Chapter 5: Probability Representations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition

Suppose that X is a nonempty set (sample space) and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is an algebra of sets on X iff, for every $A, B \in \mathcal{E}$:

ヘロト 人間 とくほとくほとう

3

1.
$$-A \in \mathcal{E}$$
.

2.
$$A \cup B \in \mathcal{E}$$

Definition

Suppose that X is a nonempty set (sample space) and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is an algebra of sets on X iff, for every $A, B \in \mathcal{E}$:

1.
$$-A \in \mathcal{E}$$
.

2.
$$A \cup B \in \mathcal{E}$$

Furthermore, if \mathcal{E} is closed under countable unions, the \mathcal{E} is called a σ -algebra on X.

・ コット (雪) (小田) (コット 日)

Kolmogorov Axioms

Definition

Suppose that *X* is a nonempty set, that that \mathcal{E} is an algebra of sets on *X*, and that *P* is a function from \mathcal{E} into the real numbers. The triple $\langle X, \mathcal{E}, P \rangle$ is a (finitely additive) probability space iff, for every $A, B \in \mathcal{E}$:

(日) (日) (日) (日) (日) (日) (日)

1.
$$P(A) \ge 0$$
.

2.
$$P(X) = 1$$
.

3. If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Kolmogorov Axioms

Definition

It is a probability space $\langle X, \mathcal{E}, P \rangle$ is countably additive if in addition:

- 1. \mathcal{E} is a σ -algebra on X.
- **2.** If $A_i \in \mathcal{E}$ and $A_i \cap A_j = \emptyset$, $i \neq j$, then

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i).$$

finite X + algebra $\Rightarrow \sigma$ -algebra

finite X + probability space \Rightarrow countably additive probability space

 $\langle X, \mathcal{E}, P \rangle$ measure space + $\Leftrightarrow \langle X, \mathcal{E}, P \rangle$ countably additive P(X) = 1 probability space

Non-countably-additive prob- \Leftrightarrow infinite $X + (non-\sigma)$ algebra ability space

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

Suppose that X is a nonempty set, that \mathcal{E} is an algebra of sets on X, and that \succeq is a relation on \mathcal{E} . The triple $\langle X, \mathcal{E}, \succeq \rangle$ is a structure of qualitative probability iff for every $A, B, C \in \mathcal{E}$:

- 1. $\langle \mathcal{E}, \succsim \rangle$ is a weak ordering.
- **2**. $X \succ \emptyset$ and $A \succeq \emptyset$.
- 3. Suppose that $A \cap B = A \cap C = \emptyset$. Then $B \succeq C$ iff $A \cup B \succeq A \cup C$.

Definition

Suppose \mathcal{E} is an algebra of sets an that \sim is an equivalence relation on \mathcal{E} . A sequence A_1, \ldots, A_i, \ldots , where $A_i \in \mathcal{E}$, is a standard sequence relative to $A \in \mathcal{E}$ iff there exist $B_i, C_i \in \mathcal{E}$ such that:

・ロト ・四ト ・ヨト ・ヨト

(i)
$$A_1 = B_1$$
 and $B_1 \sim A$;
(ii) $B_i \cap C_i = \emptyset$;
(iii) $B_i \sim A_i$;
(iv) $C_i \sim A$;
(v) $A_{i+1} = B_i \cup C_i$.

Definition

A structure of qualitative probability is Archimedean iff, for every $A \succ \emptyset$, any standard sequence relative to A is finite.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let $X = \{a, b, c, d, e\}$ and let \mathcal{E} be all subsets of X. Consider any order for which

(1) $\{a\} \succ \{b,c\}, \{c,d\} \succ \{a,b\} \text{ and } \{b,e\} \succ \{a,c\}.$

Let $X = \{a, b, c, d, e\}$ and let \mathcal{E} be all subsets of X. Consider any order for which

(1) $\{a\} \succ \{b,c\}, \quad \{c,d\} \succ \{a,b\} \text{ and } \{b,e\} \succ \{a,c\}.$

Proposition

If the relation \succsim on $\cal E$ satisfies (1) and has an order-preserving (finitely additive) probability representation, then

 $\{d, e\} \succ \{a, b, c\}$.

Proposition

There is a relation \succeq such that $\langle X, \mathcal{E}, \succeq \rangle$ is a structure of qualitative probability and $\{a, b, c\} \succ \{d, e\}$.

Lesson?

A probability representation has metrical structure that a (Archimedean) structure of qualitative probability does not.

・ロト・日本・日本・日本・日本

Lesson?

A probability representation has metrical structure that a (Archimedean) structure of qualitative probability does not.

Recall that, to solve this sort of problem wrt extensive measurement, we had axiom (4) in Definition 3 of Chapter 3 (p. 84). Why not impose a similar axiom here?

Lesson?

A probability representation has metrical structure that a (Archimedean) structure of qualitative probability does not.

Recall that, to solve this sort of problem wrt extensive measurement, we had axiom (4) in Definition 3 of Chapter 3 (p. 84). Why not impose a similar axiom here?

What a great idea! Let's call it 'Axiom 5'.

Axiom 5

Suppose $\langle X, \mathcal{E}, \succeq \rangle$ is a structure of qualitative probability. If $A, B, C, D \in \mathcal{E}$ are such that $A \cap B = \emptyset$, $A \succ C$, and $B \succeq D$, then there exist $C', D', E \in \mathcal{E}$ such that:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(i) $E \sim A \cup B$; (ii) $C' \cap D' = \emptyset$; (iii) $E \supset C' \cup D'$; (iv) $C' \sim C$ and $D' \sim D$.

Proposition

If a finite structure of qualitative probability satisfies Axiom 5, then its equivalence classes form a single standard sequence.

Proposition

If a finite structure of qualitative probability satisfies Axiom 5, then its equivalence classes form a single standard sequence.

Similar to "Lego blocks" in the case of extensive measurement.

Representation Theorem

Theorem 2

Suppose that $\langle X, \mathcal{E}, \succeq \rangle$ is an Archimedean structure of qualitative probability for which Axiom 5 holds, then there exists a unique order-preserving function *P* such that $\langle X, \mathcal{E}, P \rangle$ is a finitely additive probability space.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Definition

Suppose that $\langle X, \mathcal{E}, \succeq \rangle$ is a structure of qualitative probability and that \mathcal{E} is a σ -algebra. We say that \succeq is monotonically continuous on \mathcal{E} iff for any sequence A_1, A_2, \ldots in \mathcal{E} and any $B \in \mathcal{E}$, if $A_i \subset A_{i+1}$ and $B \succeq A_i$, for all *i*, then $B \succeq \bigcup_{i=1}^{\infty} A_i$.

Definition

Suppose that $\langle X, \mathcal{E}, \succeq \rangle$ is a structure of qualitative probability and that \mathcal{E} is a σ -algebra. We say that \succeq is monotonically continuous on \mathcal{E} iff for any sequence A_1, A_2, \ldots in \mathcal{E} and any $B \in \mathcal{E}$, if $A_i \subset A_{i+1}$ and $B \succeq A_i$, for all *i*, then $B \succeq \bigcup_{i=1}^{\infty} A_i$.

Theorem 4

A finitely additive probability representation of a structure of qualitative probability, on a σ -algebra, is countably additive iff the structure is monotonically continuous.

・ロト・西ト・ヨト・ヨト・ 日・ のへの

Definition

Let \succeq be a weak ordering of an algebra of sets \mathcal{E} . An even $A \in \mathcal{E}$ is an atom iff $A \succ \mathcal{E}$ and for any $B \in \mathcal{E}$, if $A \supset B$, then $A \sim B$ or $B \sim \emptyset$.

Definition

Let \succeq be a weak ordering of an algebra of sets \mathcal{E} . An even $A \in \mathcal{E}$ is an atom iff $A \succ \mathcal{E}$ and for any $B \in \mathcal{E}$, if $A \supset B$, then $A \sim B$ or $B \sim \emptyset$.

Theorem 5

Suppose that $\langle X, \mathcal{E}, \succeq \rangle$ is a structure of qualitative probability, \mathcal{E} is a σ -algebra, and there are no atoms. Then there is a unique order preserving probability representation, and it is countably additive.

QM-Algebra

Definition

Suppose that X is a nonempty set and that \mathcal{E} is a nonempty family of subsets of X. Then \mathcal{E} is a QM-algebra of sets on X iff, for every $A, B \in \mathcal{E}$

1.
$$-A \in \mathcal{E}$$
;

2. If $A \cap B = \emptyset$, then $A \cup B \in \mathcal{E}$.

Furthermore, if \mathcal{E} is closed under countable unions of mutually disjoint sets, then \mathcal{E} is called a QM σ -algebra.

QM-Algebra

Axiom 3'

Suppose that $A \cap B = C \cap D = \emptyset$. If $A \succeq C$ and $B \succeq D$, then $A \cup B \succeq C \cup D$; moreover, if either hypothesis is \succ , then the conclusion is \succ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

QM-Algebra

Axiom 3'

Suppose that $A \cap B = C \cap D = \emptyset$. If $A \succeq C$ and $B \succeq D$, then $A \cup B \succeq C \cup D$; moreover, if either hypothesis is \succ , then the conclusion is \succ .

Theorem 3

If \mathcal{E} is a QM-algebra and if $\langle X, \mathcal{E}, \succeq \rangle$ satisfies Axioms 1, 2, 3', 4, and 5, then there is a unique order-preserving (finitely additive) probability representation on \mathcal{E} .

Independent Events

Necessary Conditions

Definition

Suppose \mathcal{E} is an algebra of sets on X and \perp is a binary relation on \mathcal{E} . Then \perp is an independence relation iff

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 1. \perp is symmetric.
- 2. For $A \in \mathcal{E}$, $\{B \mid A \perp B\} \subset \mathcal{E}$ is a QM-algebra.

Independent Events

Necessary Conditions

Definition

Suppose \mathcal{E} is an algebra of sets on X and \bot is a binary relation on \mathcal{E} . Then \bot is an independence relation iff

1. \perp is symmetric.

2. For $A \in \mathcal{E}$, $\{B \mid A \perp B\} \subset \mathcal{E}$ is a QM-algebra.

Definition

Let \mathcal{E} be an algebra of sets and \perp an independence relation on \mathcal{E} . For $m \geq 2, A_1, \ldots, A_m \in \mathcal{E}$ are \perp -independent iff, for every $M \subset \{1, \ldots, m\}$, every B in the smallest subalgebra containing $\{A_i | i \in M\}$, and every C in the smallest subalgebra containing $\{A_i | i \notin M\}$, we have $B \perp C$.

Independent Events

Necessary Conditions

Definition

Suppose that $\langle X, \mathcal{E}, \succeq \rangle$ is a structure of qualitative probability and \perp is an independence relation on \mathcal{E} . The quadruple $\langle X, \mathcal{E}, \succeq, \perp \rangle$ is a structure of qualitative probability with independence iff

3. Suppose that $A, B, C, D \in \mathcal{E}, A \perp B$, and $C \perp D$. If $A \succeq C$ and $B \succeq D$, then $A \cap B \succeq C \cap D$; moreover, if $A \succ C$, $B \succ D$, and $B \succ \emptyset$, then $A \cap B \succ C \cap D$.

Structural Condition

Definition

The structure $\langle X, \mathcal{E}, \succeq, \perp \rangle$ is complete iff the following additional axiom holds:

For any A₁,..., A_m, A ∈ E, there exists A' ∈ E with A' ~ A and A' ⊥ A_i. Moreover, if A₁,..., A_m are ⊥-independent, then A' can be chosen so that A₁,..., A_m, A' are also ⊥-independent.

Definition

Suppose $\langle X, \mathcal{E}, \succeq, \perp \rangle$ is a structure of qualitative probability with independence. Let $\mathcal{N} = \{A \mid A \sim \emptyset\} \subset \mathcal{E}$. If $A, C \in \mathcal{E}$ and $B, D \in \mathcal{E} - \mathcal{N}$, define

 $A|B \succeq' C|D$

iff there exist $A', B', C', D' \in \mathcal{E}$ with

 $\mathcal{A}' \sim \mathcal{A} \cap \mathcal{B}, \quad \mathcal{B}' \sim \mathcal{B}, \quad \mathcal{C}' \sim \mathcal{C} \cap \mathcal{D}, \quad \mathcal{D}' \sim \mathcal{D};$

 $A' \perp D'$ and $C' \perp B'$;

and

 $A' \cap D' \succeq C' \cap B.'$

Definition

The structure $\langle X, \mathcal{E}, \succeq, \perp \rangle$ is Archimedean iff every standard sequence is finite, where $\{A_i\}$ is a standard sequence iff for all $i, A_i \in \mathcal{E} - \mathcal{N}, A_{i+1} \supset A_i$, and

$$X|X\succ' A_i|A_{i+1}\sim' A_1|A_2$$
.

Axiom 8

If $A|B \succeq' C|D$, then there exists $C' \in \mathcal{E}$ such that $C \cap D \subset C'$ and $A|B \sim' C'|D$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Axiom 8

If $A|B \succeq' C|D$, then there exists $C' \in \mathcal{E}$ such that $C \cap D \subset C'$ and $A|B \sim' C'|D$.

* Axiom 8 is somewhere in strength between Axiom 5 and Axiom 5'. In particular, it requires an infinite sample space.

Theorem 7

Suppose that $\langle X, \mathcal{E}, \succeq, \perp \rangle$ is an Archimedean and complete structure of qualitative probability with independence such that Axiom 8 is satisfied. Then there is a unique probability representation in which conditional probabilities preserve \succeq' .

Theorem 7

Suppose that $\langle X, \mathcal{E}, \succeq, \bot \rangle$ is an Archimedean and complete structure of qualitative probability with independence such that Axiom 8 is satisfied. Then there is a unique probability representation in which conditional probabilities preserve \succeq' .

* Axiom 8 is somewhere in strength between Axiom 5 and Axiom 5'. In particular, it requires an infinite sample space.

Chapter 6: Additive Conjoint Measurement

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Decomposable Structures

Definition

Let A_1, A_2 be nonempty sets, and let \succeq be a weak ordering on $A_1 \times A_2$. The triple $\langle A_1, A_2, \succeq \rangle$ is decomposable if there are real valued functions $\phi_1 : A_1 \to \mathbb{R}, \phi_2 : A_2 \to \mathbb{R}$, and $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, where *F* is 1-1 in each variable, such that, for all $a, b \in A_1$ and $p, q \in A_2$,

 $ap \succeq bq$ iff $F[\phi_1(a), \phi_2(p)] \ge F[\phi_1(b), \phi_2(q)]$.

Additive Independence

Definition

A decomposable structure $\langle A_1, A_2, \succeq \rangle$ is additively independent if, for all $a, b \in A_1$ and $p, q \in A_2$,

 $ap \succeq bq$ iff $\phi_1(a) + \phi_2(p) \ge \phi_1(b) + \phi_2(q)$.

Examples

Proposition

Suppose $\langle A_1, A_2, \succeq \rangle$ is a decomposable structure such that

 $ap \succeq bq$ iff $\psi_1(a)\psi_2(p) \ge \psi_1(b)\psi_2(q)$,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

for positive real-valued functions ψ_1, ψ_2 . Then $\langle A_1, A_2, \succeq \rangle$ is additively independent.

Examples

Proposition

Suppose $\langle A_1, A_2, \succeq \rangle$ is a decomposable structure such that

 $ap \succeq bq$ iff $\psi_1(a)\psi_2(p) \ge \psi_1(b)\psi_2(q)$,

for positive real-valued functions ψ_1, ψ_2 . Then $\langle A_1, A_2, \succeq \rangle$ is additively independent.

 $ap \succeq bq$ iff $\log \psi_1(a) + \log \psi_2(p) \ge \log \psi_1(b) + \log \psi_2(q)$

Momentum

p = mv

 $m_1v_1 \ge m_2v_2$ iff $\log m_1 + \log v_1 \ge \log m_2 + \log v_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Examples

Independent Random Variables

Suppose Y_1 , Y_2 are random variables on the same probability space, and let $\sigma(Y_i)$ be the smallest σ -algebra for which Y_i is continuous. Define \succeq on $\sigma(Y_1) \times \sigma(Y_2)$ by

 $ap \succeq bq$ iff $Pr(a \cap p) \ge Pr(b \cap q)$,

(日) (日) (日) (日) (日) (日) (日)

for all $a, b \in \sigma(Y_1)$ and $p, q \in \sigma(Y_2)$.

Examples

Independent Random Variables

Suppose Y_1 , Y_2 are random variables on the same probability space, and let $\sigma(Y_i)$ be the smallest σ -algebra for which Y_i is continuous. Define \succeq on $\sigma(Y_1) \times \sigma(Y_2)$ by

$$ap \succeq bq$$
 iff $Pr(a \cap p) \ge Pr(b \cap q)$,

for all $a, b \in \sigma(Y_1)$ and $p, q \in \sigma(Y_2)$.

Proposition

 $\langle \sigma(Y_1), \sigma(Y_2), \succeq \rangle$ is additively independent if and only if X_1 and X_2 are independent.

Expected Utility

Suppose $\langle X, \mathcal{E}, Pr \rangle$ is a probability space and \mathcal{A} is a set of commodities with associated utility function U. Define \succeq on $\mathcal{E} \times \mathcal{A}$ by

$$ap \succeq bq$$
 iff $Pr(a)U(p) \ge Pr(b)U(q)$,

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

for all $a, b \in \mathcal{E}$ and $p, q \in \mathcal{A}$.

Independence (a.k.a. single cancelation)

Definition

A relation \succeq on $A_1 \times A_2$ is independent iff, for all $a, b \in A_1$, $ap \succeq bp$ for some $p \in A_2$ implies that $aq \succeq bq$ for every $q \in A_2$; and, for all $p, q \in A_2$, $ap \succeq aq$ for some $a \in A_1$ implies that $bq \succeq bp$ for every $b \in A_1$.

Independence (a.k.a. single cancelation)

Definition

A relation \succeq on $A_1 \times A_2$ is independent iff, for all $a, b \in A_1$, $ap \succeq bp$ for some $p \in A_2$ implies that $aq \succeq bq$ for every $q \in A_2$; and, for all $p, q \in A_2$, $ap \succeq aq$ for some $a \in A_1$ implies that $bq \succeq bp$ for every $b \in A_1$.

* \succeq is an independent relation if $\langle A_1, A_2, \succeq \rangle$ is additively independent.

Independence (a.k.a. single cancelation)

Definition

Suppose that \succeq is an independent relation on $A_1 \times A_2$.

(i) Define \succeq_1 on A_1 : for $a, b \in A_1$, $a \succeq_1 b$ iff $ap \succeq bp$ for some $p \in A_2$; and

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(ii) define \geq_2 on A_2 similarly.

Independence (a.k.a. single cancelation)

Lemma 1

If \succeq is an independent weak ordering of $A_1 \times A_2$, then

- (i) \succeq_i is a weak ordering of A_i .
- (ii) For $a, b \in A_1$ and $p, q \in A_2$, if $a \succeq_1 b$ and $p \succeq_2 q$, then $ap \succeq bq$.
- (iii) If either antecedent inequality of (ii) is strict, so is the conclusion.

(iv) For $a, b \in A_1$ and $p, q \in A_2$, if $ap \sim bq$, then $a \succeq_1 b$ iff $q \succeq_2 p$.

Double Cancelation

Definition

A relation \succeq on $A_1 \times A_2$ satisfies double cancelation provided that, for every $a, b, f \in A_1$ and $p, q, x \in A_2$, if $ax \succeq fq$ and $fp \succeq bx$, then $ap \succeq bq$. The weaker condition in which \succeq is replaced by \sim is the Thomsen condition.

Archimedean Axiom

Definition

Suppose \succeq is an independent weak ordering of $A_1 \times A_2$. For any set *N* of consecutive integers (positive or negative, finite or infinite), a set $\{a_i \mid a_i \in A_1, i \in N\}$ is a standard sequence on component 1 iff there exists $p, q \in A_2$ such that $not(p \sim_2 q)$ and, for all $i, i + 1 \in N$, $a_i p \sim a_{i+1} q$. A parallel definition holds for the second component.

Archimedean Axiom

Definition

Suppose \succeq is an independent weak ordering of $A_1 \times A_2$. For any set *N* of consecutive integers (positive or negative, finite or infinite), a set $\{a_i \mid a_i \in A_1, i \in N\}$ is a standard sequence on component 1 iff there exists $p, q \in A_2$ such that $not(p \sim_2 q)$ and, for all $i, i + 1 \in N$, $a_i p \sim a_{i+1} q$. A parallel definition holds for the second component.

Definition

A standard sequence on component 1 $\{a_i \mid i \in N\}$ is strictly bounded iff there exist $a, b \in A_2$ such that, for all $i \in N$, $c \succ_1 a_i \succ_1 b$. A parallel definition holds for the second component.

Archimedean Axiom

Definition

Suppose \succeq is an independent weak ordering of $A_1 \times A_2$. $\langle A_1, A_2, \succeq \rangle$ is Archimedean iff every strictly bounded standard sequence (on either component) is finite.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

A relation \succeq on $A_1 \times A_2$ satisfies unrestricted solvabillity provided that, given three of $a, b \in A_1$ and $p, q \in A_2$, the fourth exists so that $ap \sim bq$.

Definition

A relation \succeq on $A_1 \times A_2$ satisfies restricted solvabillity provided that:

(i) whenever there exist a, b, b∈ A₁ and p, q∈ A₂ for which bq ≿ ap ≿ bq, then there exists b∈ A₁ such that bq ~ ap;
(ii) a similar condition holds on the second component.

Essentialness

Definition

Suppose that \succeq is a relation on $A_1 \times A_2$. Component A_1 is essential iff there exist $a, b \in A_1$ and $p \in A_2$ such that not($ap \sim bp$). A similar definition holds for A_2 .

(ロ) (同) (三) (三) (三) (○) (○)

Essentialness

Definition

Suppose that \succeq is a relation on $A_1 \times A_2$. Component A_1 is essential iff there exist $a, b \in A_1$ and $p \in A_2$ such that not($ap \sim bp$). A similar definition holds for A_2 .

Lemma 2

Suppose that \succeq is an independent relation on $A_1 \times A_2$. Then component A_1 is essential iff there exist $a, b \in A_1$ such that $a \succ_1 b$.

Additive Conjoint Structure

Definition

Suppose that A_1 and A_2 are nonempty sets and \succeq is a binary relation on $A_1 \times A_2$. The triple $\langle A_1, A_2, \succeq \rangle$ is an additive conjoint structure iff \succeq satisfies the following six axioms:

- 1. Weak ordering
- 2. Independence
- 3. Thomsen condition
- 4. Restricted solvability
- 5. Archemedean property
- 6. Each component is essential

The structure is symmetric iff, in addition,

7. For $a, b \in A_1$, there exist $p, q \in A_2$ such that $ap \sim bq$, and for $p', q' \in A_2$, there exist $a', b' \in A_1$ such that $a'p' \sim b'q'$.

Additive Conjoint Structure

Theorem 1

Suppose $\langle A_1, A_2, \succeq \rangle$ is a structure for which the weak ordering, double cancellation, unrestricted solvability, and the Archimedean axioms hold. If at least one component is essential, then $\langle A_1, A_2, \succeq \rangle$ is a symmetric, additive conjoint structure.

Representation Theorem

Theorem 2

Suppose $\langle A_1, A_2, \succeq \rangle$ is an additive conjoint structure. Then there exist functions $\phi_i : A_i \to \mathbb{R}$ such that, for all $a, b \in A_1$ and $p, q \in A_2$,

$$ap \succeq bq \quad ext{iff} \quad \phi_1(a) + \phi_2(p) \geq \phi_1(b) + \phi_2(q) \; .$$

If ϕ'_i are two other functions with the same property, then there exists constants $\alpha > 0$, β_1 and β_2 such that

$$\phi'_1 = \alpha \phi_1 + \beta_1$$
 and $\phi'_2 = \alpha \phi_2 + \beta_2$.

Representation Theorem

Uniqueness of multiplicative representation

Proposition

Suppose $\langle A_1, A_2, \succeq \rangle$ is an additive conjoint structure. Then there exist functions $\psi_i : A_i \to \mathbb{R}^+$ such that, for all $a, b \in A_1$ and $p, q \in A_2$,

$$ap \succeq bq$$
 iff $\psi_1(a)\psi_2(p) \ge \psi_1(b)\psi_2(q)$.

If ψ'_i are two other functions with the same property, then there exists constants $\alpha > 0$, β_1 and β_2 such that

$$\phi_1' = \beta_1 \psi_1^{lpha}$$
 and $\psi_2' = \beta_2 \psi_2^{lpha}$.

Extensive Structure

Definition

Suppose $\langle A_1, A_2, \succeq \rangle$ is a symmetric, additive conjoint structure. It is bounded iff there are $\underline{a}, \overline{a} \in A_1, p, \overline{p} \in A_2$ such that

and, for $a \in A_1$ and $p \in A_2$,

 $\bar{a} \gtrsim_1 a \gtrsim_1 \underline{a}$ and $\bar{p} \gtrsim_2 p \gtrsim_2 \underline{p}$.

Extensive Structures

Extensive Structures

Moreover, for $a, b \in A_1$, we define: $\pi(a) \in A_2$ as the (unique up to \sim_2) solution to $\underline{a}\pi(a) \sim ap$; $B_1 = \{ab \mid a, b \succ_1 \underline{a} \text{ and } \overline{ap} \succeq a\pi(b)\}$; for $ab \in B_1$, $a \circ b$ is the (unique up to \sim_1) solution to $(a \circ b)p \sim a\pi(b)$. Similar definitions hold for A_2 with $\alpha(p)$ playing the role of $\pi(a)$.

Lemma 5

If $\langle A_1, A_2, \succeq \rangle$ is a bounded, symmetric, additive conjoint structure, and if B_1 is nonempty, then $\langle A_1, \succeq_1, B_1, \circ \rangle$ is an extensive structure with no essential maximum.

Subtractive Structures

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

Subtractive Structures

Define the dual relations \succeq' and \succeq' as follows:

 $ap \succeq bq$ iff $aq \succeq' bp$.

Theorem 5

If two relations are dual, then transitivity and double cancellation are dual properties, and independence, restricted and unrestricted solvability, and the Archemedean property are self-dual properties.