
Chapter 5:
Probability Representations



Definition
Suppose that X is a nonempty set (sample space) and that E is
a nonempty family of subsets of X . Then E is an algebra of sets
on X iff, for every A,B ∈ E :

1. −A ∈ E .
2. A ∪ B ∈ E

Furthermore, if E is closed under countable unions, the E is
called a σ-algebra on X .
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Kolmogorov Axioms

Definition
Suppose that X is a nonempty set, that that E is an algebra of
sets on X , and that P is a function from E into the real numbers.
The triple 〈X , E ,P〉 is a (finitely additive) probability space iff, for
every A,B ∈ E :

1. P(A) ≥ 0.
2. P(X ) = 1.
3. If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).



Kolmogorov Axioms

Definition
It is a probability space 〈X , E ,P〉 is countably additive if in
addition:

1. E is a σ-algebra on X .
2. If Ai ∈ E and Ai ∩ Aj = ∅, i 6= j , then

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).



finite X + algebra ⇒ σ-algebra

finite X + probability space ⇒ countably additive probability
space

〈X , E ,P〉 measure space +
P(X ) = 1

⇔ 〈X , E ,P〉 countably additive
probability space

Non-countably-additive prob-
ability space

⇔ infinite X + (non-σ) algebra



Necessary Conditions

Definition
Suppose that X is a nonempty set, that E is an algebra of sets
on X , and that % is a relation on E . The triple 〈X , E ,%〉 is a
structure of qualitative probability iff for every A,B,C ∈ E :

1. 〈E ,%〉 is a weak ordering.
2. X � ∅ and A % ∅.
3. Suppose that A ∩ B = A ∩ C = ∅. Then B % C iff

A ∪ B % A ∪ C.



Necessary Conditions

Definition
Suppose E is an algebra of sets an that ∼ is an equivalence
relation on E . A sequence A1, . . . ,Ai , . . ., where Ai ∈ E , is a
standard sequence relative to A ∈ E iff there exist Bi ,Ci ∈ E
such that:

(i) A1 = B1 and B1 ∼ A ;
(ii) Bi ∩ Ci = ∅ ;
(iii) Bi ∼ Ai ;
(iv) Ci ∼ A ;
(v) Ai+1 = Bi ∪ Ci .



Necessary Conditions

Definition
A structure of qualitative probability is Archimedean iff, for every
A � ∅, any standard sequence relative to A is finite.



Nonsufficiency of Qualitative Probability

Let X = {a,b, c,d ,e} and let E be all subsets of X . Consider
any order for which
(1) {a} � {b, c}, {c,d} � {a,b} and {b,e} � {a, c} .

Proposition
If the relation % on E satisfies (1) and has an order-preserving
(finitely additive) probability representation, then

{d ,e} � {a,b, c} .

Proposition
There is a relation % such that 〈X , E ,%〉 is a structure of
qualitative probability and {a,b, c} � {d ,e}.
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Nonsufficiency of Qualitative Probability

Lesson?
A probability representation has metrical structure that a
(Archimedean) structure of qualitative probability does not.

Recall that, to solve this sort of problem wrt extensive
measurement, we had axiom (4) in Definition 3 of Chapter 3
(p. 84). Why not impose a similar axiom here?

What a great idea! Let’s call it ‘Axiom 5’.
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Sufficient Conditions

Axiom 5
Suppose 〈X , E ,%〉 is a structure of qualitative probability. If
A,B,C,D ∈ E are such that A ∩ B = ∅, A � C, and B % D, then
there exist C′,D′,E ∈ E such that:

(i) E ∼ A ∪ B ;
(ii) C′ ∩ D′ = ∅ ;
(iii) E ⊃ C′ ∪ D′ ;
(iv) C′ ∼ C and D′ ∼ D .



Sufficient Condition

Proposition
If a finite structure of qualitative probability satisfies Axiom 5,
then its equivalence classes form a single standard sequence.

Similar to “Lego blocks” in the case of extensive measurement.
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Representation Theorem

Theorem 2
Suppose that 〈X , E ,%〉 is an Archimedean structure of
qualitative probability for which Axiom 5 holds, then there exists
a unique order-preserving function P such that 〈X , E ,P〉 is a
finitely additive probability space.



Countably Additive Representation

Definition
Suppose that 〈X , E ,%〉 is a structure of qualitative probability
and that E is a σ-algebra. We say that % is monotonically
continuous on E iff for any sequence A1,A2, . . . in E and any
B ∈ E , if Ai ⊂ Ai+1 and B % Ai , for all i , then B %

⋃∞
i=1 Ai .

Theorem 4
A finitely additive probability representation of a structure of
qualitative probability, on a σ-algebra, is countably additive iff
the structure is monotonically continuous.



Countably Additive Representation

Definition
Suppose that 〈X , E ,%〉 is a structure of qualitative probability
and that E is a σ-algebra. We say that % is monotonically
continuous on E iff for any sequence A1,A2, . . . in E and any
B ∈ E , if Ai ⊂ Ai+1 and B % Ai , for all i , then B %

⋃∞
i=1 Ai .

Theorem 4
A finitely additive probability representation of a structure of
qualitative probability, on a σ-algebra, is countably additive iff
the structure is monotonically continuous.



Countably Additive Representation

Definition
Suppose that 〈X , E ,%〉 is a structure of qualitative probability
and that E is a σ-algebra. We say that % is monotonically
continuous on E iff for any sequence A1,A2, . . . in E and any
B ∈ E , if Ai ⊂ Ai+1 and B % Ai , for all i , then B %

⋃∞
i=1 Ai .

Theorem 4
A finitely additive probability representation of a structure of
qualitative probability, on a σ-algebra, is countably additive iff
the structure is monotonically continuous.



Countably Additive Representation

Definition
Let % be a weak ordering of an algebra of sets E . An even
A ∈ E is an atom iff A � E and for any B ∈ E , if A ⊃ B, then
A ∼ B or B ∼ ∅.

Theorem 5
Suppose that 〈X , E ,%〉 is a structure of qualitative probability, E
is a σ-algebra, and there are no atoms. Then there is a unique
order preserving probability representation, and it is countably
additive.
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QM-Algebra

Definition
Suppose that X is a nonempty set and that E is a nonempty
family of subsets of X . Then E is a QM-algebra of sets on X iff,
for every A,B ∈ E

1. −A ∈ E ;
2. If A ∩ B = ∅, then A ∪ B ∈ E .

Furthermore, if E is closed under countable unions of mutually
disjoint sets, then E is called a QM σ-algebra.
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QM-Algebra

Axiom 3′

Suppose that A ∩ B = C ∩ D = ∅. If A % C and B % D, then
A ∪ B % C ∪ D; moreover, if either hypothesis is �, then the
conclusion is �.

Theorem 3
If E is a QM-algebra and if 〈X , E ,%〉 satisfies Axioms 1, 2, 3′, 4,
and 5, then there is a unique order-preserving (finitely additive)
probability representation on E .
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Independent Events
Necessary Conditions

Definition
Suppose E is an algebra of sets on X and ⊥ is a binary relation
on E . Then ⊥ is an independence relation iff

1. ⊥ is symmetric.
2. For A ∈ E , {B |A ⊥ B} ⊂ E is a QM-algebra.

Definition
Let E be an algebra of sets and ⊥ an independence relation on
E . For m ≥ 2, A1, . . . ,Am ∈ E are ⊥-independent iff, for every
M ⊂ {1, . . . ,m}, every B in the smallest subalgebra containing
{Ai |i ∈ M}, and every C in the smallest subalgebra containing
{Ai |i /∈ M}, we have B ⊥ C.
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Independent Events
Necessary Conditions

Definition
Suppose that 〈X , E ,%〉 is a structure of qualitative probability
and ⊥ is an independence relation on E . The quadruple
〈X , E ,%,⊥〉 is a structure of qualitative probability with
independence iff

3. Suppose that A,B,C,D ∈ E , A ⊥ B, and C ⊥ D. If A % C
and B % D, then A ∩ B % C ∩ D; moreover, if A � C,
B � D, and B � ∅, then A ∩ B � C ∩ D.



Structural Condition

Definition
The structure 〈X , E ,%,⊥〉 is complete iff the following additional
axiom holds:

4. For any A1, . . . ,Am,A ∈ E , there exists A′ ∈ E with A′ ∼ A
and A′ ⊥ Ai . Moreover, if A1, . . . ,Am are ⊥-independent,
then A′ can be chosen so that A1, . . . ,Am,A′ are also
⊥-independent.



Conditional Probability

Definition
Suppose 〈X , E ,%,⊥〉 is a structure of qualitative probability with
independence. Let N = {A |A ∼ ∅} ⊂ E . If A,C ∈ E and
B,D ∈ E −N , define

A|B %′ C|D

iff there exist A′,B′,C′,D′ ∈ E with

A′ ∼ A ∩ B, B′ ∼ B, C′ ∼ C ∩ D, D′ ∼ D ;

A′ ⊥ D′ and C′ ⊥ B′ ;

and
A′ ∩ D′ % C′ ∩ B .′



Conditional Probability

Definition
The structure 〈X , E ,%,⊥〉 is Archimedean iff every standard
sequence is finite, where {Ai} is a standard sequence iff for all
i , Ai ∈ E −N , Ai+1 ⊃ Ai , and

X |X �′ Ai |Ai+1 ∼′ A1|A2 .



Conditional Probability

Axiom 8
If A|B %′ C|D, then there exists C′ ∈ E such that C ∩ D ⊂ C′

and A|B ∼′ C′|D .

* Axiom 8 is somewhere in strength between Axiom 5 and
Axiom 5′. In particular, it requires an infinite sample space.
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Conditional Probability

Theorem 7
Suppose that 〈X , E ,%,⊥〉 is an Archimedean and complete
structure of qualitative probability with independence such that
Axiom 8 is satisfied. Then there is a unique probability
representation in which conditional probabilities preserve %′.

* Axiom 8 is somewhere in strength between Axiom 5 and
Axiom 5′. In particular, it requires an infinite sample space.
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Chapter 6:
Additive Conjoint Measurement



Decomposable Structures

Definition
Let A1,A2 be nonempty sets, and let % be a weak ordering on
A1 × A2. The triple 〈A1,A2,%〉 is decomposable if there are real
valued functions φ1 : A1 → R, φ2 : A2 → R, and F : R× R→ R,
where F is 1-1 in each variable, such that, for all a,b ∈ A1 and
p,q ∈ A2,

ap % bq iff F [φ1(a), φ2(p)] ≥ F [φ1(b), φ2(q)] .



Additive Independence

Definition
A decomposable structure 〈A1,A2,%〉 is additively independent
if, for all a,b ∈ A1 and p,q ∈ A2,

ap % bq iff φ1(a) + φ2(p) ≥ φ1(b) + φ2(q) .



Examples

Proposition
Suppose 〈A1,A2,%〉 is a decomposable structure such that

ap % bq iff ψ1(a)ψ2(p) ≥ ψ1(b)ψ2(q) ,

for positive real-valued functions ψ1, ψ2. Then 〈A1,A2,%〉 is
additively independent.

ap % bq iff logψ1(a) + logψ2(p) ≥ logψ1(b) + logψ2(q)
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Examples

Momentum

p = mv

m1v1 ≥ m2v2 iff log m1 + log v1 ≥ log m2 + log v2



Examples

Independent Random Variables
Suppose Y1,Y2 are random variables on the same probability
space, and let σ(Yi) be the smallest σ-algebra for which Yi is
continuous. Define % on σ(Y1)× σ(Y2) by

ap % bq iff Pr(a ∩ p) ≥ Pr(b ∩ q) ,

for all a,b ∈ σ(Y1) and p,q ∈ σ(Y2).

Proposition
〈σ(Y1), σ(Y2),%〉 is additively independent if and only if X1 and
X2 are independent.
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Examples

Expected Utility
Suppose 〈X , E ,Pr〉 is a probability space and A is a set of
commodities with associated utility function U. Define % on
E × A by

ap % bq iff Pr(a)U(p) ≥ Pr(b)U(q) ,

for all a,b ∈ E and p,q ∈ A.



Necessary Conditions
Independence (a.k.a. single cancelation)

Definition
A relation % on A1 × A2 is independent iff, for all a,b ∈ A1,
ap % bp for some p ∈ A2 implies that aq % bq for every q ∈ A2;
and, for all p,q ∈ A2, ap % aq for some a ∈ A1 implies that
bq % bp for every b ∈ A1.

* % is an independent relation if 〈A1,A2,%〉 is additively
independent.
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Necessary Conditions
Independence (a.k.a. single cancelation)

Definition
Suppose that % is an independent relation on A1 × A2.

(i) Define %1 on A1: for a,b ∈ A1, a %1 b iff ap % bp for some
p ∈ A2; and

(ii) define %2 on A2 similarly.



Necessary Conditions
Independence (a.k.a. single cancelation)

Lemma 1
If % is an independent weak ordering of A1 × A2, then

(i) %i is a weak ordering of Ai .
(ii) For a,b ∈ A1 and p,q ∈ A2, if a %1 b and p %2 q, then

ap % bq.
(iii) If either antecedent inequality of (ii) is strict, so is the

conclusion.
(iv) For a,b ∈ A1 and p,q ∈ A2, if ap ∼ bq, then a %1 b iff

q %2 p.



Necessary Conditions
Double Cancelation

Definition
A relation % on A1 × A2 satisfies double cancelation provided
that, for every a,b, f ∈ A1 and p,q, x ∈ A2, if ax % fq and
fp % bx , then ap % bq. The weaker condition in which % is
replaced by ∼ is the Thomsen condition.



Necessary Conditions
Archimedean Axiom

Definition
Suppose % is an independent weak ordering of A1 × A2. For
any set N of consecutive integers (positive or negative, finite or
infinite), a set {ai |ai ∈ A1, i ∈ N} is a standard sequence on
component 1 iff there exists p,q ∈ A2 such that not(p ∼2 q)
and, for all i , i + 1 ∈ N, aip ∼ ai+1q. A parallel definition holds
for the second component.

Definition
A standard sequence on component 1 {ai | i ∈ N} is strictly
bounded iff there exist a,b ∈ A2 such that, for all i ∈ N,
c �1 ai �1 b. A parallel definition holds for the second
component.



Necessary Conditions
Archimedean Axiom

Definition
Suppose % is an independent weak ordering of A1 × A2. For
any set N of consecutive integers (positive or negative, finite or
infinite), a set {ai |ai ∈ A1, i ∈ N} is a standard sequence on
component 1 iff there exists p,q ∈ A2 such that not(p ∼2 q)
and, for all i , i + 1 ∈ N, aip ∼ ai+1q. A parallel definition holds
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Necessary Conditions
Archimedean Axiom

Definition
Suppose % is an independent weak ordering of A1 × A2.
〈A1,A2,%〉 is Archimedean iff every strictly bounded standard
sequence (on either component) is finite.



Sufficient Condition
Solvability

Definition
A relation % on A1 × A2 satisfies unrestricted solvabillity
provided that, given three of a,b ∈ A1 and p,q ∈ A2, the fourth
exists so that ap ∼ bq.



Sufficient Condition
Solvability

Definition
A relation % on A1 × A2 satisfies restricted solvabillity provided
that:

(i) whenever there exist a, b̄,b ∈ A1 and p,q ∈ A2 for which
b̄q % ap % bq, then there exists b ∈ A1 such that bq ∼ ap;

(ii) a similar condition holds on the second component.



Sufficient Condition
Essentialness

Definition
Suppose that % is a relation on A1 × A2. Component A1 is
essential iff there exist a,b ∈ A1 and p ∈ A2 such that
not(ap ∼ bp). A similar definition holds for A2.

Lemma 2
Suppose that % is an independent relation on A1 × A2. Then
component A1 is essential iff there exist a,b ∈ A1 such that
a �1 b.
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Additive Conjoint Structure

Definition
Suppose that A1 and A2 are nonempty sets and % is a binary
relation on A1 × A2. The triple 〈A1,A2,%〉 is an additive conjoint
structure iff % satisfies the following six axioms:

1. Weak ordering
2. Independence
3. Thomsen condition
4. Restricted solvability
5. Archemedean property
6. Each component is essential

The structure is symmetric iff, in addition,
7. For a,b ∈ A1, there exist p,q ∈ A2 such that ap ∼ bq, and

for p′,q′ ∈ A2, there exist a′,b′ ∈ A1 such that a′p′ ∼ b′q′.



Additive Conjoint Structure

Theorem 1
Suppose 〈A1,A2,%〉 is a structure for which the weak ordering,
double cancellation, unrestricted solvability, and the
Archimedean axioms hold. If at least one component is
essential, then 〈A1,A2,%〉 is a symmetric, additive conjoint
structure.



Representation Theorem

Theorem 2
Suppose 〈A1,A2,%〉 is an additive conjoint structure. Then
there exist functions φi : Ai → R such that, for all a,b ∈ A1 and
p,q ∈ A2,

ap % bq iff φ1(a) + φ2(p) ≥ φ1(b) + φ2(q) .

If φ′i are two other functions with the same property, then there
exists constants α > 0, β1 and β2 such that

φ′1 = αφ1 + β1 and φ′2 = αφ2 + β2 .



Representation Theorem
Uniqueness of multiplicative representation

Proposition
Suppose 〈A1,A2,%〉 is an additive conjoint structure. Then
there exist functions ψi : Ai → R+ such that, for all a,b ∈ A1
and p,q ∈ A2,

ap % bq iff ψ1(a)ψ2(p) ≥ ψ1(b)ψ2(q) .

If ψ′
i are two other functions with the same property, then there

exists constants α > 0, β1 and β2 such that

φ′1 = β1ψ
α
1 and ψ′

2 = β2ψ
α
2 .



Extensive Structure

Definition
Suppose 〈A1,A2,%〉 is a symmetric, additive conjoint structure.
It is bounded iff there are a, ā ∈ A1, p, p̄ ∈ A2 such that

ap̄ ∼ āp

and, for a ∈ A1 and p ∈ A2,

ā %1 a %1 a and p̄ %2 p %2 p .



Extensive Structures

Moreover, for a,b ∈ A1, we define: π(a) ∈ A2 as the (unique up
to ∼2) solution to aπ(a) ∼ ap;
B1 = {ab |a,b �1 a and āp % aπ(b)}; for ab ∈ B1, a ◦ b is the
(unique up to ∼1) solution to (a ◦ b)p ∼ aπ(b). Similar
definitions hold for A2 with α(p) playing the role of π(a).

Lemma 5
If 〈A1,A2,%〉 is a bounded, symmetric, additive conjoint
structure, and if B1 is nonempty, then 〈A1,%1,B1, ◦〉 is an
extensive structure with no essential maximum.
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Subtractive Structures

Define the dual relations %′ and %′ as follows:

ap % bq iff aq %′ bp .

Theorem 5
If two relations are dual, then transitivity and double
cancellation are dual properties, and independence, restricted
and unrestricted solvability, and the Archemedean property are
self-dual properties.
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