# Representations with Thresholds \& Representation of Choice Probabilities 

Chapters 16 and 17

- $n$ : a standard cup of coffee containing $n$ granules of sugar


## The Basic Problem

- Given any two cups, $m$ \& $n$, the subject expresses preference for one over the other or an indifference relation between them.
- The subject cannot distinguish between $n$ and $n+1$ by taste for any $n$. So $(n \sim n+1)$.
- But for some $k$, the subject isn't indifferent between $n$ and $n+k$.
- Therefore, ~ cannot be transitive.

- But $\succ$ is expected to be.
- How do we represent this?


## 16: Representations with Thresholds

Definition 1 (p. 303): Suppose $\succ$ and $\sim$ are binary relations on A, where A is non-empty

1. $\langle A, \succ>$ is a Strict Partial Order iff $\succ$ is asymmetric and transitive
2. $\langle A, \succ>$ is a Graph iff $\sim$ is reflexive and symmetric
3. $\sim$ is the Symmetric Complement of $\succ$ iff "a $\sim b$ " is equivalent to "not( $\mathrm{a} \succ \mathrm{b}$ ) and $\operatorname{not}(\mathrm{b} \succ \mathrm{a})$ "

Definition 2 (p. 305): Let $\succ$ be an asymmetric binary relation on $A$. A pair of real-valued functions $\left\langle\varphi^{--}, \delta^{-}\right\rangle$on $A$ is an UpperThreshold Representation iff

- $\delta^{--}$is nonnegative for all $a, b, c$, in $A$
- If $a \succ b$, then $\varphi^{-( }(a) \geq \varphi^{-(b)}+\delta^{-(b)}$
- If $\varphi^{-( }(a)>\varphi^{-(b)}+\boldsymbol{\delta}^{-(b)}$, then $a \succ b$.
- If $\varphi^{--}(a)=\varphi^{--}(b)$, then $a \succ c$ iff $b \succ c$.


Definition 2 (continued): $\left\langle\varphi \_, \delta_{\_}\right\rangle$on $\mathbf{A}$ is a Lower-Threshold

## Representation iff

- $\delta_{\text {_- }}$ is nonpositive
- If $\mathrm{a}<\mathrm{b}$, then $\varphi_{-}(\mathrm{a}) \leq \varphi_{-}(\mathrm{b})+\delta_{-}$(b)
- If $\varphi_{-}(a)<\varphi_{-}(b)+\delta_{-}(b)$, then $a \prec b$.
- If $\varphi_{\ldots}(\mathrm{a})=\varphi_{\text {_- }}(\mathrm{b})$, then $\mathrm{a} \prec \mathrm{c}$ iff $\mathrm{b} \prec \mathrm{c}$.



## Definition 2 (continued): $\left\langle\varphi, \delta^{-}, \delta_{-}\right\rangle$on $A$ is a Two-Sided Threshold Representation iff

- $<\varphi, \delta^{-}>$is an upper-threshold representation
- $<\varphi, \delta_{n}>$ is a lower-threshold representation
- $a \sim b$ then $\varphi(a)$ lies in the interval $\left[\varphi(b)+\delta_{--}(b), \varphi(b)+\delta^{--}(b)\right]$

Definition 2 (continued): $\left\langle\varphi^{--}, \delta^{-}\right\rangle$is said to be Strong iff iv holds. $\left\langle\varphi^{-}, \delta^{-}\right\rangle$is said to be Strong* iff iv* holds.

$$
\begin{aligned}
& \text { (iv) } \mathrm{a} \succ \mathrm{~b} \text { iff } \varphi^{--}(\mathrm{a})>\varphi^{--}(\mathrm{b})+\delta^{--}(\mathrm{b}) \\
& \left(\mathrm{iv}^{*}\right) \mathrm{a} \succ \mathrm{~b} \text { iff } \varphi^{--}(\mathrm{a}) \geq \varphi^{--}(\mathrm{b})+\delta^{--}(\mathrm{b})
\end{aligned}
$$

(same idea for lower and two-sided representations)

Definition 3 (p.307): Let $\succ$ be an asymmetric binary relation on $\boldsymbol{A}$. The Upper Quasiorder induced by $\succ, \mathrm{Q}^{-}$and the Lower Quasiorder induced by $\succ$, Q are defined as follows:

- ( $\mathrm{a} \mathrm{Q}^{-} \mathrm{b}$ ) iff for all c in A , if $\mathrm{b} \succ \mathrm{c}$ then $\mathrm{a} \succ \mathrm{c}$.
- ( $a Q b$ ) iff for all $c$ in $A$, if $c \succ a$ then $c \succ b$.

We define the I relation in terms of Quasiorders...

1. ( $\mathrm{a} I^{-} \mathrm{b}$ ) iff ( $\mathrm{a} Q^{-} \mathrm{b}$ ) and ( $\mathrm{b} Q^{-} \mathrm{a}$ )

In other words, ( $\mathrm{b} \succ \mathrm{c}$ iff $\mathrm{a} \succ \mathrm{c}$ )
2. Same thing for I_

## Theorem 1 (p. 307)

If $<\mathrm{A}, \succ>$ has an upper threshold representation, then the upper quasiorder induced by $\succ$ is connected. So it is a weak order.

- In layman's terms, if, in our structure, preference implies the sort of function we described, then the way in which the elements of preference pairs relate to a third element is connected. So we get a weak order. Bam!


Definition 4 (p.309): Suppose $\succ$ is an irreflexive binary relation on $\boldsymbol{A}$. $\langle\mathrm{A}, \succ>$ is an Interval Order iff

- For all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, in $A$, If $\mathrm{a} \succ \mathrm{c}$ and $\mathrm{b} \succ \mathrm{d}$, then either $\mathrm{a} \succ \mathrm{d}$ or b $\succ$ c

$\stackrel{C}{C}$


## Theorem 2 (p. 310)

- If $\succ$ is binary on $A$ and is asymmetric, then the upper quasiorder and the lower quasiorder are connected and equivalent.
- Furthermore, having one of these connected quasiorders plus asymmetry is equivalent to something being an interval order.
- What this means is that transitivity of $\succ$ falls out of the definition of interval order.
- Wait for it...



## Definition 5 (P. 310): Suppose $\langle\mathrm{A}, \succ>$ is an interval order.

## Then it is a Semiorder iff

- For all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ in A , If $\mathrm{a} \succ \mathrm{b}$ and $\mathrm{b} \succ \mathrm{c}$, then either $\mathrm{a} \succ \mathrm{d}$ or $d \succ c$
- This may look trivial (because it looks like we're only saying that d falls somewhere on this line), but it is not.
- Suppose you're standing at c trying to judge the ordering: obviously a $\succ \mathrm{c}$ and not: $\mathrm{d} \succ \mathrm{c}$
- Now hang out at a . $\mathrm{a} \succ \mathrm{b}$ but not: $\mathrm{a} \succ \mathrm{d}$



## What we've learned so far...

- A necessary condition for the construction of a one-sided threshold representation of $\succ$ is that $\langle\mathrm{A}, \succ>$ is an interval order.
- A necessary condition for the construction of a two-sided threshold representation of $\succ$ is that $\langle A\rangle$,$\rangle is an semiorder.$

And now we come to...

- A necessary condition for the construction of the set of equivalence classes for a two-sided threshold representation is that they contain a finite or countable order-dense subset.
- But is this enough? Can we construct a threshold representation for any interval order or semiorder whose equivalence classes have a countable order-dense subset?
- Yes we can!


## Definition 7 (P. 315): Suppose $\left\langle\varphi, \delta^{-}, \delta_{-}\right\rangle$is a two-sided threshold representation of $\langle\mathrm{A}, \succ\rangle$. It is said to be Tight iff

- For all a, b, c in $A$,

1. If $a / b$ then $\varphi(a)=\varphi(b)$
2. $\delta^{-}(a)=\sup \left\{\varphi\left(a^{\prime}\right)-\varphi(a) \mid a^{\prime} \in A\right.$ and $\left.a^{\prime} \sim a\right\}$
3. $\delta_{\ldots}(a)=\inf \left\{\varphi\left(a^{\prime}\right)-\varphi(a) \mid a^{\prime} \in A\right.$ and $\left.a^{\prime} \sim a\right\}$

Key points about Tight Representations
-The order induced by $\varphi$ is the maximal ordering compatible with $\succ$. (coarsest ordering)
-The threshold of delta is as small in absolute value as it can be.

## Theorem 11 (p. 320)

- Theorem 11 officially gives us uniqueness and existence!
- To get this, we have to assume...
- $\varphi$ is dense on an interval
- $\delta^{--}(\varphi)$ is continuous and bounded away from 0 on that interval
- Monotonicity (i.e. $\varphi+\delta$ is a strictly increasing function of $\varphi$
- Wait for it...



## Definition 11 (P. 337): Let P be a binary probability function

 on $A \times A$. For all $a, b, c, d$ in $A$ :- P has Weak Stochastic Transitivity iff:
if $P(\mathrm{a}, \mathrm{b}) \geq 1 / 2$ and $P(\mathrm{~b}, \mathrm{c}) \geq 1 / 2$, then $P(\mathrm{a}, \mathrm{c}) \geq 1 / 2$
- P has Weak Independence iff:
if $P(\mathrm{a}, \mathrm{c})>P(\mathrm{~b}, \mathrm{c})$, then $P(\mathrm{a}, \mathrm{d}) \geq P(\mathrm{~b}, \mathrm{~d})$
- $P$ has Strong Stochastic transitivity iff

If $P(\mathrm{a}, \mathrm{b}) \geq 1 / 2$ and $P(\mathrm{~b}, \mathrm{c}) \geq 1 / 2$, then $P(\mathrm{a}, \mathrm{c}) \geq \max [P(\mathrm{a}, \mathrm{b}), P(\mathrm{~b}, \mathrm{c})$

## 17: Representation of Choice Probabilities

- Choose the option that maximizes.
- Problem: If we choose to maximize, how do we explain our inconsistent choices?
- Choice probabilities are the function of two arguments, an option and a set of options.
- Given option set B and option $a \in B$, the probability of choosing a if $B$ is the set of
 feasible options is $P(\mathrm{a}, \mathrm{B})$.

Definition 1 (p.384):
< A, M, P > is a Structure of Choice Probabilities iff:

- A is a set.
- It comprises all objects in the domain that we're looking at.
- $M$ is also a set.
- It is nonempty and finite
- It has $2^{A}$ members (the set of characteristic functions of subsets of A).
- P is a real-valued function with the following features...


## Definition 1 (continued):

< A, M, P > is a Structure of Choice Probabilities iff

- $\operatorname{Dom}(P)=\{(a, B) \mid a \in B \in M\}$
- $\mathrm{P}(\mathrm{a}, \mathrm{B}) \geq 0$
- $\sum_{b \in B} P(\mathrm{~b}, \mathrm{~B})=1$
- Furthermore...
- <A, M, P> is finite iff $A$ is finite
- <A, M, P> is closed iff
-A is finite
$-M=\{B \subset A \mid B \neq \varnothing\}$



## Definition 2 (P. 388):

$<\mathrm{A}, \mathrm{M}, \mathrm{P}\rangle$ is a Pair Comparison Structure iff:

- <A, M, P> is a structure of choice probability
- $M$ is a reflexive binary relation on $A$
e.g. if our parameters are $P(\mathrm{a}, \mathrm{b})$, then, since M is reflexive, $P(\mathrm{a}$, a) $=1 / 2$.
*Notation note: instead of writing $(a, b) \in M$, we write $a M b$. They will all be in pairs
- $M$ is a symmetric binary relation of $A$
- aMb implies bMa
- $\langle A, M, P>$ is complete iff $M=A \times A$

Definition 3 (p. 389):
Let <A, M, P> be a complete structure of pair comparison (so, $M=A \times A)$, and $P(a, b) \geq 1 / 2$ and $P(b, c) \geq 1 / 2:$

Weak Stochastic Transitivity (WST)
holds iff $P(\mathrm{a}, \mathrm{c}) \geq 1 / 2$
This means that if a $\succ / \sim \mathrm{b}, \mathrm{b} \succ / \sim \mathrm{c}$, then $\mathrm{a} \succ / \sim \mathrm{c}$
Moderate Stochastic Transitivity (MST)
holds iff $P(\mathrm{a}, \mathrm{c}) \geq \min [P(\mathrm{a}, \mathrm{b}), P(\mathrm{~b}, \mathrm{c})]$
Strong Stochastic Transitivity (SST)
holds iff $\mathrm{P}(\mathrm{a}, \mathrm{c}) \geq \max [P(\mathrm{a}, \mathrm{b}), P(\mathrm{~b}, \mathrm{c})]$
Strict Stochastic Transitivity (ST) holds iff SST holds and a strict inequality in the hypotheses implies a strict inequality in the conclusion.

## Definition 4 (390):

A complete structure of pair comparison satisfies the Strong-Utility Model iff:

- There exists a real-valued function $\varphi$ on $A$ such that for all $a, b, c, d \in A$ :

$$
\varphi(\mathrm{a})-\varphi(\mathrm{b}) \geq \varphi(\mathrm{c})-\varphi(\mathrm{d}) \text { iff } P(\mathrm{a}, \mathrm{~b}) \geq P(\mathrm{c}, \mathrm{~d})
$$

* $P(\mathrm{a}, \mathrm{b}) \geq P(\mathrm{c}, \mathrm{d})$ iff $a b \succ / \sim c d$



## Definition 5 (p. 390):

## A structure of pair comparison $\langle\mathrm{A}, \mathrm{M}, \mathrm{P}>$ is a Complete Difference Structure iff:

- $M=A \times A$ (same as completeness for pair comparison structures)
- The Monotonicity and the Solvability axioms hold.
- The Monotonicity Axiom:
- If $P(\mathrm{a}, \mathrm{b}) \geq P\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right)$ and $P(\mathrm{~b}, \mathrm{c}) \geq P\left(\mathrm{~b}^{\prime}, \mathrm{c}^{\prime}\right)$, then $P(\mathrm{a}$, c) $\geq P\left(a^{\prime}, c^{\prime}\right)$.
- if either antecedent inequality is strict, the conclusion is also strict.
- The Solvability Axiom:
- For any $\mathrm{t} \in(0,1)$ that satisfies $P(\mathrm{a}, \mathrm{b}) \geq \mathrm{t} \geq P(\mathrm{a}, \mathrm{d})$, there exists $c \in A$, such that $P(\mathrm{a}, \mathrm{c})=\mathrm{t}$.


## Theorems 1 \& 2 p. 391-2)

## Theorem 1

- If $<A, M, P>$ is a COMPLETE difference structure, then we can get a function that takes us from A onto some real interval.
- This function is unique up to a positive linear transformation.


## Theorem 2

- If $<A, M, P>$ is a LOCAL difference structure, then we can get a function that takes us from A onto some real interval.
- This function is unique up to a positive linear transformation.


Definition 6 (p. 392): $\mathrm{a} \succ / \sim \mathrm{b}$ iff aMb and $P(\mathrm{a}, \mathrm{b}) \geq 1 / 2$. A pair comparison structure $<\mathrm{A}, \mathrm{M}, \mathrm{P}>$ is a Local Difference
Structure iff, for all $a, a^{\prime}, b, b^{\prime}, c, c^{\prime} \in A$ :

- The following Axioms hold:

1. Comparability: Any two elements that are bounded from above or below by the same third element are comparable
2. Monotonicity: same as before, except adding M's (thereby restricting the domain of P )
3. Solvability: same as before, except adding M's
4. Connectedness: Any two nonequivalent elements of $A$ are connected either by an increasing or a decreasing sequence, but not both.

## Definition 7 (p. 394): A complete pair comparison structure $<\mathrm{A}, \mathrm{M}, \mathrm{P}>$ with $A=A_{1} \times \ldots \times A_{n}$ is an Additive-Difference

Structure iff, for all $\mathrm{a}, \mathrm{a}^{\prime}, \mathrm{b}, \mathrm{b}^{\prime}, \mathrm{c}, \mathrm{c}^{\prime}, \mathrm{d}, \mathrm{d}^{\prime} \in A$ :

- The following axioms hold:

1. Independence: Primes and not primes agree on one component. And the pairs: $(a, c),\left(a^{\prime}, c^{\prime}\right),(b, d),\left(b^{\prime}, c^{\prime}\right)$ agree on all others. $P(\mathrm{a}, \mathrm{b}) \geq P\left(\mathrm{a}^{`}, \mathrm{~b}^{`}\right)$ iff $P(\mathrm{c}, \mathrm{d}) \geq P\left(\mathrm{c}^{`}, \mathrm{~d}^{`}\right)$
2. Monotonicity: Same as before, except now we are supposing that $a, a^{`}, b, b^{`}, c, c^{`}$ coincide on all but one factor.
3. Solvability: Same as before, except that coincides with b and d on any factor on which they coincide
4. The Thomsen Condition: cancellation stuff

## Theorems 3 \& $4($ р. 395-7)

- Theorem 3 just tells us that we get a representation theorem for additive difference structures.
- But intransitive preferences can survive Theorem 3 (see P. 398-9)
- So we introduce Theorem 4, which gets rid of intransitive preferences.

- And everyone is happy


## Definition 8 (p. 410):

A closed structure of choice probabilities <A, M, P> satisfies Simple Scalability iff:

- There exists a real-valued $\varphi$ on $A$ \& a family of real-valued functions $\left\{F_{\beta}\right\}$
- $2 \leq \beta \leq \alpha$, (the cardinality of A is at least as big as the cardinality of $B$, which is at least as big as 2)
- For any $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{h}\} \subseteq A$, with $P(\mathrm{a}, \mathrm{B}) \neq 1$, the following holds:

$$
P(\mathrm{a}, \mathrm{~B})=\mathrm{F}_{\beta}[\varphi(a), \varphi(b), \ldots, \varphi(h)]
$$

## Definition 9 (p. 411):

## A closed structure of choice probabilities satisfies Order-independence iff:

- For all $a, b \in B-C$ and $c \in C$ :

$$
P(\mathrm{a}, \mathrm{~B}) \geq P(\mathrm{~b}, \mathrm{~B}) \text { iff } P(\mathrm{c}, \mathrm{C} \cup\{\mathrm{a}\}) \leq P(\mathrm{c}, \mathrm{C} \cup\{\mathrm{~b}\})
$$

- (So long as the choice probabilities on either side of the inequality are not both 0 and 1.)
- Let's say a = red ball, b = black ball, and B = urn of red, black, and yellow balls. $C=$ the set of yellow balls
- $P(\mathrm{a}, \mathrm{B}) \geq \boldsymbol{P}(\mathrm{b}, \mathrm{B})$ means that there are at least as many red balls in the urn as there are black (maybe more).
- $P(c, C \cup\{a\}) \leq P(c, C \cup\{b\})$ says that the probability we choose a yellow ball given all the black balls and the yellow balls is at least as great as the probability of choosing a yellow given all the reds and yellows.
- This makes sense, since there are at least as many red balls than black ones.

Definition 10 (p. 414): A closed structure of choice probabilities satisfies the Strict-Utility Model iff:

- There exists a positive real-valued function $\varphi$
- on $A$ such that for all $\mathrm{a} \in \mathrm{B} \subseteq A$ :

$$
P(\mathrm{a}, \mathrm{~B})=\varphi(\mathrm{a}) \div \sum_{b \in B \varphi(b)}
$$



## Definition 11 (p. 415):

A closed structure of choice probabilities satisfies the ConstantRatio Rule iff:

- For all $\mathrm{a}, \mathrm{b} \in \mathrm{B} \subseteq A$, the following holds:

$$
P(\mathrm{a}, \mathrm{~b}) \div P(\mathrm{~b}, \mathrm{a})=P(\mathrm{a}, \mathrm{~B}) \div P(\mathrm{~b}, \mathrm{~B})
$$

(assuming that the denominators don't vanish)

- Tells us that the strength of preference for $a$ over $b$ (the ratio) is unaffected by the other alternatives.
- This is a notch up from the independence of irrelevant alternatives, which only tells us that the ordering of probabilities is unaffected by the alternatives.

Definition 12 (p. 416):
A closed structure of choice probabilities satisfies the Choice Axiom iff, for all $\mathrm{C} \subseteq \mathrm{B} \subseteq A$ :

- $P(\mathrm{C}, \mathrm{A})=P(\mathrm{C}, \mathrm{B}) \times P(\mathrm{~B}, \mathrm{~A})$
(where $P(\mathrm{~B}, \mathrm{~A}) \neq 0$ for all $\mathrm{B} \subseteq A$ )


## Theorem 6 \& $8(0.4168418)$

- If we have a closed structure of choice probabilities where the probability of a single event is neither zero or one, and some other stuff is true, then the strict utility model is satisfied if the constant ratio rule or the choice axiom holds.
- 8 gives necessary and sufficient
 conditions for getting a strict utility model of binary form.
- Gives us the product rule: a $\succ$ $\mathrm{b} \succ \mathrm{c} \succ \mathrm{a} / \mathrm{a} \succ \mathrm{c} \succ \mathrm{b} \succ \mathrm{a}$

Definition 13 (p. 421):
A closed structure of choice probabilities satisfies a Random Utility Model iff there exists a collection $U=\left\{U_{a} \mid a \in A\right\}$ of jointly distributed random variables, such that for all $a \in B$

$$
P(a, B)=\operatorname{Pr}\left(U_{a}=\max \left\{U_{b} \mid b \in B\right\}\right)
$$



## Definition 14 (p. 423): A closed structure of choice probabilities satisfies Nonnegativity iff for any $a \in A$ and $B_{0}, B_{1}, \ldots, B_{n} \subset A$

- The probability of any event, a, given a subset of $B, B_{0}$, subtracted by the probability of a, given all even combinations of subsets of $B$, plus the probability of a, given all odd combinations of subsets of $B$, is greater than or equal to zero.


## Cool Stuff about Nonnegativity...

- Nonnegativity is equivalent to the random-utility model whenever A contains 4 or fewer elements.
- Regularity says that the choice probability can't be increased by enlarging the offered set.
- When $\mathrm{n}=1$, nonnegativity reduces to $P(\mathrm{a}, \mathrm{B}) \geq P(\mathrm{a}, \mathrm{B} \cup \mathrm{C})$
- Nonegativity is both necessary and sufficient for the representation of choice probabilities by a random-utility model.

Definition 19 (p. 436): An Elimination Structure is quadruple < A, $\mathrm{M}, \mathrm{P}, \mathrm{Q}>$ where $<\mathrm{A}, \mathrm{M}, \mathrm{P}>$ is a closed structure of choice probabilities, and $Q=\left\{Q_{B} \mid B \subseteq A\right\}$ is the corresponding family of transition probability functions. $Q_{B} \in Q$ is a mapping from $2^{B}$ onto [ 0,1 ] satisfying $i$ i-iii (in book).

- Given some set B, one selects a nonempty subset of B. Call this C. The probability with which one chooses $C$ is $Q_{B}(C)$.
- We select a subset of $C$, call this $D$. The probability of choosing $D$ is $\mathrm{Q}_{\mathrm{C}}(\mathrm{D})$, and we keep doing this over and over again until the subset eventually consists of a single alternative.
- $i$ just says that will $\mathrm{Q}_{\mathrm{B}}(B)$ only ever equal one when we've gotten to a single alternative.
- ii says that when we sum up all of the C's and multiply them by the probability their probabilities given B , this equals one.
- iii says that $P(\mathrm{a}, \mathrm{B})$ is the absorbing probability of the Markov Chain. $P(\mathrm{a}, \mathrm{B})$ equals one times the probability of a, given $\mathrm{C}_{\mathrm{i}}$.

Definition 20 (p. 437): An Elimination Structure $<$ A, M, P, Q > satisfies a Random-Elimination Model iff there exists a random vector $U$ defined on A which satisfies that satisfies i and ii.

- i says that the probability that utility of $a=$ the utility of $b \neq 1$, for any two elements in A.
- ii says that where $c$ and $d$ are elements of $C$ and $b$ is an element of $B$ that is not in $C$, the probability of choosing subset $C$ from $B$ equals the probability that the utility of $c$ equals the utility of $d$ and that the utility of $d$ and $c$ are each greater than the utility of $b$.
*A random elimination model is Boolean iff the components of $U$ are all 0 or 1.

Definition 21 (p. 437-8): A closed structure of choice probabilities satisfies Proportionality iff there exists a family $Q=\left\{Q_{B} \mid B \subseteq A\right\}$ of functions such that (i) and (ii).

- (i) just says that our structure is an elimination structure.
- (ii) says that for all $\mathrm{D}, \mathrm{C} \subseteq \mathrm{B} \subseteq \mathrm{A}$, the ratio of the probability of choosing $C$ to choosing $D$, given $B$ is equal to the ratio of the probability of choosing $C$ to $D$, given $A$, when we multiply the probability of $C$, given $A$, by the sum of the C's that intersect with $B$, and likewise, we multiply the probability of $D$ given $A$ by the sum of all the Ds that intersect with $B$.
- The only other conditions are that the denominations are positive and that if one denominator goes away, so do the other. This is an equality after all...


## Definition 22 (p. 440): A closed structure of choice

 probabilities satisfies the Model of Elimination-by-Aspects iff there exists a positive-valued function, $f$, defined on $A^{`}-A^{0}$, such that for all $a \in B \subseteq A . .$. (see book)- The idea is that each alternative consists of a collection of aspects.
- There is a utility scale defined over all of these aspects.
- At each stage in the process, one selects an aspect with a probability proportional to its utility.
- Selecting this aspect eliminates all the alternatives that don't include it.
- This process continues until there is only a single alternative left.

The EBA model, the Boolean random-elimination model, and the proportionality condition are all equivalent! (Theorem 16).


## The End

Definition 6 (P. 312): Suppose $\succ$ and $R$ are binary relations on A and $\succ$ is asymmetric. $\mathbf{R}$ is Upper Compatible with $\succ$ iff

- For every $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in $A$, aRb and $\mathrm{b} \succ \mathrm{c}$ imply $\mathrm{a} \succ \mathrm{c}$

Definition 6 (continued): Suppose $\succ$ and R are binary relations on A and $\succ$ is asymmetric. $\mathbf{R}$ is Lower Compatible with $\succ$ iff

- For every $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in $A$, aRb and $\mathrm{c} \succ \mathrm{a}$ imply $\mathrm{c} \succ \mathrm{b}$
* $R$ is fully compatible with $\succ$ iff it is both upper and lower compatible with $\succ$


## Definition 10 (P. 333): Suppose $\succ_{1}$ and $\succ_{2}$ are asymmetric relations on $\boldsymbol{A}$. They satisfy upper- (and lower-) interval homogeneity iff

- For all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ in $A$, whenever $\mathrm{a} \succ_{1} \mathrm{c}$ and $\mathrm{b} \succ_{2} \mathrm{~d}$, then either $\mathrm{a} \succ_{2} \mathrm{~d}$ or $\mathrm{b} \succ_{1} \mathrm{c}\left(\mathrm{a} \succ_{1} \mathrm{~d}\right.$ or $\left.\mathrm{b} \succ_{2} \mathrm{c}\right)$


## Definition 8 (P. 317): Suppose $\langle A, \succ>$ is a one-sided threshold representation. It is said to be Monotonic iff

- $\varphi+\delta$ is a strictly increasing function of $\varphi$.

Definition 9 (P. 332): Suppose $\succ_{1}$, $\succ_{2}$ are asymmetric relations on $A$, and $\varphi, \delta_{1}, \delta_{2}$ are real-valued functions on $A .<\varphi, \delta_{1}$, $\boldsymbol{\delta}_{2}>$ is a Homogeneous, Upper Representation of $\left\langle A, \succ_{1}, \succ_{2}\right.$ $>$ iff

- $\left\langle\varphi, \delta_{\mathrm{i}}\right\rangle$ is an upper representation of $\left\langle A, \succ_{\mathrm{i}}\right\rangle, i=1,2$.
- (Same deal for homogeneous lower and homogeneous two-sided representations.)

Definition 12 (P. 338): P satisfies Interval Stochastic Transitivity iff

- $\max [P(\mathrm{a}, \mathrm{d}), P(\mathrm{~b}, \mathrm{c})] \geq \min [P(\mathrm{a}, \mathrm{c}), P(\mathrm{~b}, \mathrm{~d})]$

