
$$

iff there exist $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} \in \mathcal{E}$ with

$$
\begin{gathered}
A^{\prime} \sim A \cap B, \quad B^{\prime} \sim B, \quad C^{\prime} \sim C \cap D, \quad D^{\prime} \sim D ; \\
A^{\prime} \perp D^{\prime} \quad \text { and } \quad C^{\prime} \perp B^{\prime} ;
\end{gathered}
$$

and

$$
A^{\prime} \cap D^{\prime} \succsim C^{\prime} \cap B .
$$

Conditional Probability

Definition

The structure $\langle X, \mathcal{E}, \succsim, \perp\rangle$ is Archimedean iff every standard sequence is finite, where $\left\{A_{i}\right\}$ is a standard sequence iff for all $i, A_{i} \in \mathcal{E}-\mathcal{N}, A_{i+1} \supset A_{i}$, and

$$
X\left|X \succ^{\prime} A_{i}\right| A_{i+1} \sim^{\prime} A_{1} \mid A_{2} .
$$

Conditional Probability

Axiom 8
If $A\left|B \succsim^{\prime} C\right| D$, then there exists $C^{\prime} \in \mathcal{E}$ such that $C \cap D \subset C^{\prime}$ and $A\left|B \sim^{\prime} C^{\prime}\right| D$.

Conditional Probability

Axiom 8
 If $A\left|B \succsim^{\prime} C\right| D$, then there exists $C^{\prime} \in \mathcal{E}$ such that $C \cap D \subset C^{\prime}$ and $A\left|B \sim^{\prime} C^{\prime}\right| D$.

* Axiom 8 is somewhere in strength between Axiom 5 and Axiom 5^{\prime}. In particular, it requires an infinite sample space.

Conditional Probability

Theorem 7

Suppose that $\langle X, \mathcal{E}, \succsim, \perp\rangle$ is an Archimedean and complete structure of qualitative probability with independence such that Axiom 8 is satisfied. Then there is a unique probability representation in which conditional probabilities preserve \succsim^{\prime}.

Conditional Probability

Theorem 7

Suppose that $\langle X, \mathcal{E}, \succsim, \perp\rangle$ is an Archimedean and complete structure of qualitative probability with independence such that Axiom 8 is satisfied. Then there is a unique probability representation in which conditional probabilities preserve \succsim^{\prime}.

* Axiom 8 is somewhere in strength between Axiom 5 and Axiom 5^{\prime}. In particular, it requires an infinite sample space.

Chapter 6:

Additive Conjoint Measurement

Decomposable Structures

Definition

Let A_{1}, A_{2} be nonempty sets, and let \succsim be a weak ordering on $A_{1} \times A_{2}$. The triple $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is decomposable if there are real valued functions $\phi_{1}: A_{1} \rightarrow \mathbb{R}, \phi_{2}: A_{2} \rightarrow \mathbb{R}$, and $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, where F is $1-1$ in each variable, such that, for all $a, b \in A_{1}$ and $p, q \in A_{2}$,

$$
a p \succsim b q \quad \text { iff } \quad F\left[\phi_{1}(a), \phi_{2}(p)\right] \geq F\left[\phi_{1}(b), \phi_{2}(q)\right] .
$$

Additive Independence

Definition

A decomposable structure $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is additively independent if, for all $a, b \in A_{1}$ and $p, q \in A_{2}$,

$$
a p \succsim b q \quad \text { iff } \quad \phi_{1}(a)+\phi_{2}(p) \geq \phi_{1}(b)+\phi_{2}(q) .
$$

Examples

Proposition

Suppose $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is a decomposable structure such that

$$
a p \succsim b q \quad \text { iff } \quad \psi_{1}(a) \psi_{2}(p) \geq \psi_{1}(b) \psi_{2}(q),
$$

for positive real-valued functions ψ_{1}, ψ_{2}. Then $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is additively independent.

Examples

Proposition

Suppose $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is a decomposable structure such that

$$
a p \succsim b q \quad \text { iff } \quad \psi_{1}(a) \psi_{2}(p) \geq \psi_{1}(b) \psi_{2}(q),
$$

for positive real-valued functions ψ_{1}, ψ_{2}. Then $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is additively independent.

$$
a p \succsim b q \quad \text { iff } \quad \log \psi_{1}(a)+\log \psi_{2}(p) \geq \log \psi_{1}(b)+\log \psi_{2}(q)
$$

Examples

Momentum

$$
\begin{gathered}
p=m v \\
m_{1} v_{1} \geq m_{2} v_{2} \quad \text { iff } \quad \log m_{1}+\log v_{1} \geq \log m_{2}+\log v_{2}
\end{gathered}
$$

Examples

Independent Random Variables

Suppose Y_{1}, Y_{2} are random variables on the same probability space, and let $\sigma\left(Y_{i}\right)$ be the smallest σ-algebra for which Y_{i} is continuous. Define \succsim on $\sigma\left(Y_{1}\right) \times \sigma\left(Y_{2}\right)$ by

$$
a p \succsim b q \quad \text { iff } \quad \operatorname{Pr}(a \cap p) \geq \operatorname{Pr}(b \cap q)
$$

for all $a, b \in \sigma\left(Y_{1}\right)$ and $p, q \in \sigma\left(Y_{2}\right)$.

Examples

Independent Random Variables

Suppose Y_{1}, Y_{2} are random variables on the same probability space, and let $\sigma\left(Y_{i}\right)$ be the smallest σ-algebra for which Y_{i} is continuous. Define \succsim on $\sigma\left(Y_{1}\right) \times \sigma\left(Y_{2}\right)$ by

$$
a p \succsim b q \quad \text { iff } \quad \operatorname{Pr}(a \cap p) \geq \operatorname{Pr}(b \cap q)
$$

for all $a, b \in \sigma\left(Y_{1}\right)$ and $p, q \in \sigma\left(Y_{2}\right)$.

Proposition

$\left\langle\sigma\left(Y_{1}\right), \sigma\left(Y_{2}\right), \succsim\right\rangle$ is additively independent if and only if X_{1} and X_{2} are independent.

Examples

Expected Utility

Suppose $\langle X, \mathcal{E}, \operatorname{Pr}\rangle$ is a probability space and \mathcal{A} is a set of commodities with associated utility function U. Define \succsim on $\mathcal{E} \times \mathcal{A}$ by

$$
a p \succsim b q \quad \text { iff } \quad \operatorname{Pr}(a) U(p) \geq \operatorname{Pr}(b) U(q),
$$

for all $a, b \in \mathcal{E}$ and $p, q \in \mathcal{A}$.

Necessary Conditions

Independence (a.k.a. single cancelation)

Definition

A relation \succsim on $A_{1} \times A_{2}$ is independent iff, for all $a, b \in A_{1}$, $a p \succsim b p$ for some $p \in A_{2}$ implies that $a q \succsim b q$ for every $q \in A_{2}$; and, for all $p, q \in A_{2}$, ap \succsim aq for some $a \in A_{1}$ implies that $b q \succsim b p$ for every $b \in A_{1}$.

Necessary Conditions

Independence (a.k.a. single cancelation)

Definition

A relation \succsim on $A_{1} \times A_{2}$ is independent iff, for all $a, b \in A_{1}$, $a p \succsim b p$ for some $p \in A_{2}$ implies that $a q \succsim b q$ for every $q \in A_{2}$; and, for all $p, q \in A_{2}, a p \succsim$ aq for some $a \in A_{1}$ implies that $b q \succsim b p$ for every $b \in A_{1}$.

* \succsim is an independent relation if $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is additively independent.

Necessary Conditions

Independence (a.k.a. single cancelation)

Definition

Suppose that \succsim is an independent relation on $A_{1} \times A_{2}$.
(i) Define \succsim_{1} on A_{1} : for $a, b \in A_{1}, a \succsim{ }_{1} b$ iff $a p \succsim b p$ for some $p \in A_{2}$; and
(ii) define \succsim_{2} on A_{2} similarly.

Necessary Conditions

Independence (a.k.a. single cancelation)

Lemma 1

If \succsim is an independent weak ordering of $A_{1} \times A_{2}$, then
(i) \succsim_{i} is a weak ordering of A_{i}.
(ii) For $a, b \in A_{1}$ and $p, q \in A_{2}$, if $a \succsim_{1} b$ and $p \succsim_{2} q$, then $a p \succsim b q$.
(iii) If either antecedent inequality of (ii) is strict, so is the conclusion.
(iv) For $a, b \in A_{1}$ and $p, q \in A_{2}$, if $a p \sim b q$, then $a \succsim_{1} b$ iff $q \succsim_{2} p$.

Necessary Conditions

Double Cancelation

Definition

A relation \succsim on $A_{1} \times A_{2}$ satisfies double cancelation provided that, for every $a, b, f \in A_{1}$ and $p, q, x \in A_{2}$, if $a x \succsim f q$ and $f p \succsim b x$, then $a p \succsim b q$. The weaker condition in which \succsim is replaced by \sim is the Thomsen condition.

Necessary Conditions

Archimedean Axiom

Definition

Suppose \succsim is an independent weak ordering of $A_{1} \times A_{2}$. For any set N of consecutive integers (positive or negative, finite or infinite), a set $\left\{a_{i} \mid a_{i} \in A_{1}, i \in N\right\}$ is a standard sequence on component 1 iff there exists $p, q \in A_{2}$ such that not $\left(p \sim_{2} q\right)$ and, for all $i, i+1 \in N, a_{i} p \sim a_{i+1} q$. A parallel definition holds for the second component.

Necessary Conditions

Archimedean Axiom

Definition

Suppose \succsim is an independent weak ordering of $A_{1} \times A_{2}$. For any set N of consecutive integers (positive or negative, finite or infinite), a set $\left\{a_{i} \mid a_{i} \in A_{1}, i \in N\right\}$ is a standard sequence on component 1 iff there exists $p, q \in A_{2}$ such that $\operatorname{not}\left(p \sim_{2} q\right)$ and, for all $i, i+1 \in N, a_{i} p \sim a_{i+1} q$. A parallel definition holds for the second component.

Definition

A standard sequence on component $1\left\{a_{i} \mid i \in N\right\}$ is strictly bounded iff there exist $a, b \in A_{2}$ such that, for all $i \in N$, $c \succ_{1} a_{i} \succ_{1} b$. A parallel definition holds for the second component.

Necessary Conditions

Archimedean Axiom

Definition

Suppose \succsim is an independent weak ordering of $A_{1} \times A_{2}$. $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is Archimedean iff every strictly bounded standard sequence (on either component) is finite.

Sufficient Condition

Solvability

Definition

A relation \succsim on $A_{1} \times A_{2}$ satisfies unrestricted solvabillity provided that, given three of $a, b \in A_{1}$ and $p, q \in A_{2}$, the fourth exists so that $a p \sim b q$.

Sufficient Condition

Solvability

Definition

A relation \succsim on $A_{1} \times A_{2}$ satisfies restricted solvabillity provided that:
(i) whenever there exist $a, \bar{b}, \underline{b} \in A_{1}$ and $p, q \in A_{2}$ for which $\bar{b} q \succsim a p \succsim \underline{b} q$, then there exists $b \in A_{1}$ such that $b q \sim a p ;$
(ii) a similar condition holds on the second component.

Sufficient Condition

Essentialness

Definition

Suppose that \succsim is a relation on $A_{1} \times A_{2}$. Component A_{1} is essential iff there exist $a, b \in A_{1}$ and $p \in A_{2}$ such that not $(a p \sim b p)$. A similar definition holds for A_{2}.

Sufficient Condition

Essentialness

Definition

Suppose that \succsim is a relation on $A_{1} \times A_{2}$. Component A_{1} is essential iff there exist $a, b \in A_{1}$ and $p \in A_{2}$ such that not $(a p \sim b p)$. A similar definition holds for A_{2}.

Lemma 2

Suppose that \succsim is an independent relation on $A_{1} \times A_{2}$. Then component A_{1} is essential iff there exist $a, b \in A_{1}$ such that $a \succ_{1} b$.

Additive Conjoint Structure

Definition

Suppose that A_{1} and A_{2} are nonempty sets and \succsim is a binary relation on $A_{1} \times A_{2}$. The triple $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is an additive conjoint structure iff \succsim satisfies the following six axioms:

1. Weak ordering
2. Independence
3. Thomsen condition
4. Restricted solvability
5. Archemedean property
6. Each component is essential

The structure is symmetric iff, in addition,
7. For $a, b \in A_{1}$, there exist $p, q \in A_{2}$ such that $a p \sim b q$, and for $p^{\prime}, q^{\prime} \in A_{2}$, there exist $a^{\prime}, b^{\prime} \in A_{1}$ such that $a^{\prime} p^{\prime} \sim b^{\prime} q^{\prime}$.

Additive Conjoint Structure

Theorem 1

Suppose $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is a structure for which the weak ordering, double cancellation, unrestricted solvability, and the Archimedean axioms hold. If at least one component is essential, then $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is a symmetric, additive conjoint structure.

Representation Theorem

Theorem 2

Suppose $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is an additive conjoint structure. Then there exist functions $\phi_{i}: A_{i} \rightarrow \mathbb{R}$ such that, for all $a, b \in A_{1}$ and $p, q \in A_{2}$,

$$
a p \succsim b q \quad \text { iff } \quad \phi_{1}(a)+\phi_{2}(p) \geq \phi_{1}(b)+\phi_{2}(q)
$$

If ϕ_{i}^{\prime} are two other functions with the same property, then there exists constants $\alpha>0, \beta_{1}$ and β_{2} such that

$$
\phi_{1}^{\prime}=\alpha \phi_{1}+\beta_{1} \quad \text { and } \quad \phi_{2}^{\prime}=\alpha \phi_{2}+\beta_{2} .
$$

Representation Theorem

Uniqueness of multiplicative representation

Proposition

Suppose $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is an additive conjoint structure. Then there exist functions $\psi_{i}: A_{i} \rightarrow \mathbb{R}^{+}$such that, for all $a, b \in A_{1}$ and $p, q \in A_{2}$,

$$
a p \succsim b q \quad \text { iff } \quad \psi_{1}(a) \psi_{2}(p) \geq \psi_{1}(b) \psi_{2}(q) .
$$

If ψ_{i}^{\prime} are two other functions with the same property, then there exists constants $\alpha>0, \beta_{1}$ and β_{2} such that

$$
\phi_{1}^{\prime}=\beta_{1} \psi_{1}^{\alpha} \quad \text { and } \quad \psi_{2}^{\prime}=\beta_{2} \psi_{2}^{\alpha} \text {. }
$$

Extensive Structure

Definition

Suppose $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is a symmetric, additive conjoint structure. It is bounded iff there are $\underline{a}, \bar{a} \in A_{1}, \underline{p}, \bar{p} \in A_{2}$ such that

$$
\underline{a} \bar{p} \sim \bar{a} \underline{p}
$$

and, for $a \in A_{1}$ and $p \in A_{2}$,

$$
\bar{a} \succsim_{1} a \succsim_{1} \underline{a} \text { and } \bar{p} \succsim_{2} p \succsim_{2} \underline{p} .
$$

Extensive Structures

Extensive Structures

Moreover, for $a, b \in A_{1}$, we define: $\pi(a) \in A_{2}$ as the (unique up to \sim_{2}) solution to $a(a) \sim a p ;$
$B_{1}=\left\{a b \mid a, b \succ_{1} \underline{a}\right.$ and $\left.\bar{a} \underline{p} \bar{\imath} a \pi(b)\right\}$; for $a b \in B_{1}, a \circ b$ is the (unique up to \sim_{1}) solution to $(a \circ b) p \sim a \pi(b)$. Similar definitions hold for A_{2} with $\alpha(p)$ playing the role of $\pi(a)$.

Lemma 5

If $\left\langle A_{1}, A_{2}, \succsim\right\rangle$ is a bounded, symmetric, additive conjoint structure, and if B_{1} is nonempty, then $\left\langle A_{1}, \succsim_{1}, B_{1}, \circ\right\rangle$ is an extensive structure with no essential maximum.

Subtractive Structures

Subtractive Structures

Define the dual relations \succsim^{\prime} and \succsim^{\prime} as follows:

$$
a p \succsim b q \quad \text { iff } \quad a q \succsim^{\prime} b p
$$

Theorem 5

If two relations are dual, then transitivity and double cancellation are dual properties, and independence, restricted and unrestricted solvability, and the Archemedean property are self-dual properties.

